高中数学必修五-正余弦定理-【经典整理】

合集下载

高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53

高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53

45°=
23,
∴C=60°或 C=120°.
当 C=60°时,B=75°,
b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°, b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3 -1,B=15°,C=120°.
代入已知式子得
cos ksin
AA=kcsoisn
BB=kcsoisn
CC.
∴csoins
AA=csoins
BB=csoins
C C.
∴tan A=tan B=tan C.
又∵A、B、C∈(0,π),
∴A=B=C.∴△ABC 为等边三角形.
法二:化边为角
由正弦定理得sina A=sinb B=sinc C.
提示:sina A=sinb B=sinc C
2.归纳总结,核心必记 (1)正弦定理 在一个三角形中,各边和它所对角的正弦的
比相等,即 (2)解三角形
一般地,把三角形的三个角 A,B,C 和它 们的对边 a,b,c 叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做 解三角形.
[问题思考] (1)在△ABC 中 sin A=sin B,则 A=B 成立 吗? (2)在△ABC 中,sin A∶sin B∶sin C=a∶b∶c 成立吗? (3)在△ABC 中,若 A>B,是否有 sin A>sin B? 反之,是否成立?
—————————[课堂归纳·感悟提升]————————— 1.本节课的重点是正弦定理的应用,难点是正
弦定理的推导.
2.本节课要牢记正弦定理及其常见变形:
(1)sina A=sinb B=sinc C=2R(其中 R 为△ABC 外

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

高中数学必修五公式整理

高中数学必修五公式整理

高中数学必修五公式声明:本文非原创,由于界面阅读感不好而本人进行重新排版。

第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径) 变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n ∙-+=11或()d m n a a m n ∙-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-∙=或q a a mn m n -∙=3.求和公式: )(1q ,1==na S n )(1q 11)1(11≠--=--=qqa a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。

高中数学必修5第1章第1节12余弦定理

高中数学必修5第1章第1节12余弦定理

∴2B=2A 或 2B+2A=π,
即 A=B 或 A+B=π2. ∴△ABC 是等腰三角形或直角三角形.
上一页
返回首页
下一页
1.判断三角形的形状应围绕三角形的边角关系进行思考,可用正、余弦定 理将已知条件转化为边边关系,通过因式分解、配方等方式得出边的相应关系, 从而判断三角形的形状,也可利用正、余弦定理将已知条件转化为角与角之间 的关系,通过三角变换,得出三角形各内角之间的关系,从而判断三角形形状.
上一页
返回首页
下一页
2.在△ABC 中,a=7,b=4 3,c= 13,则△ABC 的最小角为( )
πππ A.3 B.6 C.4
又 A+B+C=π,
所以 sin C=2sin A,
所以ssiinn CA=2.
上一页
返回首页
下一页
(2)由(1)知ssiinn CA=2,由正弦定理得ac=ssiinn CA=2, 即 c=2a. 又因为△ABC 的周长为 5, 所以 b=5-3a. 由余弦定理得 b2=a2+c2-2accos B, 即(5-3a)2=a2+(2a)2-4a2×14, 解得 a=1,a=5(舍去), 所以 b=5-3×1=2.
a,b,c.已知cos
A-2cos cos B
C=
2c-a b.
【导学号:05920004】
(1)求ssiinn CA的值;
(2)若 cos B=14,△ABC 的周长为 5,求 b 的长.
上一页
返回首页
下一页
【解】 (1)由正弦定理得 a=2Rsin A,b=2Rsin B,c=2Rsin C,(其中 R 为
探究 1 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若 a2=b2+c2, 则 sin2A=sin2B+sin2C 成立吗?反之说法正确吗?为什么?

