2020-2021石家庄市八年级数学下期中试题及答案
2020-2021学年八年级下期中考试数学试卷及答案
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A .(﹣3,1)B .(−13,3)C .(﹣3,﹣1)D .(13,3) 7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32) 二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 颜色的球的可能性最大.10.在整数20180419中,数字“1”出现的频率是 .11.已知反比例函数y =3x ,x >0时,y 0,这部分图象在第 象限,y 随着x值的增大而 .12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC的度数为 度.13.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC =6,BD=8,则OE 的长为 .14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=.15.如图,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC =6,则BE的长为.16.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.17.如图,反比例函数y=kx位于第二象限的图象上有A,B两点,过A作AD⊥x轴于点D,过点B作BC⊥y轴于点C.已知,S△OCD=32,S△OAB=12,则反比例函数解析式为.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.22.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x =﹣3时,y =−3−3=1, ∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x 的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3);当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3).故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32,∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x ,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°,∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k3a ,DQ =k2a ,ER =ka , ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =k x位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m, ∴B (−mk 3,−3m), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m−3m)(m +mk3)=12, 解得k =±9,∵反比例函数y =kx 位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x, 故答案为y =−9x .三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAG =∠AHB , 在△ADG 和△HAB 中, {∠DAG =∠AHB ∠DGA =∠B AD =AH, ∴△ADG ≌△HAB (AAS ), ∴DG =AB =6;(2)∵EF 是BD 的垂直平分线, ∴BO =DO ,BE =DE , ∵AD ∥BC , ∴∠EDO =∠FBO , 在△DEO 和△BFO 中, {∠EDO =∠FBO DO =BO ∠DOE =∠BOF, ∴△DEO ≌△BFO (ASA ), ∴OE =OF ,∴四边形BFDE 是平行四边形, 又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC =OD =8,∵D 为OA 的中点,∴OA =a =16,则这个操作过程为FZ [45°,16];故答案为:45°,16;(2)延长MD 、OA ,交于点N ,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。
河北省石家庄市2021版八年级下学期期中数学试卷C卷
河北省石家庄市2021版八年级下学期期中数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(下列各小题都给出了四个选项,其中只有一项符合题目要求 (共15题;共30分)1. (2分) (2020九上·遂宁期末) 在式子中,二次根式有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019八下·嘉兴开学考) 下列选项中,使二次根式有意义,则a的取值范围是()A . a≥B . a>C . a≤D . a<3. (2分)如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB= BC,连接OE.下列结论:①∠CAD=30°;②S▱AB CD=AB•AC;③OB=AB;④∠COD=60°,成立的个数有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2016八上·灵石期中) 下列二次根式中,属于最简二次根式的是()A .B .C .D .5. (2分) (2018九下·嘉兴竞赛) 如图,正方形ABCD中,AB=6,点E,F分别在AD,BC边上,点G,H分别在AB,CD边上,EF=2 ,EF与GH相交所得的锐角为45°,则GH的长为()A . 6B . 3C . 2D . 56. (2分)(2017·莒县模拟) 下列命题中,原命题与逆命题均为真命题的有()①若|a|=|b|,则a2=b2;②若ma2>na2 ,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A . 1个B . 2个C . 3个D . 4个7. (2分)(2013·南宁) 下列各式计算正确的是()A . 3a3+2a2=5a6B .C . a4•a2=a8D . (ab2)3=ab68. (2分)下列说法正确的有()①如果∠A+∠B=∠C,那么△ABC是直角三角形;②如果∠A:∠B:∠C=1:2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.A . 1个B . 2个C . 3个D . 4个9. (2分)下列条件:①三角形的一个外角与相邻内角相等;②∠A=∠B=∠C;③AC:BC:AB=1:;2④AC=n2-1,BC=2n,AB=n2+1(n>1).能判定△ABC是直角三角形的条件个数为()A . 1B . 2C . 3D . 411. (2分) (2017八下·东台期中) 在下列性质中,矩形具有而菱形不一定有的是()A . 对角线互相垂直B . 对角线互相平分C . 四个角是直角D . 四条边相等12. (2分)下列各式中,错误的是()A . =5B . ±=±8C . =﹣6D . =﹣213. (2分)(2016·徐州) 如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A . 1或9B . 3或5C . 4或6D . 3或614. (2分) (2016八下·东莞期中) 在▱ABCD中,∠A:∠B:∠C:∠D的值可以是()A . 1:2:3:4B . 1:2:2:1C . 1:1:2:2D . 2:1:2:115. (2分) (2017八下·福建期中) 下列计算正确的是()A .B .C .D .二、解答题(将解答过程写在答题卡上指定的位置.) (共9题;共66分)16. (2分) (2016七上·泉州期中) 解答题。
2020-2021石家庄市初二数学下期中第一次模拟试卷(及答案)
