整式乘法教学设计
整式乘法教学设计 【完整版】
《整式的乘法》教学设计教学目标知识与能力:在具体情境中了解单项式与多项式乘法的意义;过程与方法:1.探索单项式乘以多项式的运算法则,进一步建立符号感,发展抽象思维能力。
2.通过类比的方法得出运算法则,发展类比的数学思想。
情感态度与价值观1.通过参与单项式乘以多项式的运算法则的数学探究活动,提高对数学学习的好奇心与求知欲。
2.在小组活动中体会合作与交流的重要性。
教学单项式与多项式的乘法运算。
重点教学难点体会乘法分配律的作用和转化的数学思想。
教学方法创境导学法教具多媒体教学内容师生活动设计意图活动(一)复习提问复习单项式与单项式的乘法法则并计算yxxyyxx32332)()2()2())(1(-⋅+-⋅⋅-23322)()()(21)(2)2(abcabcbcabca-⋅--⋅--从已有的单项式与单项式相乘的法则出发引出课题学生易于接受。
活动(二)创设问题情境:求图中阴影部分的面积:这里多媒体展示图片学生观看并回答联系生活实际中的面积问题,让学生体会数学来源于生活的思想。
的) (bamxy--表示一个单项式与一个多项式的乘积。
活动(三)观察式子得出结论。
启发学生讨论ybyamxybamxy--⋅=--)(进而引导学生解释,并用数学描述单项式乘以多项式的运算法则。
mcmbamcbam++⋅=++)(激发学生学习兴趣,调动学生的主观能动性,引导学生自主去探究知识。
活动(五)展示例题规范讲解例题培养学生解决问题和分析问题的能力。
活动(六)游戏学生描述,教师在电脑上设计演示。
培养学生合作交流,探究知识的学习兴趣。
整式的乘法教案
整式的乘法教案一、教学目标1. 能够理解整式的乘法规则,掌握整式的乘法方法。
2. 能够应用整式的乘法方法解决实际问题。
二、教学内容1. 整式的乘法规则2. 整式的乘法方法3. 应用整式的乘法解决实际问题三、教学重难点1. 整式的乘法规则的掌握2. 整式的乘法方法的运用四、教学方法1. 讲授法2. 练习法五、教学过程1. 整式的乘法规则首先,对于两个单项式相乘,应用成分分解方法进行计算,即把两个单项式中的系数和字母分开,然后对系数和字母分别相乘:例如:(3a)(4b) = 3 × 4 × a × b = 12ab对于两个多项式相乘,利用分配律,把两个多项式的各项依次相乘,然后将结果合并:例如:(3a + 2b)(4a − 5b) = 3a × 4a − 3a × 5b + 2b × 4a − 2b × 5b = 12a^2 − 15ab + 8ab − 10b^2= 12a^2 − 7ab − 10b^22. 整式的乘法方法步骤一:分解整式将整式按照单项式分解的方式分解为单项式的乘积。
例如:2x^2 − 3xy + y^2 = (2x − y)(x − y)步骤二:按照公式进行运算根据乘法公式,在相应的位置上写下对应的系数和字母,然后合并同类项。
例如:(2x − y)(x − y) = 2x^2 − 2xy − xy + y^2 = 2x^2 − 3xy + y^2步骤三:检查结果检查结果是否合理,是否有错漏。
3. 应用整式的乘法解决实际问题例题一:甲、乙两人从甲地到乙地需要上车,车费7元,甲要付5元,乙付2元,求甲、乙两人到车站乘车的路程相差3千米,则甲、乙两人到车站乘车的路程分别是多少千米?解题方法:设甲的路程为x千米,则乙的路程为(x + 3)千米。
由题意可得:5/x + 2/(x + 3) = 7/x(x + 3)将上式通分并整理得:3x^2 − 2x − 15 = 0将上式分解得:(3x + 5)(x − 3) = 0得出x = −5/3,3因为路程不能为负数,所以甲的路程为3千米,乙的路程为6千米。
初中数学整式的乘法教案设计
初中数学整式的乘法教案设计一、教学目标1. 知识与技能:(1)掌握整式的乘法运算法则;(2)能够正确进行整式的乘法运算;(3)理解整式乘法在实际问题中的应用。
2. 过程与方法:(1)通过小组合作、讨论交流的方式,探索整式乘法的方法;(3)运用整式乘法解决实际问题。
3. 情感态度与价值观:(1)培养学生的团队合作意识;(2)提高学生对数学学习的兴趣;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)掌握整式的乘法运算法则;(2)能够正确进行整式的乘法运算。
2. 教学难点:(1)整式乘法中的多项式与单项式的相乘;(2)整式乘法中的乘法分配律的应用。
三、教学方法1. 情境导入:通过生活实例引入整式乘法的概念,激发学生的学习兴趣;2. 小组合作:引导学生进行小组讨论,共同探索整式乘法的方法;3. 举例讲解:运用具体例子,讲解整式乘法的运算法则;4. 练习巩固:设计相关练习题,让学生在实践中掌握整式乘法的运用;5. 拓展提高:引导学生运用整式乘法解决实际问题,提高学生的应用能力。
四、教学内容1. 整式乘法的概念引入;2. 整式乘法的运算法则;3. 整式乘法的计算方法;4. 整式乘法在实际问题中的应用。
五、教学过程1. 情境导入(5分钟):(1)通过生活实例,如计算矩形的面积,引入整式乘法概念;(2)引导学生思考如何将矩形的面积公式用数学表达式表示。
2. 小组合作(10分钟):(1)引导学生进行小组讨论,共同探索整式乘法的方法;3. 举例讲解(15分钟):(1)运用具体例子,讲解整式乘法的运算法则;(2)引导学生跟随讲解过程,理解整式乘法的计算方法。
4. 练习巩固(10分钟):(1)设计相关练习题,让学生在实践中掌握整式乘法的运用;(2)学生独立完成练习题,教师进行个别指导。
5. 拓展提高(10分钟):(1)引导学生运用整式乘法解决实际问题;(2)学生分组讨论,分享解题过程和答案。
人教版八年级数学上册---《整式的乘法》课堂设计
人教版八年级数学上册---《整式的乘法》课堂设计整式的乘法(第一课时)整式的乘法(第二课时)3 分钟4 分钟(2)创设情境引入新知【引入】为了扩大绿地面积,要把街心花园的一块长为p米,宽b米的长方形绿地,向两边分别加宽a米和c米.教师提出问题:(4)你能用哪些方法表示扩大后的绿地面积;(5)不同的表示方法之间有什么关系?为什么?学生并回答问题:(1)()cbap++或pcpbpa++或()p a b pc++或)(cbppa++(2)相等,都表示扩大后的长方形的面积.追问1:你还能通过别的方法得到等式()pcpbpacbap++=++吗?学生回答:乘法分配律.追问2:()pcpbpacbap++=++,请问这属于什么运算?学生回答:单项式乘多项式.教师引出本节课的课题——单项式乘多项式,明确本节课探究的主要内容:单项式乘多项式的运算是怎样进行的?如何确定运算结果?【问题1】:你能尝试计算()yxx22-吗?教师引导学生利用乘法分配律进行运算.()yxxxyxx22222⋅-⋅=-xyx422-=追问1:你能尝试归纳单项式与多项式乘法运算法则吗?学生尝试进行归纳,用自己的语言加以概括,小组讨论,教师在学生表述的基础上,和学生共同得到单项式乘以多项式的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.追问2:你能尝试归纳单项式与多项式相乘的步骤吗?①用单项式去乘多项式的每一项;②转化为单项式与单项式的乘法运算;整式的乘法(第三课时)5 分钟2 探究新知得出pbpabap+=+)(活动2:问题引入:为了扩大街心花园的绿地面积,把一块原长am、宽pm的长方形绿地,加长了bm, 加宽了qm.你能用几种方法求出扩大后的绿地面积?教师设问:(1)扩大后的公园的面积有几种表示法?学生思考,得出结论:第一种:整体求面积,得))((qpba++第二种:先求A和B的总面积为)(bap+再求C和D的总面积为)(baq+最后求和,得)()(baqbap+++第三种:先求A和C的总面积为)(qpa+再求B和D的总面积为)(qpb+最后求和,得)()(qpbqpa+++第四种:分别求出A,B,C,D的面积,再求和,得bqbpaqap+++教师设问:(2)用四种方法表示出来的代数式是什么关系呢?为什么呢?学生回答:用四种方法表示出来的代数式是相等关系,因为图形的面积是相等的。