人教版高中数学必修五正弦定理和余弦定理课件

人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是

人教版数学必修51.1.2余弦定理

人教版数学必修51.1.2余弦定理

余弦定理变情势:
cosA b2 c2 a2 2bc
cosB a2 c2 b2 2ac
cosC a2 b2 c2 2ab
探究2:
勾股定理指出了直角三角形中三边平方之间的关系, 余弦定理则指出了一般三角形中三边平方之间的关 系,如何看这两个定理之间的关系?
探究3: 当角C为直角时有c2 a2 b2,当角C为锐角
2bc
22 3 1 2
A 600
C
a
b
B
c
A
已知三边解三角形
变3式、:在 ABC 中,已知 a2 b2 ab c2 ,试求C
的大小。
解: a2 b2 ab c2
a2 b2 c2 ab
cos C a2 b2 c2 ab 1
2ab
2ab 2
C 1200
a
C b
B
c
A
课堂小结:
余弦定理的作用:
a、已知三边,求三个角 ; b、已知两边及这两边的夹角,求第三边, 进而可求出其它两个角; c、判断三角形的形状。
*正弦定理和余弦定理是解三角形的两个有力工 具,要区分两个定理的不同作用,在解题时正 确选用。
判断三角形的形状
例3:在△ABC中,b CosA=a cosB,则三角形为( C )
A.直角三角形 B.锐角三角形C.等腰三角形D.等边三角形
解法一:利用余弦定理将角化为边.
∵bcosA=acosB,
b2 c2 a2
a2 c2 b2
b
a
2bc
2ac
∴b2+c2-a2=a2+c2-b2,∴a2=b2,∴a=b,
故此三角形是等腰三角形.
解法二:利用正弦定理将边转化为角.∵bcosA=acosB 又b=2RsinB,a=2RsinA,∴2RsinBcosA=2RsinAcosB

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C 变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A为钝角或直角时,a ≤b ,无解.2、三角形常用面积公式1.S =a •h a (h a 表示边a 上的高);2.S =ab sin C =ac sin B =bc sin A .3.S =r (a +b +c )(r 为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1C.2D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =b sin A ,则a =()A.B .C .1D .三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A ,b 2=a 2+c 2﹣2ac cos B ,c 2=a 2+b 2﹣2ab cos C变形形式①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos A =,cos B =,cos C =解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba≥ba >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A 为钝角或直角时,a ≤b ,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且(a +b )2=c 2+ab ,B =30°,a =4,则△ABC 的面积为()A .4B .3C .4D .6例2.设△ABC 的三个内角A ,B ,C 成等差数列,其外接圆半径为2,且有,则三角形的面积为()A .B .C .或D .或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;的最大值.(2)若D为AC的中点,且BD=1,求S△ABC'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)

高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)

正弦定理与余弦定理【知识概述】在△ABC 中,a , b, c 分别为内角A, B, C 的对边,R 为△ABC 外接圆半径. 1. 正弦定理:R CcB b A a 2sin sin sin === 定理变式:A R a sin 2=,B R b sin 2=,C R c sin 2=R a A 2sin =,R b B 2sin =,Rc C 2sin = ,sin sin ,sin sin ,sin sin C b B c A c C a A b B a ===C B A c b a sin :sin :sin ::=2.余弦定理:C ab b a c B ac c a b A bc c b a cos 2,cos 2,cos 2222222222-+=-+=-+=定理变式:,2cos ,2cos ,2cos 222222222abc b a C ac b c a B bc a c b A -+=-+=-+=3.射影定理:,cos cos ,cos cos ,cos cos A c C a c A c C a b B c C b a +=+=+=4.面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆【学前诊断】1.[难度] 易在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.[难度] 易在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或3.[难度] 易在ΔABC 中,角A 、B 、C 的对边分别为a 、b 、c , 且ba b a c -=-222,∠C = .【经典例题】例1.在△ABC 中,若 ,则△A =45°,a = 2,c ,则△B =_______, b =___________.例2.已知△ ABC 满足条件cos cos ,a A b B =判断△ ABC 的形状.例3. 在△ABC 中,△A ,B ,C 所对的边分别为 a ,b ,c ,且满足 cos3.25A AB AC =⋅= (1)求△ ABC 的面积;(2)若b + c =6,求a 的值.例4.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值.例5.在△ABC 中,内角A ,B ,C 对边的边长分别是 a ,b ,c ,已知 c =2,C =π3.(1)若△ABC a ,b ; (2)若sin 2sin B A =,求△ABC 的面积.【本课总结】一、合理选择使用定理解三角形需要利用边角关系,正弦定理和余弦定理是刻画三角形边角关系的重要定理,如何恰当的选择公式则是解题的关键,一般来说,如果题目中含有边的一次式或角的正弦,可考虑选择正弦定理,如果题目中含有边的二次式或角的余弦,可考虑选择余弦定理.二、确定三角形的形状常用归一法 在解三角形的题目中,条件中往往会同时涉及边和角,解题策略则是选择合适的公式把已知条件转化成只含有边或角的关系式.三、解三角形主要涉及的问题解三角形主要处理的是三角形中各边的长度、角的大小以及三角形面积等问题,在三角形中有六个基本元素,三条边、三个角,通常是给出三个独立条件,可求出其它的元素,如果是特殊三角形,如直角三角形,则给出两个条件就可以了.如,若已知两边a,b 和角A,则解的情况如下:(1)当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解. (2)当A 为锐角时,如果a≥b ,那么只有一解;如果a<b ,那么可以分下面三种情况来讨论: (1)若>sin a b A ,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解.【活学活用】1.[难度] 易在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,A =60°,a =3,b =1,则c 的值为( ) A. 1 B. 2 C. 3-1 D. 32. [难度] 易△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A. 等边三角形 B. 直角三角形 C. 等腰三角形 D. 等腰直角三角形3. [难度] 中在△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,若满足c a )13(-=,tan 2tan B a cC c-=,求A 、B 、C 的大小.。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