2020-2021石家庄市初二数学下期中第一次模拟试卷(及答案)一、选择题1.下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .14216= 2.下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形3.如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .4.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .65.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,16.函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1 C .x ≥一1 D .x ≥-1且x ≠17.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .3 8.下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,1,3 C .4,5,6D .1,3,2 9.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .240 10.如图,要测量被池塘隔开的A ,B 两点的距离,小明在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,并分别找出它们的中点D ,E ,连接DE ,现测得DE =45米,那么AB 等于( )A .90米B .88米C .86米D .84米 11.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限12.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .125二、填空题 13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________.14.如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB V 的面积为___.15.计算:2(21)+=__________.16.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.17.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.19.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.20.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .三、解答题21.甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A 县10辆,需要调往B 县8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元.(1)设乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元?22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是 米;(2)AB 表示的实际意义是 ;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.如图1,在菱形ABCD 中,8AB =,83BD =,点P 是BD 上一点,点Q 在AB 上,且PA PQ =,设PD x =.(1)当PA AB ⊥时,如图2,求PD 的长;(2)设AQ y =,求y 关于x 的函数关系式及其定义域;(3)若BPQ ∆是以BQ 为腰的等腰三角形,求PD 的长.24.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.25.已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x=时,求y的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A32,所以A选项错误;B、原式=23B选项错误;C、原式=2,所以C选项错误;D 14621366=⨯,所以D选项正确.故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.3.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.4.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴PA+PM=PC+PM=CM=3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.解析:A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A 的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3),故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.7.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22BE+=125故选:C.【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+32=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,13AB ∴==,故菱形的周长为52.故选B.10.A解析:A【解析】【分析】根据中位线定理可得:AB =2DE =90米.【详解】解:∵D 是AC 的中点,E 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB . ∵DE =45米,∴AB =2DE =90米.故选A .【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.11.D解析:D【解析】【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题. 12.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245 , ∵FE=BE=EC ,∴∠BFC=90°, ∴CF=2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 二、填空题13.96【解析】【分析】已知ABAC 根据勾股定理即可求得AO 的值根据对角线长即可计算菱形ABCD 的面积【详解】解:∵四边形ABCD 是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO 为直角三角解析:96【解析】【分析】已知AB ,AC ,根据勾股定理即可求得AO 的值,根据对角线长即可计算菱形ABCD 的面积.【详解】解:∵四边形ABCD 是菱形,AC=12,∴AO=12AC=6, ∵菱形对角线互相垂直,∴△ABO 为直角三角形,∴BO=22AB OA -=8,BD=2BO=16, ∴菱形ABCD 的面积=12AC•BD=12×12×16=96. 故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO 的值是解题的关键.14.10【解析】【分析】分别令x=0y=0可得AB 坐标即可求出OAOB 的长利用三角形面积公式即可得答案【详解】∵直线交x 轴于点A 交y 轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数解析:10【解析】【分析】分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.【详解】∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB V 的面积1210102=⨯⨯=. 故答案为10【点睛】本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.15.3+2【解析】【分析】【详解】解:故答案为:3+2解析:【解析】【分析】【详解】解:222故答案为:.16.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC==∴正方形ABCD的面积23==,BC故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC⊥BD.【详解】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.18.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OA D∠EAC=2∠CAD∠EAO解析:5°【解析】【分析】【详解】Q四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,Q∠EAC=2∠CAD,∴∠EAO=∠AOE,Q AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.19.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5, ∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.20.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质解析:110°【解析】试题解析:∵平行四边形ABCD ,∴∠A+∠B=180°,∠A=∠C ,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.三、解答题21.(1)20860y x =+(06)x ≤≤;(2)3种;方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆; 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆;方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆;(3)方案一的总运费最少为860元.【解析】【分析】(1)若乙仓库调往A 县农用车x 辆,那么乙仓库调往B 县农用车、甲给A 县调农用车、以及甲县给B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可; (2)若要求总运费不超过900元,则可根据(1)列不等式确定x 的取值,从而求解; (3)在(2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:(1)乙仓库调往A 县农用车x 辆,则调往B 县农用车()6x -辆.