七年级数学下册《整式的乘法》教案、教学设计
七年级下册的学生已经具备了一定的数学基础,掌握了基本的代数运算和简单的方程求解方法。在此基础上,学习整式的乘法,对学生来说既是对已有知识的巩固,也是对数学思维能力的进一步提升。学生在此阶段好奇心强,求知欲旺盛,但注意力容易分散,对抽象概念的理解和运用尚需加强。此外,学生的个体差异较大,部分学生对数学学习存在恐惧心理,需要教师在教学过程中给予关注和指导。因此,在教学整式乘法时,教师应结合学生的实际情况,设计富有启发性和趣味性的教学活动,激发学生的学习兴趣,提高学生的参与度,帮助学生在实践中掌握整式乘法的运算规则和应用技巧。同时,注重培养学生的数学思维能力,引导学生主动探索、发现、解决问题,使学生在轻松愉快的学习氛围中不断提高。
师:现在,请同学们完成以下练习题,检验一下自己对整式乘法的掌握程度。
2.教师巡回指导,针对学生的疑问和错误进行解答和纠正。
师:大家做题时要注意运算符号的处理,以及每一步的计算顺序。如果有问题,可以随时向我提问。
(五)总结归纳
1.教学活动设计:教师引导学生回顾本节课所学的内容,总结整式乘法的运算规则和技巧。
3.应用阶段:设计具有实际背景的练习题,让学生将所学的整式乘法知识应用于解决具体问题。例如,可以让学生计算不同形状的图形面积,或者解决与速度、距离等相关的实际问题。
4.巩固阶段:通过变式练习和拓展训练,巩固学生对整式乘法的理解和运用能力。同时,教师应关注学生的反馈,对学生的错误进行及时纠正和指导。
5.评价阶段:采用多元化的评价方式,包括课堂提问、小组讨论表现、课后作业和阶段测试等,全面评估学生对整式乘法的掌握程度。
-对于学习困难的学生,教师应给予个别指导,帮助他们克服难点,建立信心。
-对于学习优秀的学生,可以提供更高难度的挑战题,激发他们的学习兴趣和潜能。
整式的乘法公式教案
整式的乘法公式教案一、教学目标:1. 知识与技能:(1)理解并掌握整式的乘法公式,包括平方差公式和完全平方公式;(2)能够运用整式的乘法公式进行简便计算。
2. 过程与方法:(1)通过实例演示和练习,引导学生发现整式乘法公式;(2)培养学生运用公式进行计算的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动探究问题的习惯。
二、教学重点与难点:1. 教学重点:(1)掌握整式的乘法公式;(2)能够运用整式的乘法公式进行计算。
2. 教学难点:(1)整式乘法公式的推导过程;(2)灵活运用整式乘法公式解决实际问题。
三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)练习题。
2. 学生准备:(1)预习整式乘法公式;(2)准备笔记本,记录重点知识。
四、教学过程:1. 导入:(1)复习相关知识,如整式的加减法;(2)提问:能否将整式的加减法推广到乘法?2. 知识讲解:(1)通过实例演示,引导学生发现整式乘法公式;(2)讲解平方差公式和完全平方公式的推导过程;(3)强调公式中的各项系数和指数的变化规律。
3. 练习与讲解:(1)让学生分组讨论,互相解答疑问;(2)选取典型题目进行讲解,分析解题思路;(3)引导学生运用整式乘法公式进行计算。
4. 课堂小结:(1)回顾本节课所学内容,总结整式乘法公式的特点;(2)强调学生在练习中需要注意的问题。
五、课后作业:1. 请学生完成课后练习题,巩固整式乘法公式的运用;2. 鼓励学生自主探究,发现整式乘法公式的拓展应用。
六、教学拓展:1. 平方差公式的拓展:(1)引导学生发现平方差公式的推广形式;(2)举例说明平方差公式在实际问题中的应用。
2. 完全平方公式的拓展:(1)引导学生发现完全平方公式的推广形式;(2)举例说明完全平方公式在实际问题中的应用。
七、课堂练习:1. 请学生独立完成练习题,检验对整式乘法公式的掌握程度;2. 教师选取部分学生的作业进行点评,指出优点和不足。
整式的乘法教案设计与案例讲解
整式的乘法教案设计与案例讲解】整式的乘法是初中数学中比较重要的一部分,也是考试经常出现的题型。
在教学中,我们既要让学生掌握整式的乘法运算方法,也要让学生了解到整式乘法在实际问题中的应用。
本文将为您介绍整式的乘法教案设计与案例讲解,帮助您更好地教授整式的乘法。
【教案设计】一、教学目标1.知识与技能(1)掌握整式的乘法运算方法。
(2)培养运用整式乘法解决实际问题的能力。
2.过程与方法(1)掌握两个一次多项式相乘的运算方法。
(2)掌握一元二次多项式乘以一个一次多项式的运算方法。
(3)当一元二次多项式的两个因式相同时,应掌握特殊情况的解决方法。
3.情感、态度与价值观(1)热爱数学,积极参与课堂活动。
(2)认真思考问题,勇于探索。
(3)通过数学的学习,提高自己的逻辑思维能力,培养耐心和毅力。
二、教学重点与难点1.教学重点:(1)整式乘法的基本方法。
(2)一元二次多项式乘以一个一次多项式的运算方法。
2.教学难点:(1)应用问题中的解题方法。
(2)特殊情况的解决方法。
三、教学方法主要采用讲授法、练习法和探究法相结合的教学方法。
四、教学过程1.导入(5分钟)通过学生的生活经验,引入整式的乘法,让学生明白整式乘法与我们生活中的应用。
例如:小明买了5支铅笔,一支铅笔的价格为X 元,那么5支铅笔的价格是多少?2.整合知识(10分钟)对一次多项式相乘、一元二次多项式乘以一次多项式等知识进行讲解。
3.拓展知识(20分钟)通过实例,对如何运用整式乘法进行解决实际问题进行讲解。
例1:墙砖问题。
一面长方形墙面有11行13列共143面墙砖,每面砖的长和宽分别为x和y。
如果每面砖面积相同,那么砖的面积是多少?例2:人口问题。
某市年底总人口为500万人,比上年增加了10%。
问上年和今年年末的人口数是多少?例3:车票问题。
小明买了两张车票,一张票的价格为X元,另一张票比第一张票贵30元,那么这两张车票的价格分别是多少?4.练习(15分钟)通过习题实现对所学知识的巩固与拓展。
整式的乘法的教案
整式的乘法的教案教案标题:整式的乘法教学目标:1. 理解整式的概念和特点;2. 掌握整式的乘法运算法则;3. 能够运用整式的乘法进行简单的计算和化简。