高一数学必修五知识点总结归纳

高一数学必修五知识点总结归纳

必修五知识点总结归纳(一)解三角形1、正弦定理:在 C 中,a、 b 、c分别为角、、C的对边, R为 C 的外接圆的半径,则有a b c2R .sin sin sin C正弦定理的变形公式:①a2R sin, b2R sin, c2Rsin C ;② sin a, sin b, sin C c;2R2R2R③a : b : c sin: sin: sin C ;④a b c a b c.sin sin sin C sin sin sin C2、三角形面积公式:S C 1bc sin1ab sin C1ac sin.2223C中,有a b c2bc cos b a c2ac cos,、余弦定理:在222,222 c2a2b22ab cosC .4、余弦定理的推论:cos b2c2a2,cosa2c2b2a2b2c2 2bc2ac,cosC2ab.5、射影定理:a b cosC c cos B,b a cosC c cos A, c a cosB b cos A6、设a、b、c是 C 的角、、 C 的对边,则:①若a2b2c2,则 C90;②若 a2b2c2,则 C90 ;③若 a2b2c2,则 C 90 .(二 )数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.a n 1a n06、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.a n 1a n07、常数列:各项相等的数列.8、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列a n的第 n 项与序号 n 之间的关系的公式.10、数列的递推公式:表示任一项a n与它的前一项a n 1(或前几项)间的关系的公式.11、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a,, b 组成的等差数列可以看成最简单的等差数列,则称为 a 与b的等差中项.若 b a c,则称 b 为a与c的等差中项.213、若等差数列a n的首项是 a1,公差是d,则 a n a1n 1 d .14、通项公式的变形:①a n a m n m d ;② a1a n n 1 d ;③d a n a1 ;a n a1a n am .n1④ n1;⑤ dd n m15、若a n是等差数列,且 m n p q(m、n、 p 、q*),则 a m a n a p a q;若 a n是等差数列,且2n p q (n、 p 、q*),则 2a n a p a q.16、等差数列的前n 项和的公式:①S n n a1a n;② S n na1n n 1d .2217、等差数列的前n 项和的性质:①若项数为*,则 S2 n n a n a n 12n n,且S偶S奇nd ,S奇a n.S偶a n1②若项数为2n 1 n*,则 S2 n 12n 1 a n,且 S奇S偶 a n,S奇nS偶n1(其中 S奇na n, S偶n 1 a n).18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.19、在a与b中间插入一个数G ,使a, G , b 成等比数列,则G 称为a与 b 的等比项.若 G2ab ,则称 G 为a与 b 的等比中项.注意: a 与b的等比中项可能是G 20、若等比数列a n的首项是a1,公比是q,则a n a1q n 1.21、通项公式的变形:①a n a m q n m;② a1 a n q n 1;③ q n 1an ;④q n man.a1a m22、若a n m n p q (m、n、 p 、q *a n a p a q;是等比数列,且),则 a m 若 a n是等比数列,且2n p q (n、 p 、q*),则 a n2a p a q.23、等比数列a n的前 n 项和的公式:S n24、等比数列的前n 项和的性质:①若项数为na1q1a11q n a a q.1n q 11q1q2n n*,则S偶q .S奇② S n m S n q n S m.③ S n, S2 n S n, S3n S2n成等比数列(S n0 ).(三)不等式1、a b 0 a b ; a b 0a b ; a b 0 a b .2① a b b a ;②a b,b c a c;③ a b a c b c ;、不等式的性质:④ a b,c 0ac bc , a b, c0ac bc ;⑤ a b, c d a c b d ;⑥ a b 0, c d 0ac bd ;⑦a b0a n b n n, n 1 ;⑧ a b 0n a n b n, n 1 .3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b24ac000二次函数y ax2bx ca0 的图象一元二次方程 ax 2bx 有两个相异实数根有两个相等实数根x b x1x2b没有实数根12c 0a0 的根1,22a x x2aax2bx c0x x x1或 x x2x x bR一元二次a02a 不等式的解集ax2bx c0x x1x x2a0若二次项系数为负,先变为正5、设a、b是两个正数,则ab称为正数 a 、b的算术平均数,ab 称为正数 a 、b的2几何平均数.6若 a0, b0,则a b2ab,即abab.、均值不等式定理:27、常用的基本不等式:①a2b22ab a, b R;② ab a2b2a, b R ;220;④ a2b22③ ab a b a0,b a b a,b R .2228x、y 都为正数,则有、极值定理:设⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值s2.4⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值2p .。