(6)x ≤ A 县需10辆车,故甲给A 县调10x -辆,给B 县调车(2)x +辆∴40(10)80(2)3050(6)y x x x x =-++++-化简得20860y x =+(06)x ≤≤(2)总运费不超过900,即900y ≤代入(1)结果得20860900x +≤解得2x ≤又因为x 为非负整数∴012x =,,即如下三种方案方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆. 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆. 方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆. (3)总运费20860y x =+,其中06x ≤≤∵200k =>∴y 随x 的增大而增大∴当x 取最小时,运费y 最小代入0x =得200860860y =⨯+=∴方案为(2)中方案1:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆.总运费最少为860元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.22.(1)2600;(2)小颖在文具用品店停留了10分钟;(3)小颖本次在从学校回家的整个过程中,走的路程是3400米;(4)小颖从文具用品店回到家步行的速度是90米/分.【解析】【分析】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)由函数图象可知,20~30分钟的路程没变,所以AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)小颖本次从学校回家的整个过程中,走的路程为26002180014003400+-=()(米).(4)用小颖从文具用品店回到家的路程除以所用时间即可.【详解】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)26002180014003400+-=()(米).(列的式子只要合理都可) ∴小颖本次在从学校回家的整个过程中,走的路程是3400米.(4)1800503090/()(米分)÷-=. ∴小颖从文具用品店回到家步行的速度是90米/分.【点睛】考查一次函数的应用,读懂函数的图象,明确每一段图象所表示的实际意义是解题的关键.23.(1)PD =3(2)x-8(3≤x ≤3)(3)【解析】【分析】(1)先根据菱形的边长和对角线的长得到∠ABO =30°,再根据PA AB ⊥,求出AP 的长,故可得到DP 的长;(2)作HP ⊥AB ,根据AP=PQ ,得到AH=QH=12y ,BH=8-12y ,BP=BD-DP=再根据(1)可得HP=12x ,在Rt △BPH 中,BP 2=HB 2+HP 2,化简即可求解,再求出x 的取值范围;(3)根据题意作图,由等腰三角形的性质可得△AQP 是等边三角形,故可得到DP 的长.【详解】(1)∵8AB =,BD =∴BO=12BD ⊥BD故=4=12AB ∴∠ABO =30°=∠ADO ∵PA AB ⊥∴∠APB =90°-∠ABO =60°故∠PAD=∠APB -∠ADO =30°即∠PAD=∠ADO∴DP=AP设AP=x ,则BP=2x ,在Rt △ABP 中,BP 2=AB 2+AP 2即(2x )2=82+x 2解得x=3故PD=83;(2)作HP⊥AB,∵AP=PQ∴AH=QH=1 2 y∴BH=BQ+QH=(8-y)+12y=8-12y,BP=BD-DP=83-x,由(1)可得HP=12BP=43-12x在Rt△BPH中,BP2=HB2+HP2即(83-x)2=(8-12y)2+(43-12x)2∵83-x>0,8-12y>0,43-12x>0∴化简得y=3x-8∵0≤3x-8≤8∴x的取值范围为83≤x≤1633∴y关于x的函数关系式是y=3x-8(83≤x≤163);(3)如图,若BPQ是以BQ为腰的等腰三角形,则∠QPB=∠QBP=30°,∴∠AQP=∠QPB+∠QBP=60°∵∠BAP=90°-∠QBP=60°,∴△APQ是等边三角形,∠APQ=60°∴∠QPB +∠APQ=90°,则AP⊥BP,故O点与P点重合,∴PD=DO=12BD3【点睛】此题主要考查菱形的性质综合,解题的关键是熟知菱形的性质及含30度的直角三角形的性质.24.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.25.(1)2733y x =+;(2)y 的值是133. 【解析】【分析】(1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.【详解】(1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩,解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+; (2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. 【点睛】 本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.。
2020-2021学年度第二学期期中质量检测八年级数学试题及答案
2020-2021学年度第⼆学期期中质量检测⼋年级数学试题及答案2020-2021学年度第⼆学期期中质量检测⼋年级数学试题满分:120分,考试时间:100分⼀、选择题(本⼤题共有8⼩题,每⼩题3分,共24分在每⼩题所给的四个选项中,只有⼀项是符合题⽬要求的,请将正确选项的字母代号填涂在答题卡相应位置上.) 1.下列图形中,既是轴对称图形,⼜是中⼼对称图形的有(▲)A .1个B .2个C .3个D .4个 2..菱形不具有的性质是(▲)A.对⾓线互相平分B.对⾓线相等C.对⾓线互相垂直D.每⼀条对⾓线平分⼀组内⾓3.下列各式:()22214151 ,, ,, 232x x y a x x b y π-+--,4x-y 其中分式共有(▲)A .2个B .3个C .4个D .5个4.⼀个不透明的布袋中装有5个⽩球和3个红球,它们除了颜⾊不同外,其余均相同.从中随机摸出⼀个球,摸到红球的概率是(▲)A .13 B .15 C .38 D .585.关于反⽐例函数xy 1=的图像,下列说法不正确的是(▲)A .图像在第⼀、三象限B .图像经过点(1,1)C .当0D .当1>x 时,10<6.如图,菱形纸⽚ABCD 中,∠A=60°,折叠菱形纸⽚ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的⼤⼩为( ▲ )A .78°B .75°C .60°D .45°学校_______班级_______考试学_______姓名_________………………………………密……………………………………封………………………………………线…………………………………………7.设有反⽐例函数=y -x2,),(11y x 、),(22y x 、()33,y x 为其图像上的三个点,210x x <<<3x ,则下列各式正确的是(▲)A .321y y y <<B .132y y y <<C .123y y y <<D .231y y y << 8.如图,在Rt △ABC 中,∠C=90°,AC=BC =6cm ,点P 从点B 出发,沿BA ⽅向以每秒 2 cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB ⽅向以每秒2cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间t 秒,若四边形QPBP ′为菱形,则t 的值是(▲)A .1.5B . 2C .2 2D .3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.当分式6562---x x x 的值为0时,x 的值为▲ .10.下列命题:①⼀组对边平⾏,另⼀组对边相等的四边形是平⾏四边形;②对⾓线互相平分的四边形是平⾏四边形;③在四边形ABCD 中,AB =AD ,BC =DC ,那么这个四边形ABCD 是平⾏四边形;④⼀组对边相等,⼀组对⾓相等的四边形是平⾏四边形.其中正确的命题是▲.(将命题的序号填上即可).11.已知反⽐例函数25ky -=(k-1)x ,那么k 的值是▲ .12. 已知y 与x ?3成反⽐例,当x=4时,y=?1;那么y 与x 的函数关系可以表⽰为y= ▲__.13.从形状、⼤⼩相同的9张数字卡⽚(分别标有数字1,2,3,4,5,6,7,8,9)中任意抽1张,抽出的恰好是:①偶数;②⼩于6的数;③不⼩于9的数,这些事件按发⽣的可能性从⼤到⼩排列是▲(填序号)14.⽤反证法证明“等腰三⾓形的底⾓是锐⾓”时,⾸先应假设▲. 15.下列4个分式:①332++a a ;②22y x y x --;③n m m 22;④1m 2+,中最简分式有▲个.16. 若关于x 的⽅程221--=-x mx x ⽆解,则m 的值是___▲_____. 17.如图,在平⾯直⾓坐标系中,直线y =﹣kx +m 与双曲线y =(x >0)交于A 、B 两点,点A 的横坐标为1,点B 的横坐标为4,则不等式﹣kx +m >的解集为 _▲_ .18.如图,在△ABC 中,AB=3cm ,AC=4cm ,BC=5cm,M 是BC 边上的动点,MD ⊥AB ,ME ⊥AC ,垂⾜分别是D 、E.线段DE 的最⼩值是 _▲_ cm.三、解答题(本⼤题共9⼩题,共66分.