教学准备:1. 教师准备:教学课件、白板、黑板笔、教辅资料等;2. 学生准备:课本、笔记本、铅笔等。
教学过程:步骤一:导入新知1. 引入整式的概念和特点,与学生共同探讨整式的含义,并通过具体例子解释整式的构成要素;2. 引导学生回顾和复习多项式的基本概念和运算法则,为后续学习整式的乘法打下基础。
步骤二:整式的乘法规则1. 教师通过示例,详细讲解整式的乘法规则,包括单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘等;2. 结合具体例题,引导学生逐步理解整式的乘法运算法则,强调对指数、系数的处理方法;3. 教师提供一些常见的整式乘法练习题,让学生通过练习巩固所学的乘法规则。
步骤三:运用整式乘法进行计算和化简1. 教师通过实际问题引导学生运用整式的乘法进行计算,培养学生的运算能力和解决问题的能力;2. 教师提供一些综合性的整式乘法应用题,让学生进行思考和解答,锻炼学生的综合运算能力;3. 鼓励学生互相合作,进行小组讨论和分享,加深对整式乘法的理解和应用。
步骤四:总结归纳1. 教师与学生一起总结整式的乘法规则,强调重点和难点;2. 教师提供一些习题,让学生自主进行练习和巩固;3. 教师解答学生在学习过程中出现的问题,并进行相关的补充和拓展。
步骤五:课堂小结1. 教师对本节课的重点内容进行小结,强调整式乘法的重要性和应用;2. 鼓励学生进行自主学习和思考,提高对整式乘法的掌握程度;3. 布置相关的课后作业,巩固和拓展所学内容。
教学反思:本节课通过引入整式的概念和特点,详细讲解整式的乘法规则,并结合实际问题进行运用和化简,旨在帮助学生全面理解整式的乘法运算法则,提高学生的运算能力和问题解决能力。
在教学过程中,教师应注意与学生的互动和合作,激发学生的学习兴趣和思维能力。
整式的乘法教案(通用3篇)
整式的乘法教案(通用3篇)整式的乘法篇1内容:整式的乘法单项式乘以多项式 P58—59课型:新授时间:学习目标:1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则学习难点:对法则的理解学习过程1、学习准备1、叙述单项式乘以单项式的法则2、计算(1)(— a2b)(2ab)3=(2)(—2x2y)2 (— xy)—(—xy)3(—x2)3、举例说明乘法分配律的应用。
2、合作探究(一)独立思考,解决问题1、问题:一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3天共修筑路面 m2。
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2。
因此,有 = 。
3、你能用字母表示乘法分配律吗?4、你能尝试总结单项式乘以多项式的法则吗?(二)师生探究,合作交流1、例3 计算:(1)(—2x)(—x2x+1)(2)a(a2+a)— a2 (a—2)2、练一练(1)5x(3x+4)(2)(5a2 a+1)(—3a)(3)x(x2+3)+x2(x—3)—3x(x2x—1)(4)(a)(—2ab)+3a(ab—b—1))(三)学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?(四)自我测试1、教科书P59 练习 3,结合解题,体会单项式乘以多项式的几何意义。
2、判断题(1)—2a(3a—4b) =—6a2—8ab ()(2)(3x2—xy—1) x =x3 —x2y—x ()(3)m2—(1— m) = m2—— m ()3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于()A、—1B、0C、1D、无法确定4、计算(20xx贺州中考)(—2a)( a3 —1) =5、(3m)2(m2+mn—n2)=(五)应用拓展1、计算(1)2a(9a2—2a+3)—(3a2)(2a—1)(2)x(x—3)+2x(x—3)=3(x2—1)2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
整式乘法教案
整式乘法教案标题:整式乘法教案一、教学目标:1. 理解整式乘法的定义和运算规则;2. 能够应用整式乘法的知识解决实际问题;3. 提高学生的整式运算和代数思维能力。
二、教学内容:1. 整式乘法的定义和运算规则;2. 整式乘法的基本性质;3. 应用整式乘法解决实际问题。
三、教学重点与难点:1. 整式乘法的定义和运算规则;2. 整式乘法的应用。
四、教学准备:1. 教师准备:a. 整式乘法的讲义、课件和教辅材料;b. 多媒体设备。
2. 学生准备:a. 手册;b. 笔记本和笔。
五、教学过程:Step 1:导入(10分钟)1. 教师引入整式乘法的概念,通过提问和实例引起学生的兴趣和思考。
Step 2:知识讲解与示范(20分钟)1. 整式乘法的定义和运算规则的讲解,通过讲义、课件和多媒体设备展示例子,帮助学生理解整式乘法的过程和步骤;2. 教师讲解整式乘法的基本性质,引导学生发现和总结。
Step 3:练习与巩固(30分钟)1. 学生自主或小组合作完成课堂练习题,巩固整式乘法的运算规则;2. 学生进行实际问题的解答,应用整式乘法解决实际问题。
Step 4:拓展与延伸(15分钟)1. 引导学生思考整式乘法在其他数学领域的应用,如因式分解和方程的解法等;2. 提供延伸练习题和拓展阅读材料,让学生深入了解整式乘法的相关知识。
Step 5:总结与评价(5分钟)1. 教师总结整式乘法的要点,概括整个教学内容;2. 学生进行自我评价,教师提供指导和反馈。
六、作业布置:1. 布置相关练习题作为课后作业,巩固整式乘法的知识;2. 建议学生进行拓展阅读,了解整式乘法在其他数学领域的应用。
七、教学反思:在整个教案中,教师通过清晰的教学目标、合理的教学内容和恰当的教学方法,有针对性地帮助学生理解整式乘法的定义和运算规则,并能够应用所学知识解决实际问题。
同时,教师注重学生的自主学习和合作学习,提升学生的整式运算和代数思维能力。
通过课后回顾和评价,教师也能及时发现并解决教学中存在的问题,不断提高自身的教学水平。
整式的乘法教案
整式的乘法教案教案标题:整式的乘法教案一、教学目标:1. 理解整式乘法的基本概念和性质;2. 掌握整式乘法的基本计算方法;3. 运用整式乘法解决实际问题。
二、教学重点:1. 整式乘法的基本概念和性质;2. 整式乘法的计算方法。
三、教学难点:整式乘法在实际问题中的应用。
四、教学过程:导入:1. 创设情境,引入整式乘法的概念。
讲解与示范:2. 回顾多项式的定义和多项式的加法;3. 引入整式的乘法概念,介绍整式乘法的性质;4. 示范如何进行整式乘法,包括单项式相乘和多项式相乘的情况;5. 解释每个步骤的原因和意义。
练习与巩固:6. 学生进行基础乘法练习,巩固整式乘法的计算方法;7. 给予学生一些简单的整式乘法题目,让学生独立完成;8. 学生互相检查答案,强化对整式乘法计算过程的理解。