高二数学必修5 正弦定理、余弦定理(二)

高二数学必修5 正弦定理、余弦定理(二)
高二数学必修5正弦定理、余弦定理(二)
教学目标:
熟练掌握正、余弦定理应用,进一步熟悉三角函数公式和三角形中的有关性质,综合运用正、余弦定理、三角函数公式及三角形有关性质求解三角形问题;通过正、余弦定理在解三角形问题时沟通了三角函数与三角形有关性质的功能,反映了事物之间的内在联系及一定条件下的相互转化.
Ⅱ.讲授新课
[例1]在△ABC中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的三边长.
分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系.其中sin2α利用正弦二倍角展开后出现了cosα,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的.
解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则
[例2]如图,在△ABC中,AB=4 cm,AC=3 cm,角平分线AD=2 cm,求此三角形面积.
分析:由于题设条件中已知两边长,故而联想面积公式S△ABC= AB·AC·sinA,需求出sinA,而△ABC面积可以转化为S△ADC+S△ADB,而S△ADC= AC·ADsin ,S△ADB= AB·AD·sin ,因此通过S△ABC=S△ADC+S△ADB建立关于含有sinA,sin 的方程,而sinA=2sin cos ,sin2 +cos2 =1,故sinA可求,从而三角形面积可求.
2.在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求AB.
解:在△ADC中,
cosC= = = ,
又0<C<180°,∴sinC=
在△ABC中, =
∴AB= AC= · ·7= .
评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用.