请在答题卡指定区域内作答,解答时应写出⽂字说明,推理过程或演算步骤)19. (本题满分6分)计算(1)22x x y x y-++ (2)22214()244x x x x x x x x +---÷--+ 20.(本题满分6分)解⽅程:(1)21122x x x =--- (2) 3911332-=-+x x x 21.(本题满分6分))先化简:)112(1222xx x x x x --÷+-+,再从﹣2<x <3的范围内选取⼀个你喜欢的x 值代⼊求值.22. (本题满分8分已知21y y y +=,y1与x 成正⽐例,2y 与2x 成反⽐.当x =1时,y =﹣12;当x =4时,y =7.(1)求y 与x 的函数关系式和x 的取值范围;(2)当x =41时,求y 的值. 23.(本题满分8分)△ABC 在平⾯直⾓坐标系xOy 中的位置如图所⽰.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平⾯直⾓坐标系中直线AB 上的⼀个动点,点N 是x 轴上的⼀个动点,且以O 、A 2、M 、N 为顶点的四边形是平⾏四边形,请直接写出点N 的坐标.24.(本题满分8分)准备⼀张矩形纸⽚,按如图操作:将△ABE 沿BE 翻折,使点A 落在对⾓线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对⾓线BD 上的N 点.(1)求证:四边形BFDE 是平⾏四边形;(2)若四边形BFDE 是菱形,BE =2,求菱形BFDE 的⾯积.25.(本题满分8分)某⼀⼯程,在⼯程招标时,接到甲,⼄两个⼯程队的投标书.施⼯⼀天,需付甲⼯程队⼯程款1.2万元,⼄⼯程队⼯程款0.5万元.⼯程领导⼩组根据甲,⼄两队的投标书测算,有如下⽅案:①甲队单独完成这项⼯程刚好如期完成;②⼄队单独完成这项⼯程要⽐规定⽇期多⽤6天;③若甲,⼄两队合做3天,余下的⼯程由⼄队单独做也正好如期完成.试问:规定⽇期是多少天?在不耽误⼯期的前提下,你觉得哪⼀种施⼯⽅案最节省⼯程款?请说明理由.26.(本题满分12分)如图,在平⾯直⾓坐标系中,A 点的坐标为(a ,6),AB ⊥x 轴于点B ,AB 3OB 4,反⽐例函数y=kx 的图象的⼀⽀分别交AO 、AB 于点C 、D .延长AO 交反⽐例函数的图象的另⼀⽀于点E .已知点D 的纵坐标为32.(1)求反⽐例函数的解析式及点E 的坐标; (2)连接BC ,求S △CEB .(3)若在x 轴上的有两点M (m,0)N(-m,0).①以E 、M 、C 、N 为顶点的四边形能否为矩形?如果能求出m 的值,如果不能说明理由。
2020-2021学年河北省石家庄市正定县八年级(下)期中数学试卷(附答案详解)
2020-2021学年河北省石家庄市正定县八年级(下)期中数学试卷一、选择题(本大题共16小题,共32.0分)1.下列调查中,适宜采用普查方式的是()A. 了解本班同学早餐是否有喝牛奶的习惯B. 了解外地游客对隆兴寺的印象C. 了解一批灯泡的使用寿命D. 了解我国初中学生的视力情况2.点P(−1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某人要在规定的时间内加工100个零件,如果用n表示工作效率,用t表示规定的时间,下列说法正确的是()A. 数100和n,t都是常量B. 数100和n都是变量C. n和t都是变量D. 数100和t都是变量4.函数y=1中自变量x的取值范围是()√4−xA. x<4B. x≠4C. x>4D. x≤45.为了解某中学八年级600名学生的身高情况,抽查了其中100名学生的身高进行统计分析.下面叙述正确的是()A. 以上调查属于全面调查B. 每名学生是总体的一个个体C. 100名学生的身高是总体的一个样本D. 600名学生是总体6.如图,已知“车”的坐标为(−2,2),“马”的坐标为(1,2),则“炮”的坐标为()A. (3,2)B. (3,1)C. (2,2)D. (−2,2)7.如果点P(−2,b)和点Q(a,−3)关于x轴对称,则a+b的值是()A. −1B. 1C. −5D. 58.下列图象中y不是x的函数的是()A. B. C. D.9.观察统计图,下列判断错误的是()A. 甲班男、女生人数相等B. 乙班女生比男生人数多C. 乙班女生比甲班女生人数多D. 无法比较甲、乙两班女生人数谁多谁少10.如图,小明家相对于学校的位置下列描述最准确的是()A. 距离学校1200米处B. 北偏东65°方向上的1200米处C. 南偏西65°方向上的1200米处D. 南偏西25°方向上的1200米处11.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是()A. 80%B. 70%C. 92%D. 86%12.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A. a=20B. b=4C. 若工人甲一天获得薪金180元,则他共生产45件D. 若工人乙一天生产40(件),则他获得薪金140元13.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v2.014.910.0317.1A. v=2mB. v=m2+1C. v=3m−1D. v=3m+114.匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()A.B.C.D.15.三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下四个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送所用时间最长的是乙;④在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A. ①④B. ①③④C. ②③D. ①②③④16.如图①.在正方形ABCD的边BC上有一点E,连接AE.点P从正方形的顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象.当x=6时,y的值为()A. 7B. 6C. 132D. 112二、填空题(本大题共4小题,共13.0分)17.已知点B坐标为(2,1),AB//x轴,且AB=4.则点A坐标为______ .18.一支蜡烛长20cm,每分钟燃烧的长度是2cm,蜡烛剩余长度y(cm)与燃烧时间x(分)之间的关系为______ (不需要写出自变量的取值范围).19.设等腰三角形的周长是60,腰长是x,底边长是y,则y与x之间的关系式是y=60−2x,其中x的取值范围是______20.如图,等边三角形ABC的边长为4,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点A1作A1B1//OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2//OA,交OC于点B2;…,则点A1的坐标是______ ,按此规律进行下去,点A2021的坐标是______ .三、解答题(本大题共6小题,共55.0分)21.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有______名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.如图,△ABC,将△ABC向右平移3个单位长度,然后再向上平移1个单位长度,可以得到△A1B1C1.(1)画出平移后的△A1B1C1;(2)写出△A1B1C1三个顶点的坐标;(在图中标出)(3)已知点P在y轴上,以A1、B1、P为顶点的三角形面积为6,求P点的坐标.23.下面的图象记录了某地1月份某天的温度随时间变化的情况,请你仔细观察图象后回答下面的问题.(1)20时的温度是______ ℃,最暖和的时刻是______ 时,温度是0℃的时刻是______时,温度在−3℃以下的持续时间为______ ℎ.(2)你从图象中还能获取哪些信息(写出2条即可).24.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体质量x的一组对应值.(1)上表反应了哪两个变量之间的关系,并指出谁是自变量,谁是因变量.(2)当悬挂物体的重量为4千克时,弹簧长______ ;不挂重物时弹簧长______ .(3)弹簧长度y所挂物体质量x之间的关系可以用式子表示为:______ .(4)求挂12kg物体时弹簧长度及弹簧长40cm时所挂物体的重量.25.某电脑工程师张先生准备开一家小型电脑公司,欲租一处临街房屋.现有甲、乙两家出租屋,甲家已经装修好,每月租金为2600元;乙家未装修,每月租金为1800元,但若装修成与甲家房屋同样的规格,则需要自己支付装修费3.2万元.设租用时间为x个月,所需租金为y元.(1)请分别写出租用甲、乙两家房屋的租金y甲、y乙与租用时间x之间的函数关系;(2)试判断租用哪家房屋更合算,请写出详细分析过程.26.“五一”节假日期间,小亮一家到某度假村度假,小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发,他爸爸到达度假村后,发现落了东西在家里,于是立即返回家里去取,取到东西后又马上驾车前往度假村,如图是他们离家的距离s(km)与小明离家的时间t(ℎ)的关系图,请根据图象回答下列问题:(1)小亮和妈妈坐公交车的速度为______ km/ℎ;爸爸自驾的速度为______ km/ℎ.(2)小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(ℎ)的关系式为______ ;当1≤t≤2时,小亮爸爸离家的距离s(km)与离家的时间t(ℎ)的关系式为______ ;当2≤t≤3时,小亮爸爸离家的距离s(km)与离家的时间t(ℎ)的关系式为______ ;(3)小亮从家到度假村的路途中,当他与他爸爸相遇时,t=______ (ℎ);(4)整个运动过程中(双方全部到达会和时,视为运动结束),t为多少时小亮和妈妈与爸爸相距8km?