拓展与应用:9. 引导学生运用整式乘法解决实际问题;10. 提供一些实际问题的例子,指导学生如何从问题中提取关键信息,转化为数学表达式,并进行整式乘法计算;11. 学生独立解决实际问题,并与同学分享自己的解决思路和答案。
归纳与总结:12. 归纳整式乘法的基本规律和计算方法;13. 鼓励学生总结整式乘法的特点和应用技巧。
五、课堂作业:1. 完成教师布置的整式乘法习题;2. 设计一个实际问题,运用整式乘法解决,并写下解决过程。
六、教学反思:1. 分析学生对整式乘法概念和计算方法的理解情况;2. 总结教学中有效的教学方法和策略;3. 将学生的问题和困惑进行归纳和解答;4. 针对学生的业务能力和学习兴趣,调整教学内容和形式。
14.1.4整式的乘法教案
(1)正确识别同类项:学生容易在系数和字母的幂次上出现混淆,需要教师重点强调和讲解。
举例:5x^2与4x^3不是同类项,不能直接相乘。
(2)多项式与多项式相乘的计算顺序:学生容易在计算过程中出现漏项、重复项或计算错误,需要教师指导正确的计算顺序和技巧。
举例:在计算(x + 2) * (x + 3)时,容易漏掉2x * 3或重复计算x * x。
3.重点难点解析:在讲授过程中,我会特别强调单项式相乘和多项式相乘这两个重点。对于难点部分,如多项式与多项式相乘,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘法相关的实际问题,如计算不同形状的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量和计算,演示整式乘法在计算面积中的应用。
举例:长方形的长和宽分别为(x + 3)和(x + 2),求长方形的面积,即(x + 3)(x + 2)。
在教学过程中,教师要针对以上重点和难点进行详细讲解和示范,确保学生能够透彻理解整式乘法的核心知识,并能够熟练运用到实际问题中。同时,通过设计不同难度的练习题,帮助学生巩固所学,逐步突破教学难点。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑思维能力:通过整式乘法的学习,使学生能够理解数学概念之间的内在联系,提高解决问题的逻辑思维水平。
整式的乘法教学设计方案
一、教学目标1. 知识与技能目标:- 学生能够理解整式乘法的概念,掌握整式乘法的运算规则。
- 学生能够熟练进行单项式与单项式、单项式与多项式、多项式与多项式的乘法运算。
2. 过程与方法目标:- 通过观察、操作、比较等活动,学生能够逐步建立整式乘法的概念。
- 通过小组合作、探究等活动,学生能够学会运用不同的方法进行整式乘法运算。
3. 情感态度与价值观目标:- 学生能够体验数学学习的乐趣,增强学习数学的自信心。
- 学生能够体会到数学与生活的联系,培养严谨的数学思维。
二、教学内容1. 单项式与单项式的乘法。
2. 单项式与多项式的乘法。
3. 多项式与多项式的乘法。
三、教学重难点1. 教学重点:整式乘法的运算规则和运算方法。
2. 教学难点:多项式与多项式的乘法运算。
四、教学过程(一)导入新课1. 通过生活中的实例引入整式乘法的概念,如:购买多个相同商品的总价计算。
2. 引导学生回顾单项式和多项式的定义,为整式乘法的学习做好铺垫。
(二)新课讲解1. 单项式与单项式的乘法:- 通过观察、比较等活动,引导学生发现单项式乘法的规律。
- 通过例题讲解,使学生掌握单项式乘法的运算方法。
- 学生练习,巩固所学知识。
2. 单项式与多项式的乘法:- 通过类比单项式乘法的规律,引导学生探究单项式与多项式的乘法。
- 通过例题讲解,使学生掌握单项式与多项式乘法的运算方法。
- 学生练习,巩固所学知识。
3. 多项式与多项式的乘法:- 通过观察、比较等活动,引导学生发现多项式乘法的规律。
- 通过例题讲解,使学生掌握多项式乘法的运算方法。
- 学生练习,巩固所学知识。
(三)课堂小结1. 回顾整式乘法的教学内容,总结运算规则和运算方法。
2. 引导学生反思学习过程,体会数学与生活的联系。
(四)作业布置1. 完成课后练习题,巩固所学知识。
2. 收集生活中的整式乘法实例,进行拓展练习。
五、教学评价1. 课堂观察:关注学生在课堂上的参与度、理解程度和操作能力。
《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册
《整式的乘法》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生理解整式乘法的概念及运算规则,能正确进行同类项合并及多项式乘法计算,通过实践操作掌握整式乘法的具体应用。
培养学生分析问题和解决问题的能力,激发学生对数学学习的兴趣和热情。
二、教学重难点教学重点:掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式等。
教学难点:理解整式乘法中同类项的合并过程,以及多项式乘法中如何灵活运用乘法分配律和乘法结合律。
三、教学准备课前准备:准备教材、教具(如白板、多媒体设备)、练习题以及课后作业。
教师需提前熟悉教材内容,准备好讲解用的示例和练习题,确保学生能够通过练习巩固所学知识。
同时,需确保教学环境安静舒适,为学生提供一个良好的学习氛围。
在上述教学准备基础上,教师应根据实际情况调整教学方法和策略,以适应不同学生的学习需求,提高教学效果。
四、教学过程:一、导课启思本环节将通过实际生活中的问题,引出整式乘法的概念和必要性。
教师可以利用具体的例子,如面积计算、速度与距离的关系等,让学生感受到整式乘法在现实生活中的广泛应用。
二、知识铺垫1. 复习旧知:回顾之前学过的单项式、多项式等概念,为整式的概念打下基础。
2. 引入新课:通过具体问题引出整式的概念,强调整式中各个项的乘积和相加关系。
三、新课讲解(一)整式的定义与分类1. 定义讲解:清晰、准确地阐述整式的定义,包括单项式和多项式等类型。
2. 实例展示:通过具体的数学表达式,让学生明确整式的形式。
3. 互动讨论:鼓励学生提出疑问,通过师生互动加深对整式定义的理解。
(二)整式的乘法法则1. 同类项的乘法:讲解同类项相乘的规则,强调乘法运算的顺序。
2. 分配律的应用:通过具体例子展示分配律在整式乘法中的应用,如(a+b)×c=a×c+b×c等。
3. 乘法的交换律和结合律:强调在整式乘法中交换律和结合律的重要性,并通过实例加以说明。
1.4整式的乘法教学设计2023-2024学年北师大版数学七年级下册
3. 引导学生运用分配律等已学过的运算律,简化整式乘法的过程,特别是在处理多项式乘以多项式的过程中,通过分组和合并同类项来降低难度。
4. 组织小组讨论和互评,让学生在交流中互相启发,纠正错误,共同突破难点。
学具准备
Xxx
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学方法与手段
教学方法:
1. 讲授法:通过生动的语言和清晰的板书,系统讲解整式乘法的规则和步骤,确保学生理解基本概念。
2. 讨论法:组织学生小组讨论,让学生在互相交流中加深对整式乘法运算的理解,提高解决问题的能力。
3. 情境教学法:设计贴近生活的数学问题,引导学生将整式乘法应用于解决实际情境,增强学习的兴趣和实用性。