(完整版)高中数学正弦定理和余弦定理

(完整版)高中数学正弦定理和余弦定理

正弦定理和余弦定理(一)复习指导1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(二)基础知识1. 三角形中的有关公式(1)内角和定理:三角形三角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.(2)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径).注意:①正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R== 2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.(3)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc +-=+-=等,常选用余弦定理鉴定三角形的形状. (4)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径).如ABC ∆中,若C B A B A 22222sin sin cos cos sin =-,判断ABC ∆的形状(答:直角三角形)。

特别提醒:(1)求解三角形中的问题时,一定要注意A B C π++=这个特殊性:,sin()sin ,sin cos 22A B C A B C A B C π++=-+==;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。

2、求角的方法:先确定角的范围,再求出关于此角的某一个三角函数(要注意选择,其标准有二:一是此三角函数在角的范围内具有单调性;二是根据条件易求出此三角函数值)。

人教版A版高中数学必修5:正弦定理_课件25

人教版A版高中数学必修5:正弦定理_课件25

2R 形 sinC= c ;
2R
cosB= 2bc

2R
a2+c2-b2
形 (其中R是△ABC外接圆半径) cosC 2ac
式 ③a∶b∶c=sinA∶sinB∶sinC =
④asinB=bsinA,bsinC=
a2+b2-c2 2ab .
csinB,asinC=csinA.
定理
正弦定理
余弦定理
①已知两角和任一边,求 ①已知三边,求各
b,c,若ccooss AB=ab,则△ABC 一定是
()
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
解析:法一:由正弦定理得ccooss AB=ab=ssiinn BA, ∴sin Acos B=cos Asin B, 即sin(A-B)=0,可得A-B=0,∴A=B. 法二:由余弦定理将角化为边,可得a=b.
注意:在上述两种方法的等式变形中,一般两边不要约 去公因式,应移项提取公因式,以免漏解.
[精析考题]
[例3] (2011·山东高考)在△ABC中,内角A,B,C的对边分别
为a,b,c.已知cos
A-2cos cos B
C=2c-b a.
(1)求ssiinn CA的值;
(2)若cos B=14,b=2,求△ABC的面积S.
解决 另一角和其他两条边; 角;
的问 ②已知两边和其中一边的 ②已知两边和它们
题 对角,求另一边和其他两 的夹角,求第三边
角.
和其他两个角.
二、三角形常用面积公式 1.S=12a·ha(ha表示边a上的高); 2.S=12absin C=12acsin B = 12bcsin A ; 3.S=12r(a+b+c)(r为内切圆半径).

数学-高中必修五-解三角形-经典题目.doc

数学-高中必修五-解三角形-经典题目.doc

解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在V ABC 中,已知A:B:C=1:2:3, 求a :b :c.【点拨】本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。

Q A:B :C1: 2: 3,而A B C .解:A, B ,C ,6 3 21 3a :b :sin A: sin B : sinC sin : sin : sin : :1 1: 3 :2.6 3 2 2 2【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。

例2 在ABC 中,已知c= 2+ 6 ,C=30°,求a+b 的取值范围。

【点拨】此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。

解:∵C=30°,c= 2+ 6 ,∴由正弦定理得:a b c2 6 sin A sin B sin C sin 30,∴a=2( 2+ 6 )sinA,b=2( 2+ 6 )sinB=2( 2+ 6 )sin(150°-A) .∴a+b=2( 2+ 6 )[sinA+sin(150 °-A)]= 2( 2+ 6 ) ·2sin75 °·cos(75 °-A)= 22 6 cos(75 °-A)①当75°-A=0°,即A=75°时,a+b 取得最大值22 6 =8+43 ;②∵A=180°-(C+B)=150 °-B, ∴A<150°,∴0°<A<150°, ∴-75 °<75°-A<75°,∴cos75 °<cos(75 °-A) ≤1,∴>22 6 cos75 °=22 6 ×6 24= 2+ 6 .综合①②可得a+b 的取值范围为( 2+ 6 ,8+ 4 3 >考察点2:利用正弦定理判断三角形形状例3在△ABC中, 2a ·tanB=2b ·tanA,判断三角形ABC的形状。