答案和解析1.【答案】A【解析】解:A.了解本班同学早餐是否有喝牛奶的习惯,适合采用全面调查方式,故本选项符合题意;B.了解外地游客对隆兴寺的印象,适合采用抽样调查方式,故本选项不符合题意;C.了解一批灯泡的使用寿命,适合采用抽样调查方式,故本选项不符合题意;D.了解我国初中学生的视力情况,适合采用抽样调查方式,故本选项不符合题意;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.2.【答案】B【解析】解:∵P(−1,2),横坐标为−1,纵坐标为:2,∴P点在第二象限.故选:B.根据各象限内点的坐标符号直接判断的判断即可.本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.3.【答案】C,其中n、t为变量,100为常量.【解析】解:n=100t故选:C.,然后利用变量和常量对各选项进行判断.利用效率等于工作量除以工作时间得到n=100t本题考查了变量和常量:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.4.【答案】A【解析】【分析】本题考查了函数自变量的取值范围的确定和分式有意义的条件及二次根式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数.根据二次根式的意义,被开方数是非负数,以及分母不等于0即可求解.【解答】解:根据题意得4−x>0,解得x<4.故选:A.5.【答案】C【解析】解:A、以上调查属于抽样调查,故A不符合题意;B、每名学生的身高情况是总体的一个个体,故B不符合题意;C、100名学生的身高是总体的一个样本,故C符合题意;D、600名学生的身高情况是总体,故D不符合题意;故选:C.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.【答案】B【解析】解:如图所示:“炮”的坐标为:(3,1).故选:B.直接利用已知点坐标建立平面直角坐标系,进而得出答案.此题主要考查了坐标确定位置,正确得出原点位置是解题关键.7.【答案】B【解析】【分析】本题考查关于x轴对称的点的特征:横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:∵点P(−2,b)和点Q(a,−3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=−2,b=3.∴a+b=1,故选B.8.【答案】C【解析】解:A作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点,故A不符合题意;B、作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点,故B不符合题意;C、作垂直x轴的直线在左右平移的过程中与函数图象有两个交点,故C符合题意;D、作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点,故D不符合题意;故选:C.根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:作垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.【答案】C【解析】解:A、∵甲班男、女生各占50%,∴甲班男、女生人数相等,故本选项正确;B、∵乙班女生所占的比例比男生多,∴乙班女生比男生人数多,故本选项正确;C、∵两班的人数无法确定,∴无法比较两班女生的多少,故本选项错误;D、无法比较甲、乙两班女生人数谁多谁少,故本选项正确.故选:C.根据扇形统计图对各选项进行逐一判断即可.本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键.10.【答案】C【解析】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.此题主要考查了方向角,关键是掌握方向角的描述方法.11.【答案】C×100%=92%.【解析】解:该班此次成绩达到合格的同学占全班人数的百分比是50−450故选C.根据百分比的意义:利用成绩合格的人数除以总人数即可直接求解.本题考查了频数分布直方图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12.【答案】C【解析】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,=20+30=50,故选项C错若工人甲一天获得薪金180元,则他共生产:20+180−604误,若工人乙一天生产40(件),他获得的薪金为:60+(40−20)×4=140(元),故选项D 正确,故选:C.根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.【答案】B【解析】解:当m=1,代入v=m2+1,则v=2,当m=2,则v=5,当m=3,v=10,故m与V之间的关系最接近于关系式:v=m2+1.故选:B.利用已知数据代入选项中,得出符合题意的关系式.此题主要考查了函数关系式,正确把握函数关系式与点的坐标性质是解题关键.14.【答案】D【解析】【分析】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的容器形状.由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细,由选项图可得上面圆柱的底面半径应大于下面圆柱的底面半径.故选D.15.【答案】B【解析】解:从图可知以下信息:上午送时间最短的是甲,①正确;下午送件最多的是乙,②不正确;在这一天中派送所用时间最长的是乙,③正确;在这一天中派送快递总件数最多的是乙,④正确.∴正确结论的序号是①③④.故选:B.根据图象给出的点的坐标进行解答即可.本题考查函数的图象;能够从图中获取信心,针对性的统计是求解的关键.16.【答案】A【解析】解:①当点P在点D时,设正方形的边长为a,y=12AB×AD=12a×a=8,解得a=4;②当点P在点C时,y=12EP×AB=12×EP×4=6,解得EP=3,即EC=3,BE=1;③当x=6时,如下图所示:此时,PD=6−4=2,PC=4−PD=2,当x=6时,y=S正方形ABCD −(S△ABE+S△ECP+S△APD)=4×4−12×(4×1+2×3+4×2)=7.故选:A.①当点P在点D时,设正方形的边长为a,y=12AB×AD=12a×a=8,解得a=4;②当点P在点C时,y=12EP×AB=12×EP×4=6,解得EP=3,即EC=3,BE=1;③当x=6时,y=S正方形ABCD−(S△ABE+S△ECP+S△APD,即可求解.本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.17.【答案】(−2,1)或(6,1)【解析】解:∵AB//x轴,点B坐标为(2,1),∴点A的纵坐标为1,∵AB=4,∴若点A在点B的左边,则点A的横坐标为2−4=−2,此时,点A的坐标为(−2,1),若点A在点B的右边,则点A的横坐标为2+4=6,此时,点A的坐标为(6,1),综上所述,点A的坐标为(−2,1)或(6,1).故答案为:(−2,1)或(6,1).根据平行于x轴的直线上的点的纵坐标相等求出点A的纵坐标,再分点A在点B的左边和右边两种情况讨论求解.本题考查了坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等的性质,难点在于要分情况讨论.18.【答案】y=20−2x【解析】解:∵每分钟燃烧的长度是2cm,燃烧时间x分,∴燃烧的长度为2x(cm),∴蜡烛剩余长度y(cm)与燃烧时间x(分)之间的关系为:y=20−2x,故答案为:y=20−2x.根据燃烧速度和燃烧时间求出燃烧长度,根据题意列出函数关系式.本题考查的是一次函数的应用,根据题意列出一次函数解析式是解题的关键.19.【答案】15<x<30【解析】解:根据三角形的三边关系得:{x +x >−2x +6060−2x >0, 解得:15<x <30.∴x 的取值范围是15<x <30.故答案为:15<x <30.根据:底边长+两腰长=周长,建立等量关系,根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.本题考查了等腰三角形的性质,函数关系式,三角形三边关系,解题关键是熟练掌握等腰三角形三边关系.20.【答案】(3,√3) (4−122020,√322020)【解析】解:∵△ABC 是等边三角形,∴AB =BC =AC =4,∠ABC =∠A =∠ACB =60°,∴A(2,2√3),C(1,0),∵BA 1⊥AC ,∴AA 1=A 1C ,∴A 1(3,√3),∵A 1B 1//OA ,∴∠A 1B 1C =∠ABC =60°,∴△A 1B 1C 是等边三角形,∴A 2是A 1C 的中点,∴A 2(72,√32), 同理A 3(154,√34), ......∴A n (2n+1−12n−1,√32n−1),∴A 2021(22022−122020,√322020),即A 2021(4−122020,√322020), 故答案为:(3,√3),(4−122020,√322020). 根据图形算出A 点,A 1点,A 2点的坐标,进而总结出坐标规律即可.本题主要考查点的坐标的规律,总结出A n点坐标的变化规律是解题的关键.21.