4. 计算多项式乘以多项式并合并同类项:
- 题型:计算 $(x^2+2xy+y^2)(x^2-xy+y^2)$
- 答案:$x^4 + x^3y - x^3y^2 + x^2y^2 - xy^3 + y^4$
5. 应用整式乘法解决实际问题:
- 题型:一个长方形的长是 $3x^2$,宽是 $2xy$,求面积。
1.4 整式的乘法 教学设计 2023-2024学年北师大版数学七年级下册
主备人
备课成员
教学内容分析
1. 本节课的主要教学内容为北师大版数学七年级下册1.4章节的整式乘法,包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式等运算法则及其应用。
2. 教学内容与学生已有知识联系紧密。学生在之前的学习中掌握了整数的乘法法则、小数的乘法法则以及代数式的概念,尤其是对单项式和多项式的定义及简单运算有了初步的认识。在此基础上,本节课将进一步引导学生探索整式的乘法法则,巩固并拓展他们对代数表达式运算的理解和应用。
中学数学整式的乘法教案授课计划设计
中学数学整式的乘法教案授课计划设计教学目标:1、了解整式的定义和基本性质,掌握整式的乘法法则。
2、培养学生的数学思维和数学语言表达能力。
3、激发学生的学习兴趣和积极性,提高综合素质。
一、教学内容:整式的乘法法则。
二、教学方法:1、讲授法:讲述整式的定义和基本概念,引导学生理解整式的含义,帮助学生建立数学思维模式。
2、展示法:通过举例子、讲解概念来解释整式的乘法法则,提高学生对数学知识的理解能力。
3、练习法:通过一些思考题和习题的训练,让学生巩固已学过的知识,增强学生算术操作能力和数学思维应用能力。
三、教学步骤:第一步:整式的定义和基本概念1、介绍整式的定义和基本概念,引导孩子们了解整式的表示方法、种类、系数和项数等。
2、引导学生理解整式的含义,为下一步的教学打下基础。
第二步:整式的乘法法则1、通过举例子、讲解概念来解释整式的乘法法则。
例如:(ax + b)·(cx + d) = acx2 + (ad + bc)x + bd介绍整式乘法法则的一般形式和具体应用,例如将两个整式相乘,需要将每一项的各项系数依次相乘,在按照规律相加。
2、通过图示或如下式子来讲解含有分式的整式的乘法法则:(1 + a/b)(1+a/c) = 1 + a(b+c)/(bc)3、通过课件或黑板板书来呈现更多的例子让学生更好地理解整式的乘法法则。
第三步:学生练习1、让学生自己动手进行一些实践练习,加深他们对整式的理解和应用能力。
2、针对常见的整式操作错误和问题进行巩固性训练,帮助学生养成较好的整式乘法的思维模式。
四、教学评价:通过学生的平时作业、小考、月考、期末考试等评价方法,来对学生的整个学习过程和教学效果进行全面的评估。
评估结果可以为教学改进提供参考。
五、教学心得:整式的乘法是中学数学课中的一项重要内容,它涉及到了学生对数学概念的理解和数学思维的训练。
在教学过程中,特别要注重对基本概念的讲解,以及对图片和实例的应用,来帮助学生更好地理解整式的运算法则,并培养他们的数学思维和语言表达能力。
《整式的乘法》教案
《整式的乘法》教案一、教学目标1. 理解整式乘法的概念和意义。
2. 掌握整式乘法的基本方法和步骤。
3. 能够运用整式乘法解决实际问题。
二、教学内容1. 整式乘法的定义和性质。
2. 整式乘法的基本方法和步骤。
3. 整式乘法在实际问题中的应用。
三、教学重点与难点1. 整式乘法的概念和意义。
2. 整式乘法的基本方法和步骤。
3. 整式乘法在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解整式乘法的概念和意义。
2. 采用示范法,演示整式乘法的基本方法和步骤。
3. 采用练习法,让学生通过实际问题运用整式乘法。
五、教学准备1. 教学课件或黑板。
2. 练习题。
教案内容:一、导入(5分钟)1. 引入整式乘法的概念,引导学生回顾整式的基本知识。
2. 通过实际例子,让学生感受整式乘法的意义。
二、讲解整式乘法(15分钟)1. 讲解整式乘法的定义和性质。
2. 演示整式乘法的基本方法和步骤。
3. 引导学生通过例子理解和掌握整式乘法。
三、练习整式乘法(15分钟)1. 分组练习,让学生相互讨论和交流。
2. 教师选取部分学生的作业进行讲解和指导。
四、应用整式乘法解决实际问题(15分钟)1. 给出实际问题,让学生运用整式乘法进行解决。
2. 引导学生总结整式乘法在实际问题中的应用。
五、总结与布置作业(5分钟)1. 对整式乘法进行总结,强调重点和难点。
2. 布置相关练习题,让学生巩固所学知识。
六、教学过程1. 复习导入:回顾上一节课的内容,通过几个简单的整式乘法例子,让学生回顾并巩固整式乘法的基本方法和步骤。
2. 讲解新课:讲解整式乘法的进阶概念和技巧,如平方差公式、完全平方公式等。
通过示例和练习,让学生理解和掌握这些概念和技巧。
3. 应用练习:给出一些实际问题,让学生运用整式乘法进行解决。
通过讨论和交流,引导学生总结整式乘法在实际问题中的应用。
七、教学评价1. 课堂练习:在课堂上,让学生完成一些整式乘法的练习题,通过学生的解答情况,了解学生对整式乘法的掌握程度。
整式的乘法教案
整式的乘法教案教案:整式的乘法一、教学目标1. 理解整式的定义和特点。
2. 掌握整式乘法的运算法则。
3. 能够应用整式乘法解决实际问题。
二、教学重难点1. 整式的乘法运算法则。
2. 解决实际问题时如何应用整式乘法。
三、教学过程1. 导入(5分钟)通过一个简单的问题引入整式乘法的概念,如:小明有3本书,每本书的价格是$2,那么这3本书的总价格是多少?2. 理解整式(10分钟)解释整式的定义:由常数、变量及它们的乘积以及它们的和或差构成的代数表达式称为整式。
整式通常用字母表示变量,比如 3x^2 + 2xy - 5。
3. 整式的特点(5分钟)解释整式的特点:整式是由多个单项式相加或相减而成的,每个单项式又由常数与变量的乘积构成。
整式中的每一项称为整式的项,项中的常数称为该项的系数,项中的变量的次数称为该项的次数。
4. 整式的乘法运算法则(15分钟)详细介绍整式的乘法运算法则,包括:- 系数相乘:将两个单项式的系数相乘。
- 变量相乘:将两个单项式的变量相乘,并得到它们的乘积。
- 次数相加:将两个单项式的变量次数相加,并得到它们的次数之和。
- 合并同类项:将所有乘积得到的单项式合并成一个整式,并将其中的同类项合并。
5. 整式乘法的例题演练(15分钟)通过一些具体的例题演示整式乘法的运算过程,帮助学生从实际问题中理解和掌握整式乘法的运算规则。
6. 应用整式乘法解决实际问题(10分钟)提供一些实际问题,让学生运用所学的整式乘法解决,加深他们对整式乘法应用的理解。
7. 总结与评价(5分钟)让学生总结整式乘法的运算法则,并与他们之前学过的知识进行对比和评价。
四、作业布置布置一些相关的练习题,要求学生独立完成,并检查答案。
五、课堂延伸可以引入多项式的乘法运算,并进行相关的深入讨论和练习。
注意事项:教学过程中避免直接使用与标题相同的文字,以免造成混淆和误导。