高中数学-正余弦定理

高中数学-正余弦定理

高中数学-正余弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即RcC R bB R aA C R cB R b AR a R R Cc B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin =========变形有:为外接圆的半径2、三角形的面积公式:A bcB acC ab S ABC sin 21sin 21sin 21===∆3、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即ab c b a C acb c a B bca cb A C ab b ac B ac c a b Abc c b a 2cos 2cos 2cos 变形有:cos 2cos 2cos 2222222222222222222-+=-+=-+=-+=-+=-+=4、判断三角形的形状:为锐角三角形为最大边:且,为直角角三角形为钝角三角形222222222ABC a c b a ABC c b a ABC c b a ∆+<∆+=∆+>5、三角形中有:形为正三角形成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A CB AC B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+∆已知三角形两边a,b,这两边夹角C ,则S=12absinC ,即两夹边之积乘夹角的正弦值。

6、均值定理:对于任意两个正实数a、b,都有当且仅当a =b时,等号成立。

注:运用均值不等式求最值条件①,;②a 和b 的乘积ab 是一个定值(正数);③等号成立条件。

相关重要不等式:①;②;③]微生筑梦。

高中数学必修五第一章《正弦定理和余弦定理》1.1.1正弦定理

高中数学必修五第一章《正弦定理和余弦定理》1.1.1正弦定理

§1.1 正弦定理和余弦定理1.1.1 正弦定理学习目标 1.掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.知识点一 正弦定理思考1 如图,在Rt △ABC 中,a sin A ,b sin B ,csin C分别等于什么?答案a sin A =b sin B =c sin C=c . 思考2 在一般的△ABC 中,a sin A =b sin B =csin C 还成立吗?答案 在一般的△ABC 中,a sin A =b sin B =csin C 仍然成立.梳理 在任意△ABC 中,都有a sin A =b sin B =c sin C,这就是正弦定理. 特别提醒:正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.知识点二 解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.1.对任意△ABC ,都有a sin A =b sin B =csin C.(√)2.任意给出三角形的三个元素,都能求出其余元素.(×) 3.在△ABC 中,已知a ,b ,A ,则三角形有唯一解.(×)类型一 正弦定理的证明例1 在钝角△ABC 中,证明正弦定理. 考点 正弦定理及其变形应用 题点 正弦定理的理解证明 如图,过C 作CD ⊥AB ,垂足为D ,D 是BA 延长线上一点,根据正弦函数的定义知,CD b =sin ∠CAD =sin(180°-A )=sin A ,CD a =sin B . ∴CD =b sin A =a sin B . ∴a sin A =bsin B. 同理,b sin B =csin C .故a sin A =b sin B =c sin C. 反思与感悟 (1)用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固.(2)要证a sin A =bsin B ,只需证a sin B =b sin A ,而a sin B ,b sin A 都对应CD .初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力.跟踪训练1 如图,锐角△ABC 的外接圆O 半径为R ,角A ,B ,C 对应的边分别为a ,b ,c ,证明:asin A=2R .考点 正弦定理及其变形应用 题点 正弦定理的理解证明 连接BO 并延长,交外接圆于点A ′,连接A ′C , 则圆周角A ′=A .∵A ′B 为直径,长度为2R , ∴∠A ′CB =90°, ∴sin A ′=BC A ′B =a 2R ,∴sin A =a 2R ,即asin A =2R .类型二 已知两角及一边解三角形例2 在△ABC 中,已知A =30°,B =60°,a =10,解三角形. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据正弦定理,得b =a sin B sin A =10sin 60°sin 30°=10 3. 又C =180°-(30°+60°)=90°. ∴c =a sin C sin A =10sin 90°sin 30°=20.反思与感悟 (1)正弦定理实际上是三个等式:a sin A =b sin B ,b sin B =c sin C ,a sin A =csin C ,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个.(2)因为三角形内角和为180°,所以已知两角一定可以求出第三个角. 跟踪训练2 在△ABC 中,已知a =18,B =60°,C =75°,求b 的值. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据三角形内角和定理,得A =180°-(B +C )=180°-(60°+75°)=45°. 根据正弦定理,得b =a sin B sin A =18sin 60°sin 45°=9 6.类型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知c =6,A =45°,a =2,解三角形. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 ∵a sin A =c sin C ,∴sin C =c sin A a =6sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. 引申探究若把本例中的条件“A =45°”改为“C =45°”,则角A 有几个值? 解 ∵a sin A =c sin C ,∴sin A =a sin C c =2·226=33.∵c =6>2=a ,∴C >A .∴A 为小于45°的锐角,且正弦值为33,这样的角A 只有一个. 反思与感悟 已知三角形两边和其中一边的对角解三角形的方法:首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边. 跟踪训练3 在△ABC 中,若a =2,b =2,A =30°,则C =________. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 105°或15°解析 由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.1. 在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin AD .a cos B =b cos A考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 C解析 由正弦定理a sin A =bsin B ,得a sin B =b sin A ,故选C.2.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 B解析 由sin A =sin C 及正弦定理,知a =c , ∴△ABC 为等腰三角形.3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6D .4考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 C解析 易知A =45°,由a sin A =b sin B 得b =a sin B sin A=8×3222=4 6. 4.在△ABC 中,a =3,b =2,B =π4,则A =________.