【答案】(1)200;(2)90°;(3)144盒;【解析】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200−38−62−50−10=40(名),条形统计图如下:50200×360°=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×(62200−38200)=144(盒),答:草莓味要比原味多送144盒.(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】解:(1)如图,△A1B1C1即为所求;(2)A1(0,3),B1(2,−1),C1(4,0);(3)设点P(0,y),则A1P=|y−3|,∵以A1、B1、P为顶点的三角形面积为6,∴1×|y−3|×2=6,2解得y=9或−3,P(0,9)或P(0,−3).【解析】(1)根据平移的性质即可画出平移后的△A1B1C1;(2)结合(1)即可写出△A1B1C1三个顶点的坐标;(3)根据点P在y轴上,以A1、B1、P为顶点的三角形面积为6,即可求P点的坐标.本题考查了作图−平移变换,解决本题的关键是掌握平移的性质.23.【答案】−114 12时和18时8【解析】解:(1)根据图象得:20时的温度是−1℃,最暖和的时刻是14时,温度是0℃的时刻是12时和18时,温度在−3℃以下的持续时间为8h.故答案为:−1,14,12时和18时,8;(2)答案不唯一,如:①最冷的时刻是4时,②0时的温度是−3℃.(1)横轴表示时间,纵轴表示温度.温度是0℃时对应图象上两个点,最暖和的时刻指温度最高的时候,温度在−3℃以下的持续时间为8;(2)可找具体的时刻相对应的温度,或者最值.本题考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,读懂图意,找到相应的等量关系是解决本题的关键.24.【答案】26cm18cm y=18+2x【解析】解:(1)反映了弹簧长度y与所挂物体质量x之间的函数关系,所挂物体质量x 是自变量,弹簧长度y是因变量;(2)从表格中可以得到:当悬挂物体的质量为4千克时,弹簧的长度为26cm;不挂重物时,也就是x=0时,弹簧长为18cm;故答案为:26cm,18cm;(3)观察表格发现,所挂物体的质量增加1千克,弹簧就伸长2厘米,∴y=18+2x;故答案为:y=18+2x;(4)当x=12时,y=18+2×12=42(cm),当y=40时,40=18+2x,解得x=11.答:挂12千克物体时弹簧长度为42cm,弹簧长40cm时所挂物体的质量是11kg.(1)反映了弹簧长度y与所挂物体质量x之间的函数关系,所挂物体质量x是自变量,弹簧长度y是因变量;(2)从表格中可以得到:当悬挂物体的质量为4千克时,弹簧的长度为26cm;不挂重物时,也就是x=0时,弹簧长为18cm;(3)观察表格发现,所挂物体的质量增加1千克,弹簧就伸长2厘米,根据弹簧长度=原始长度+伸长长度即可求解;(4)当x=12时求y;当y=40时求x即可.本题考查了函数的表示方法,通过表格数据发现规律是解题的关键.25.【答案】解:(1)根据题意,租用甲家房屋时:y甲=2600x;租用乙家房屋时:y乙=1800x+32000;(2)①由题意,可知:2600x =1800x +32000,解得:x =40,即当租用40个月时,两家租金相同.②由2600x >1800x +40000,解得:x >40;即当租用时间超过40个月时,租乙家的房屋更合算.③由2600x <1800x +40000,解得:x <40,即当租用时间少于40个月时,租甲家的房屋更合算.综上所述,当租期超过40个月时,租乙家房屋更合算;当租期等过40个月时,租甲家、乙家都可以;当租期低于40个月,租甲家房屋更合算.【解析】(1)利用已知条件直接列出函数的解析式即可;(2)根据(1)求得的函数的解析式分类讨论即可..本题考查一次函数的应用与一元一次不等式的应用,关键是根据租金的多少进行分类讨论.26.【答案】20 60 s =20t s =60t −60 s =−60t +180 1.5或2.25【解析】解:(1)由图象可得,小亮和妈妈坐公交车的速度为:60÷3=20(km/ℎ),爸爸自驾的速度为:60÷(2−1)=60(km/ℎ),故答案为:20,60;(2)设小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(ℎ)的关系式为s =kt , 3k =60,得k =20,即设小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(ℎ)的关系式是s =20t ; 当1≤t ≤2时,设小亮爸爸离家的距离s(km)与离家的时间(ℎ)的关系式为:s =kt +b ,{k +b =02k +b =60, 得{k =60b =−60, 即当1≤t ≤2时,小亮爸爸离家的距离s(km)与离家的时间(ℎ)的关系式为:s =60t −60,第21页,共21页 当2≤t ≤3时,设小亮爸爸离家的距离s(km)与离家的时间(ℎ)的关系式为:s =ct +d ,{2c +d =603c +d =0, 得{c =−60d =180, 即当2≤t ≤3时,小亮爸爸离家的距离s(km)与离家的时间(ℎ)的关系式为:s =−60t +180, 故答案为:s =20t ,s =60t −60,s =−60t +180;(3)根据题意可得:{s =20t s =60t −60或{s =20t s =−60t +180, 解得:t =1.5(ℎ)或t =2.25(ℎ),故答案为:1.5或2.25;(4)当0≤t ≤1时,令s =8,则8=20t ,得t =0.4(ℎ),当1≤t ≤2时,令20t −(60t −60)=±8,解得,t =1.3(ℎ)或t =1.7(ℎ), 当2≤t ≤3时,−60t +180−20t =±8,解得,t =2.15(ℎ)或t =2.35(ℎ),当3≤t ≤4时,设小亮爸爸离家的距离s(km)与离家的时间(ℎ)的关系式为:s =et +f ,{3e +f =04e +f =60, 解得:{e =60f =−180, ∴当3≤t ≤4时,小亮爸爸离家的距离s(km)与离家的时间(ℎ)的关系式为:S =60t −80, 令60−(60t −180)=8,解得:t =5815(ℎ),由上可得,t 为0.4ℎ,1.3ℎ,1.7ℎ,2.15ℎ,2.35ℎ,5815ℎ时小亮和妈妈与爸爸相距8km .(1)根据图象,由速度=路程÷时间即可求解;(2)根据图象中的数据,直接运用待定系数法即可求解;(3)利用解析式建立二元一次方程组,求出交点的坐标就可以求出结论;(4)根据函数图象和各段对应的函数解析式可以解答本题.本题考查了一次函数的应用,解题的关键是根据实际问题并结合函数的图象得到进一步解题的有关信息,并从实际问题中整理出一次函数模型.。
2020-2021学年八年级下学期期中数学试卷及答案
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .4.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 36.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<210.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.12.已知a+b+c=0,a>b>c,则ca的取值范围是.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有个.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax2﹣2ax+a;(2)解不等式组:{x+3≤2(x+2)x3+1>3x−14,并写出所有非负整数解.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标.(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标.18.(9分)如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB、AC于点E、点D,∠A=36°.求证:AD=BC.19.(9分)(1)已知3m=6,9n=2,求32m﹣2n+1的值;(2)已知a+b=6,ab=8,求a2+b2与(a﹣b)2的值.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.21.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型乙型价格(万元/套)m n生产量(台/日)120100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m,n的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.22.(9分)如图,△ABC中,AB=30cm,AC=20cm,以BC为边作等边△BCD,连接AD,求AD的最大值,最小值分别是多少?2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n【解答】解:∵m >n ,∴m ﹣4>n ﹣4;14m >14n ;4m >4n ,﹣2m <﹣2n .故选:B .2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD【解答】解:∵△ABC 中,AB =AC ,D 是BC 中点 ∴∠B =∠C ,(故A 正确) AD ⊥BC ,(故B 正确) ∠BAD =∠CAD (故C 正确) 无法得到AB =2BD ,(故D 不正确). 故选:D .3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .【解答】解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .4.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D .∵l 为直线,EH 不能平分直线l , ∴EH 不是l 的垂直平分线,故此选项错误; 故选:A .5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 3【解答】解:∵a <b ,∴a ﹣1<b ﹣1,12a <12b ,a ﹣b <0,1−a 3>1−b 3.故选:D .6.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是( )A .12cmB .16cmC .18cmD .20cm【解答】解:∵△ABE 的周长=AB +BE +AE =10(cm ),由平移的性质可知,BC =AD =EF =1(cm ),AE =DF ,∴四边形ABFD 的周长=AB +BE +EF +DF +AD =10+1+1=12(cm ). 故选:A .7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<2【解答】解:∵一次函数y=ax+b的图象经过一、二、三象限,则函数y随x的增大而增大,∴a>0.把点(﹣2,0),代入即可得到:﹣2a+b=0.即2a﹣b=0.不等式ax>b的解集就是求函数y=ax﹣b>0,故当x>2时,不等式ax>b成立.则不等式ax>b的解集为x>2.故选:C.10.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.12.已知a+b+c=0,a>b>c,则ca 的取值范围是﹣2<ca<−12.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得ca>−2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得ca <−12,∴﹣2<ca<−12.故答案为:﹣2<ca<−12.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.【解答】解:解不等式2x﹣k>0得x>k 2,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤k2<−2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有6个.【解答】解:AB=√5,以B为顶点,BC=BA,这样的C点有4个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点不存在,但与前面的重合;所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣8.【解答】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD ,∴∠ABO =∠CAD ,在△ACD 和△BAO 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC,∴△ACD ≌△BAO (AAS )∴AD =OB =2,CD =OA =4,∴C (6,4)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得{4k +b =06k +b =4, ∴{k =2b =−8, ∴直线AC 的解析式为y =2x ﹣8.故答案为:y =2x ﹣8.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax 2﹣2ax +a ;(2)解不等式组:{x +3≤2(x +2)x 3+1>3x−14,并写出所有非负整数解. 【解答】解:(1)ax 2﹣2ax +a =a (x 2﹣2x +1)=a (x ﹣1)2;(2){x +3≤2(x +2)①x 3+1>3x−14②, 解不等式①得,x ≥﹣1,解不等式②得,x <3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x <3:∴非负整数解有:0,1,2.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标(﹣1,﹣2).(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标(−134,0).【解答】解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:{−4k +b =−1−k +b =3, 解得:{k =43b =133, ∴直线A ′B 的解析式为y =43x +133, 当y =0时,43x +133=0, 解得x =−134,∴点P 的坐标为(−134,0). 故答案为:(−134,0). 18.(9分)如图,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∠A =36°.求证:AD =BC .【解答】证明:∵AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∴DB =DA ,∴△ABD 是等腰三角形;∵∠A =36°,∴∠ABD =∠A =36°,∠ABC =∠C =(180°﹣36°)÷2=72°,∴∠BDC =∠A +∠ABD =72°,∴∠C =∠BDC ,∴BD =BC ,∴AD =BC .19.(9分)(1)已知3m =6,9n =2,求32m ﹣2n +1的值;(2)已知a +b =6,ab =8,求a 2+b 2与(a ﹣b )2的值.【解答】解:(1)∵3m =6,9n =2,∴32m﹣2n+1=(3m)2÷9n×3=36÷2×3=54;(2)将a+b=6平方得:(a+b)2=a2+b2+2ab=36,把ab=8代入得:a2+b2+16=36,即a2+b2=20;∴(a﹣b)2=a2+b2﹣2ab=20﹣16=4.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=30°∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=20√3 9,又AB=10,AC=8,∴S△ABC=12×10×20√39+12×8×20√39=20√321.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型 乙型 价格(万元/套)m n 生产量(台/日) 120 100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m ,n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.【解答】解:(1)根据题意知{m −n =6m +3n =10, 解得:{m =7n =1; (2)设购买甲型设备x 台、乙型设备(10﹣x )台,根据题意,得:{7x +10−x ≤26120x +100(10−x)≥1020, 解得:1≤x ≤83,∵x 为整数,∴x =1或x =2,即有两种购买方案:方案一:购买1台甲型设备、9台乙型设备,购买总费用为1×7+9×1=16万元; 方案二:购买2台甲型设备、8台乙型设备,购买总费用为2×7+8×1=22万元; 所以购买1台甲型设备、9台乙型设备最省钱.22.(9分)如图,△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,求AD 的最大值,最小值分别是多少?【解答】解:∵△BCD为等边三角形,∴DC=DB,∠BDC=60°,把△DAC绕点D逆时针旋转60°得到△DEB,如图,连接AE,∴DA=DE,∠ADE=60°,BE=AC=20,∴△DAE为等边三角形,∴AD=AE,∵AB+BE≥AE或AB﹣BE≤AE(当且仅当A、B、E共线时取等号),∴AE的最大值为30+20=50,AE的最小值为30﹣20=10.。
2020-2021石家庄市初二数学下期中一模试卷附答案
2020-2021石家庄市初二数学下期中一模试卷附答案一、选择题1.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .2.下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .1, 2,3D .2,3,53.如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .4.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②5.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米7.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A .1个B .2个C .3个D .4个8.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣49.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A.83B.8C.43D.610.已知直角三角形中30°角所对的直角边长是23cm,则另一条直角边的长是()A.4cm B.43 cm C.6cm D.63 cm11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD12.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题13.