整式的乘法教学设计 人教版(优秀教案)
第一章整式的乘除整式的乘法(第课时)一、学生起点分析:学生的知识技能基础:学生在小学就已经了解乘法分配律,在本章前面几节课中学生了解了幂的运算性质,并能正确运用幂的运算性质解决相关问题.在整式乘法的第一课时中又学习了单项式乘以单项式的运算法则,为本课时单项式乘多项式的学习奠定了充足的知识基础.学生的活动经验基础:在前面学习幂的运算时,学生经历了一些探索活动,初步积累了一些经验.在第一课时探索单项式乘单项式法则的过程中,学生也体会了转化思想在解决新问题中的重要作用,这都为本课时的探索积累了活动经验.二、教学任务分析:教科书根据整式运算的知识脉络和学生的认知基础确定了本节课的主要教学任务:让学生经历猜想、验证单项式与多项式相乘的运算法则的过程,能运用法则进行计算并解决实际问题.单项式乘以多项式看起来是一个新问题,但是学生结合前面的学习经验,类比数的乘法分配律,很容易将它转化为单项式乘单项式,使新知识的学习水到渠成.因此本节课应关注学生对算理的理解,发展学生有条理的思考及语言表达能力.具体教学目标为:.知识与技能:在具体情境中了解单项式与多项式乘法的意义,会进行单项式与多项式的乘法运算..过程与方法:经历探索单项式与多项式乘法法则的过程,理解单项式与多项式相乘的算理,体会乘法分配律的重要作用及转化的数学思想,发展学生有条理的思考和语言表达能力..情感与态度:在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣.三、教学设计分析:本节课共设计了七个环节:前置诊断,开辟道路——创设情境,自然引入——设问质疑,探究尝试——目标导向,应用新知——变式训练,巩固提高——总结串联,纳入系统——达标检测,评价矫正第一环节:前置诊断,开辟道路活动内容:教师提出问题,引导学生复习上节课所学的单项式乘单项式 、如何进行单项式乘单项式的运算?你能举例说明吗?、计算: ()223123abc abc b a ⋅⋅ ()4233)2()21(n m n m -⋅- 、写一个多项式,并说明它的次数和项数.活动目的:首先引导学生回忆单项式乘单项式的运算法则,目的是为探索单项式乘以多项式法则做好铺垫,因为最终我们要将它转化为单项式乘以单项式,所以这里通过活动、来进行回顾十分必要.有上一课时的课堂学习加上课后作业的巩固,学生应该能够熟练应用法则进行计算,所以问题设置的综合性较上节课的练习更强一些.问题的设置为今天的新课学习奠定基础.实际教学效果:绝大多数学生能够较熟练的说出单项式乘单项式的运算法则,通过练习发现学生在处理问题的第()小题时出错较多,既有符号的错误,也有幂的乘方出现问题.通过教师与学生共同订正错误,使学生的认识有了进一步的提高.第二环节:创设情境,自然引入活动内容:延续上节课的问题情境,才艺展示中,小颖也作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了m 81x 的空白,这幅画的画面面积是多少?先让学生独立思考,之后全班交流.交流时引导学生呈现出自己的思考过程?同学之中主要有两种做法: 法一:先表示出画面的长和宽,由此得到画面的面积为)41(x mx x -; 法二:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为2241x mx -m 1x m 1x教师启发学生:两种方法得到的答案不一样,到底哪种方法对?短暂的思考之后,学生回答都对,由此引出)41(x mx x -2241x mx -这个等式. 引导学生观察这个算式,并思考两个问题:式子的左边是什么运算?能不能用学过的法则说明这个等式成立的原因? 学生不难总结出,式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得)41(x mx x -x x mx x 41⋅-⋅,再根据单项式乘单项式法则或同底数幂的乘法性质得到x x mx x 41⋅-⋅2241x mx -,即)41(x mx x -2241x mx - 由此引出本节课的学习内容:单项式乘以多项式.活动目的:从实际问题出发,学生通过对同一面积的不同表达,引出)41(x mx x -2241x mx -这个等式.教师再引导学生运用乘法分配律、同底数幂乘法的性质说明上述等式成立的原因,由此引出新课.实际教学效果:这个问题让学生独立思考之后,全班交流.在这一问题的解决过程中学生可以体会到通过不同方法求同一图形面积就可以得到一个等式,而这种方法在后面的乘法法则探索中将一直沿用.第三环节:设问质疑,探究尝试活动内容:在刚才的数学活动基础上,教师再提出以下两个问题:问题:)2(x abc ab +⋅及)(2p n m c -+⋅等于什么?你是怎样计算的?问题: 如何进行单项式与多项式相乘的运算?要求学生先独立思考,再在四人小组内交流,之后全班交流.问题有上一环节的铺垫,学生几乎都能做出答案.在全班交流环节,教师重点引导学生说说是怎样计算的,目的是让学生明白每一步的算理,理解知识的形成过程.问题多数学生明白怎么做,但是组织语言时不够简练,只要意思正确,教师都加以肯定,再鼓励他们不断精炼语言,最后总结出单项式乘多项式的法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.活动目的:设置问题是让学生获得更充分的体验,为下面顺利归纳单项式与多项式的乘法法则铺平道路.问题交给学生尝试解决,目的是引导学生进一步理解算理,体会到乘法分配律的重要作用和转化的数学思想,在此基础上,学生自己总结出单项式乘以多项式的运算法则,并运用语言进行描述.实际教学效果:实际教学中,学生能够较顺利的发现规律,得到法则.只是在法则的归纳中,语言不够简练,需要教师不断的引导帮助.在这里重要的是能够理解运算法则及其探索过程,体会运用乘法分配律将单项式乘以多项式转化为上节课学习的单项式乘以单项式,不必要求学生背诵法则.第四环节:目标导向,应用新知活动内容:教师通过例题,引导学生应用单项式乘多项式的法则进行计算.实际教学中,教师将四道例题全部呈现,让学生先独立尝试完成,教师巡视批阅,根据巡视批阅中发现的问题,有针对性地进行讲解.例 计算:())35(222b a ab ab +()ab ab ab 21)232(2⋅- ())32()5(-22n m n n m -+⋅ ()xyz z xy z y x ⋅++)(2322教师先批阅每个学习小组中做的最快的同学,再由他批阅组内另三个同学的练习,之后由他总结汇报组内同学的完成情况,并分析错误成因.交流之后,留给学生两分钟的反思时间,一方面为刚才有错误的同学留下改错和消化的时间,另一方面也让学生结合刚才的例题总结做单项式与多项式乘法时,需要注意什么问题.让学生反思总结,升华提高,再有目的的进行练习.活动目的:例题的处理并不是单一的教师讲,学生模仿,而是先让学生独立尝试解决.事实上,教师提前就预料到学生容易出现哪些错误,但只有让学生在解决问题的过程中亲身经历错误,才能真正提高解决问题的能力.教师批阅每个组最快的学生,然后再让这个学生当小老师去批阅其他同学的,既调动了优生的积极性,又让老师有精力去关注那些学困生.