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 π3或2π3解析 由正弦定理,得sin A =a sin Bb=3×222=32, 又A ∈(0,π),a >b ,∴A >B ,∴A =π3或2π3.5.在△ABC 中,已知a =5,sin C =2sin A ,则c =________. 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 2 5解析 由正弦定理,得c =a sin Csin A=2a =2 5.1. 正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0). 2. 正弦定理的应用范围(1)已知两角和任一边,求其他两边和其余一角. (2)已知两边和其中一边的对角,求另一边和其余两角.3. 已知三角形两边和其中一边的对角解三角形的方法 (1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求唯一锐角.(3)如果已知的角为小边所对的角,则不能判断另一边所对的角为锐角,这时由正弦值可求得两个角,要分类讨论.一、选择题1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 A解析 根据正弦定理,得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由题意有a sin A =b =bsin B,则sin B =1,又B ∈(0,π),故角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( )A .30°B .45°C .60°D .90° 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由正弦定理知sin A a =sin Cc ,∴sin C c =cos Cc,∴cos C =sin C ,∴tan C =1, 又∵C ∈(0°,180°),∴C =45°,故选B.4.在△ABC 中,若A =105°,B =45°,b =22,则c 等于( ) A .1 B .2 C. 2 D. 3 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 ∵A =105°,B =45°,∴C =30°. 由正弦定理,得c =b sin C sin B =22sin 30°sin 45°=2.5.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223 B.223 C .-63 D.63考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 D解析 由正弦定理,得15sin 60°=10sin B ,∴sin B =10sin 60°15=10×3215=33. ∵a >b ,∴A >B ,又∵A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-⎝⎛⎭⎫332=63. 6.在△ABC 中,已知A =π3,a =3,b =1,则c 的值为( )A .1B .2 C.3-1 D. 3 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 B解析 由正弦定理a sin A =bsin B,可得3sinπ3=1sin B ,∴sin B =12,由a >b ,得A >B ,∴B ∈⎝⎛⎭⎫0,π3,∴B =π6. 故C =π2,由勾股定理得c =2.7.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.31010 考点 用正弦定理解三角形 题点 正弦定理解三角形综合 答案 D解析 如图,设BC 边上的高为AD ,不妨令AD =1.由B =π4,知BD =1.又AD =13BC =BD ,∴DC =2,AC =12+22= 5.由正弦定理知,sin ∠BAC =sin B ·BC AC =225·3=31010.8.在△ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .4 3 B .2 3 C. 3 D.32考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.二、填空题9.在△ABC 中,若C =2B ,则cb的取值范围为________.考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 (1,2)解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2Bsin B =2cos B ,所以1<2cos B <2,故1<cb<2.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =_____.考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,又a =1,由正弦定理得b =a sin B sin A =2113.11.锐角三角形的内角分别是A ,B ,C ,并且A >B .则下列三个不等式中成立的是______. ①sin A >sin B ; ②cos A <cos B ;③sin A +sin B >cos A +cos B . 考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 ①②③解析 A >B ⇔a >b ⇔sin A >sin B ,故①成立. 函数y =cos x 在区间[0,π]上是减函数, ∵A >B ,∴cos A <cos B ,故②成立. 在锐角三角形中,∵A +B >π2,∴0<π2-B <A <π2,函数y =sin x 在区间⎣⎡⎦⎤0,π2上是增函数, 则有sin A >sin ⎝⎛⎭⎫π2-B ,即sin A >cos B , 同理sin B >cos A ,故③成立.三、解答题12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,c =10,A =45°,C =30°,求a ,b 和B .考点 用正弦定理解三角形题点 已知两角及一边解三角形解 ∵a sin A =c sin C, ∴a =c sin A sin C =10sin 45°sin 30°=10 2. B =180°-(A +C )=180°-(45°+30°)=105°.又∵b sin B =c sin C, ∴b =c sin B sin C =10sin 105°sin 30°=20sin 75° =20×6+24=5(6+2). 13.在△ABC 中,A =60°,a =43,b =42,求B .考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 由正弦定理a sin A =b sin B ,得sin B =22, ∵a >b ,∴A >B .∴B 只有一解,∴B =45°.四、探究与拓展14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =x ,b =2,B =45°.若△ABC 有两解,则x 的取值范围是( )A .(2,+∞)B .(0,2)C .(2,22)D .(2,2)考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形答案 C解析 因为△ABC 有两解,所以a sin B <b <a ,即x sin 45°<2<x ,所以2<x <22,故选C.15.已知下列各三角形中的两边及其中一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°;(2)a =23,b =6,A =30°.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103,∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°,∵b sin A =6sin 30°=3,a >b sin A ,∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32, 又∵B ∈(0°,180°),∴B =60°或B =120°.当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin 30°sin 30°=2 3. ∴当B =60°时,C =90°,c =43;当B =120°时,C =30°,c =2 3.。