例中第,,题是课本例题,第题教师在例题的基础上稍作改动,增加了符号这一易错点,这样学生才能结合自己的实践提高认识.实际教学效果:学生运用法则的正确率较高,说明能够理解单项式乘以多项式的实质就是运用乘法分配律,将其转化为单项式乘以单项式,但仍有学生出现符号错误、漏乘等问题.给学生分钟时间反思和消化,进一步加深对算理的理解,同时总结易错点,提高做题的正确率.第五环节:变式训练,巩固提高活动内容:★、计算:())(2n m a a + ())3(22a a b b -+())121(33-xy y x ()d ef d f e 22)(4⋅+ ★★、计算: )(5)21(2-2222ab b a a b ab a --+⋅ ★★★、已知的值求)3(,352732y y x y x xy xy ----=活动目的:设置了三个层次的练习,以题组的形式抛给学生,既避免了优生早早做完题无事可干,又能让基础薄弱的学生进行基本的巩固练习.通过不同难度的练习题,不断促进学生思考,运用所学知识解决新问题,在解决问题的过程中获得能力的提高.教学中,教师可以通过灵活的评价方式,激励学生挑战多星题,培养学生乐于钻研的精神.实际教学效果:通过前面例题有针对性的讲解,再加上学生的反思消化,第题的计算正确率明显提高.第三题考察学生整体代入思想,求值过程需要教师的点拨.第六环节:总结串联,纳入系统活动内容: 教师引导学生回顾本节课的学习过程,自己总结:、本节课学习了哪些知识?、领悟到哪些解决问题的方法?感触最深的是什么?、对于本节课的学习还有什么困惑?活动目的:回顾一节课的学习过程,教师引导学生从知识的学习、方法的领悟、相关内容的逻辑关联,这几个方面进行归纳总结本节课,使学生将本节课所学知识纳入个人的知识体系.教师希望学生能从前面所讲的内容中得到启发,解决后面遇到的问题,所以让学生理解知识之间内在的逻辑联系,是掌握全部内容的重要环节.实际教学效果:学生能够总结出单项式与多项式相乘的运算法则以及在练习中自己所出的错误,理解将单项式乘多项式转化为单项式乘单项式这种转化的数学思想.第七环节:达标检测,评价矫正计算:())478)(21-3+-x x x ( ())3)(1944(22x x x -+- 活动目的:用两道比较基本的题作为本节课的达标检测题,既检查了本节课重点内容的掌握,又能帮助学生树立自信,收获成功.实际教学效果:两道题的通过率比较高.课后作业:1. 习题.拓展作业:.,,62)3(232532的值求若n m y x y x xy y x y x nm -=+-- 四、 教学设计反思:本节课的教学设计以“阿克斯()动机”教学模式为指导:(),引起注意;(),教学内容与学习者的贴切性和相关性;(),通过成就增强自信;(),对学习效果满意.这一单元的教学是以习题训练为主的,知识前后联系紧密,层层递进,教学时注意选择了有层次的例题和练习,更主要的渗透了类比、转化等重要的数学思想方法.课堂上充分利用学习小组,组织学生开展合作学习,教师通过对小组进行评价,激发学生的竞争意识,让课堂学习更高效.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章整式的乘除4 整式的乘法(第1课时)姚千九年一贯制学校李全海总体说明:在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,具备了由数的运算转化为式的运算的知识基础,类比有理数运算学习整式的运算是本章的重点,是代数知识学习的重点内容,可以帮助学生认识到代数与现实世界、学生生活、相关学科联系十分密切,为数学本身和其他学科的研究提供了语言、方法和手段.本单元提前安排了同底数幂的乘法、幂的乘方、积的乘方等知识,然后通过实例引入了整式的乘法,使学生通过对乘法分配律等法则的运用探索整式乘法的运算法则以及一些重要的公式,所以,本节知识既是对前面所学知识的综合应用,也为下面学习乘法公式、整式除法以及八年级学习因式分解打好基础.本单元共分3课时,由浅入深地学习单项式乘单项式、单项式乘多项式、多项式乘多项式,三节课的知识环环相扣,每节课新知识的学习既是对前一节所学知识的应用,也为后一节学习奠定基础.所以在教学时要注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知为已知,形成较完整的知识结构.一、学生起点分析:学生的知识技能基础:在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂的乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础.对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,帮助学生提高认识.学生的活动经验基础:学生在小学及七年级上的学习中,受到了较好的运算能力训练,能够独立完成计算活动,并具有一定的将实际问题转化为数学问题,通过计算解决实际问题的能力.但是学生在进行计算时往往仅关注对于法则的掌握及应用,对于算理认识不足,所以教学中要通过设计问题,让学生经历获得法则的过程,真正理解算理.二、教学任务分析:本节课的主要教学任务是通过带领学生解决实际问题,经历探索、验证单项式乘法运算法则的过程,正确理解法则,并能应用法则进行计算.在此过程中要关注学生理解算理,体会乘法交换律和结合律的作用和转化的思想.教学目标为:1.知识与技能:在具体情境中了解单项式乘法的意义,理解单项式乘法法则,会利用法则进行单项式的乘法运算.2.过程与方法:经历探索单项式乘法法则的过程,理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力.3.情感与态度:体验探求数学问题的过程,体验转化的思想方法,获得成功的体验.教学重点:单项式乘法法则及其应用.教学难点:理解运算法则及其探索过程.三、教学过程设计:本节课共设计了七个环节:课前展示—实例引入—探索规律—及时训练—数形结合—课堂收获—随堂测评第一环节:课前展示活动内容:小小主持人提出问题,引导学生复习幂的运算性质问题:计算下列各题:(1)(-a5)5 (2)(-a2b)3 (3) (-2a)2(-3a2)3(4) (-y n)2y n-1 活动目的:让学生来主持课前展示环节,锻炼学生语言表达能力,长期联系,提高学生学习积极性,提高课堂容量因为单项式乘法最终落脚于幂的运算,所以通过两个练习帮助学生复习幂的运算性质,这是正确进行整式乘法的前提.四个小题需要用到幂的三个运算性质,其中第4小题含有字母,目的是通过练习发现学生易出现的错误,巩固知识,为新课的学习做好铺垫,有利于帮助学生体会到新旧知识之间的联系与转化.实际教学效果:教学实践表明,绝大多数学生能够较熟练的说出幂的三条运算性质,并会用字母表达.通过练习发现学生易混淆同底数幂乘法法则和幂的乘方法则,不会灵活应用积的乘方法则,所以学生普遍存在只是死记硬背法则、不理解算理的现象,出现计算错误.通过教师与学生共同订正错误,使学生的认识有了一定的提高.第二环节:实例引入:(自主学习教材14页,例题1之上,解决教材中的问题,3分钟后,学生小组交流,解决自学中存在的问题)活动内容:提出学生身边的一个实例,引出问题:七年级三班举办新年才艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画,如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有 x 81米的空白.(1) 第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?(2) 若把图中的1.2x 改为mx ,其他不变,则两幅画的面积又该怎样表示呢?引导学生认真读图,得出第一个画面的长、宽分别为1.2x 米、x 米,第二个画面的长、宽分别为1.2x 米、)8181(x x x --米,即x 43米,学生利用矩形面积公式可得到: 第一幅画的面积是:)2.1(x x ⋅,第二幅画的面积是:)2.143x x ()(⋅ 再利用前面幂的运算性质,学生很容易得出结果)2.1(x x ⋅=22.1x ,)2.143x x ()(⋅=29.0x 让学生总结经验,进行汇报,学生很容易得到第一幅画的面积是:)(mx x ⋅,第二幅画的面积是:)43mx x ()(⋅. 教师引导学生对两个代数式进行分析: mx x ⋅和)43mx x ()(⋅,这是什么运算?你能表示出最后的结果吗?因为因式都是单项式,学生能够回答出是单项式乘以单项式的运算.进一步xm m 81x追问:什么是单项式?(表示数与字母的积的代数式叫做单项式)也就是说mx x ⋅也就是x m x ⋅⋅,根据乘法交换律和结合律,可以写成)(x x m ⋅⋅,再根据幂的运算性质可以得出2mx 这一结果,即)(mx x ⋅=2mx .类比老师的分析,学生马上自己动手探索出)43mx x ()(⋅=243mx ,教师请同学交流自己的思考过程,旨在理解其中的算理.由此引入新课:我们知道,整式包括单项式和多项式,从这节课起我们就来研究整式的乘法,先学习单项式乘以单项式.活动目的:以上设计从实际问题出发,引出了单项式乘法,使学生体会到数学知识来源于生活,并能解决生活中的问题.教师通过不断地追问,启发学生发现问题、解决问题,在此过程中展示新知识形成的过程.两个问题的设置体现了由数到字母的过渡,符合学生的认知规律.教师追问的主要目的是让学生发现表示图画面积的式子是两个单项式的积,引出本节课要学习的内容,再次追问单项式的定义,目的是让学生了解单项式是由字母因数和数字因数两部分组成的,为后面概括单项式乘法法则做好铺垫.实际教学效果:学生在以上探究过程中始终保持积极性,通过独立思考与合作交流,较好的完成各项任务.实际教学中发现,个别学生对于单项式的概念还不很明确,所以此时的复习是非常必要的,教师可利用实际问题中出现的单项式或者再举出一些容易混淆的单项式,让学生分别说出他们的系数和次数,特别是对于单项式中字母次数的认识更加重要,否则学生在单项式乘法的运算中容易出错.第三环节:探索规律活动内容:在刚才的数学活动基础上,教师再提出以下两个问题:问题1: 3a 2b ·2 ab 3和(xyz )·y 2z 又等于什么?你是怎样计算的?组织学生先独立思考,再以四人为小组讨论,鼓励学生大胆发表自己的见解,全班共同交流,得出单项式乘法的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.得出法则后,教师再提出有思维价值的问题,引导学生对探究的过程进行反思,明确算理,体会数学知识之间的联系.问题2:在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则?学生回答:运用了乘法的交换律、结合律和同底数幂乘法的运算性质.活动目的:实际教学中,视学生情况而定,以上三个问题可同时给出,也可以逐一给出.教师通过问题1,让学生独立思考自主探究,经历知识形成的过程,在探究中发现和总结出规律,获得体验.教师应鼓励学生灵活运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘单项式的运算法则,并理解算理,在探究的基础上运用自己的语言描述单项式乘法的法则.这样设计的主要目的是让学生理解运算法则及其探索过程,而不是仅仅背过法则,使学习知识的过程同时成为提高学生分析和解决问题能力的过程.实际教学效果:学生在解答问题1的过程中,能够利用前面的活动经验,但由于学生的认知基础有差异,有的学生得出的结果没有达到最简,这样就出现了不同的结果,此时教师就适时提出讨论题,以上结果都对吗?它们之间有何联系?哪种结果是最简的?进一步帮助学生学会正确利用运算律将结果运算到最简.实践证明,问题3的设计是非常必要的,使学生进一步明确计算的理论依据,避免了解题的盲目性,提高认识水平.同时也发现学生运用数学语言表达的能力还比较弱,在概括法则时语言不够规范到位,教师要注意加强渗透.第四环节:及时训练(学生自主学习教材例题,并抄题重做,学生讲解,教师及时指导)活动内容:教师通过例题,使学生明确利用单项式乘法法则进行计算的方法.虽然是例题,但是教师先不讲解,让学生尝试独立完成,教师根据学生遇到的问题和出现的错误,有针对性地进行讲解和板书示范.同时教学中应通过恰当的方式让学生明确每一步运算的依据.例1 计算:)31(2)1(2xy xy ⋅ )3(2)2(32a b a -⋅- 22)2(7)3(xyz z xy ⋅ )31()43()32)(4(2532c ab c bc a ⋅-⋅- 以上四个题目分为两组,先让学生完成前两个,安排学生板演,让学生进行评价,发现自己或同伴出现的问题,教师带领学生进行订正及示范.在总结解题经验、明确正确方法的基础上,再让学生完成具有较大难度的第3、4题.在学生充分参与计算、讨论活动后.教师再提出具有挑战性的问题:进行单项式乘法运算的步骤是什么?需要注意什么问题?让学生反思总结,升华提高,再有目的的进行练习.随堂练习:计算:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅ 活动目的:在学习了单项式乘法法则后,及时通过一组练习帮助学生熟悉法则的应用及每一步的算理,教师应引导学生总结出运用单项式乘法法则时,注意以下几点:(1)进行单项式乘法,应先确定结果的符号,再把同底数幂分别相乘,这时容易出现的错误是将系数相乘与相同字母指数相加混淆;(2)不要遗漏只在一个单项式中出现的字母,要将其连同它的指数作为积的一个因式;(3)单项式乘法法则对于三个以上的单项式相乘同样适用;(4)单项式乘以单项式,结果仍为单项式.这样通过练习,不仅使学生掌握了乘法法则,而且学会反思,积累解题经验,发展他们有条理的思考能力.实际教学效果:学生通过练习,能够较好地把握运用单项式乘法法则进行计算的方法,在解题过程中,通过合作交流,发现自己以及同伴出现的解题失误,积累了解题经验,实际教学中,学生对于随堂练习能够较顺利完成,正确率较高.第五环节:(数形结合的思想渗透)数学结合思想是数学教学中非常重要的解题思想,对以后的学习也很有帮助,所以本节课特意设置了这样一个亮点,提高学生思考技巧。