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5
∴本题有一解.
∵sin B=
sin

=
10sin60 °
5 6
=
2
2
, ∴ = 45°,
∴A=180°-(B+C)=75°.
∴a=
sin
sin
=
10sin75 °
sin45 °
=
10×
6+ 2
4
2
2
= 5( 3 + 1).
题型一
题型二
题型三
题型四
题型二
判断三角形的形状
【例 2】 在△ABC 中,若 lg a-lg c=lg sin B=-lg 2, 且为锐角,
sin
∴C=60°或 C=120°.

当 C=60°时,A=90°,
1
∴S△ABC = ·AC·sin A=2 3.
2
当 C=120°时,A=30°,
1
∴S△ABC = ·AC·sin A= 3.
2
故三角形的面积是 2 3或 3.
=
3
2
.
1
2
3
4
5
1在△ABC中,若b=2asin B,则A的值是(
BC=
.
解析:c=AB=3,B=75°,C=60°,则 A=45°.


由正弦定理,得
=
,
所以 a=BC=
答案: 6
sin
sin
sin
3sin45 °
sin
sin60 °
=
= 6.
π
【做一做 3-2】 在△ABC 中,若 a=3,b= 3, = ,
3
.
则的大小为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理和余弦定理
1. 在△ABC中,若,则最大角的余弦是( )
A. B. C. D.
2. 在△ABC中,若,则△ABC是 ( )
A. 等边三角形 B.直角三角形 C.锐角三角形 D.钝角三角形
3. 在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则A=( )
9. 在中,,且,
试确定的形状.
在△ABC中,角的对边分别为,求证:
10. 已知中,、、是三个内角、、的对边,关于 的不等式的解集是空集.
(1)求角的最大值;
(2)若,的面积,求当角取最大值时的值.
前兴教育教研中心——高一数学
Where there is a will, there is a way! 有志者事竟成!
6. 在在△ABC中,AB=3,AC=4,BC=,则AC边上的高为( )
A. B. C. D.
7. 在中,已知内角,边.设内角,周长为.求的最bcosB用两种方法判断该三角形的形状.
A. B. C. D.
4. 中,,BC=3,则的周长为 ( )
A. B.
C. D.
5. 在△中,角所对的边分别为,已知,,,则=( ).
A. B. C. D.
相关文档
最新文档