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第1个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第2个内接正方形HIKJ;再取线段KJ 的中点Q,在△QHI内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.14.一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.15.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=_______.16.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.已知51,x =-则226x x +-=____________________.18.如图所示的网格是正方形网格,则BAC DAE ∠-∠=__________︒(点A ,B ,C ,D ,E 是网格线交点).19.如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.20.如图,ABC V 是以AB 为斜边的直角三角形,4AC =,3BC =,P 为AB 上一动点,且PE AC ⊥于E ,PF BC ⊥于F ,则线段EF 长度的最小值是________.三、解答题21.如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:AE=CF .22.如图1,在△ABC 中,∠ACB=90°,AC=BC ,∠EAC=90°,点M 为射线AE 上任意一点(不与A 重合),连接CM ,将线段CM 绕点C 按顺时针方向旋转90°得到线段CN ,直线NB 分别交直线CM 、射线AE 于点F 、D .(1)直接写出∠NDE 的度数;(2)如图2、图3,当∠EAC 为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM 与AB 交于G ,BD=62+,其他条件不变,求线段AM 的长.23.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,平行四边形ABCD 中,若1,2AB BC ==,则平行四边形ABCD 为1阶准菱形.(1)判断与推理:① 邻边长分别为2和3的平行四边形是__________阶准菱形;② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD 沿着BE 折叠(点E 在AD 上)使点A 落在BC 边上的点F ,得到四边形ABFE ,请证明四边形ABFE 是菱形.(2)操作、探究与计算:① 已知平行四边形ABCD 的邻边分别为1,(1)a a >裁剪线的示意图,并在图形下方写出a 的值;② 已知平行四边形ABCD 的邻边长分别为,()a b a b >,满足6,5a b r b r =+=,请写出平行四边形ABCD 是几阶准菱形.24.综合与探究一列快车从甲地匀速驶往乙地,同时一列慢车从乙地匀速驶往甲地.设慢车行驶的时间为xh ,两车之间的距离为ykm ,图中的折线表示y 与x 之间的关系,根据图象解决以下问题:(1)甲、乙两地之间的距离为___________km ;(2)求快车与慢车的速度;(3)求慢车行驶多少时间后,两车之间的距离为500km .25.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y1的图象可知a< 0,b> 0;由y2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y1的图象可知a< 0,b> 0;由y2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y1的图象可知a> 0,b> 0;由y2的图象可知a<0,b<0,两结论相矛盾,故错误;故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k及b值的关系是解题的关键.2.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D)2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.3.A解析:A【解析】【分析】当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.4.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A解析:A【解析】【分析】作CD⊥x轴于D,作AE⊥x轴于E,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A 的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3),故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.C解析:C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .7.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.8.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.D解析:D【解析】【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【详解】解:如图,连接OB,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=23, ∴AC=2BC=43,∴AB=22AC BC -=22(43)(23)-=6,故选D .【点睛】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm ,由勾股定理得:22AB AC -,故选C .11.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.B解析:B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.二、填空题13.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×3,则第n个内接正方形的边长为:3×()n﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.14.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<3解析:-2<m<3【解析】【分析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.15.【解析】【分析】连接FC根据三角形中位线定理可得FC=2MN继而根据四边形ABCD四边形EFGB是正方形推导得出GBC三点共线然后再根据勾股定理可求得FC 的长继而可求得答案【详解】连接FC∵MN 分别 解析:132 【解析】【分析】连接FC ,根据三角形中位线定理可得FC=2MN ,继而根据四边形ABCD ,四边形EFGB 是正方形,推导得出G 、B 、C 三点共线,然后再根据勾股定理可求得FC 的长,继而可求得答案.【详解】连接FC ,∵M 、N 分别是DC 、DF 的中点,∴FC=2MN ,∵四边形ABCD ,四边形EFGB 是正方形,∴∠FGB=90°,∠ABG=∠ABC=90°,FG=BE=5,BC=AB=7,∴∠GBC=∠ABG+∠ABC=180°,即G 、B 、C 三点共线,∴GC=GB+BC=5+7=12,∴FC=22FG GC +=13,∴MN=132, 故答案为:132.【点睛】本题考查了正方形的性质,三角形中位线定理,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB ;最后Rt △BOC 中根据勾股定理得OB 的值则【详解】解:如图连接CE 交AB 于点O ∵Rt △解析:75【解析】【分析】首先根据勾股定理求得AB =5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD =OB ,CD =CB ;最后Rt △BOC 中,根据勾股定理得,OB 的值,则2AD AB OB =-.【详解】解:如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3 ∴225AB AC BC =+= (勾股定理)若平行四边形CDEB 为菱形时,CE ⊥BD ,且OD =OB ,CD =CB . ∵1122AB OC AC BC ⋅=⋅, ∴12.5OC = ∴在Rt △BOC 中,根据勾股定理得,2222129355OB BC OC ⎛⎫=-=-= ⎪⎝⎭, ∴725AD AB OB =-=故答案是:75. 【点睛】本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.17.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.【详解】 解:当51x =时, 原式2(51)51)6=+-52512526=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.【解析】【分析】连接CGAG根据勾股定理的逆定理可得∠CAG=90°从而知△CAG是等腰直角三角形根据平行线的性质和三角形全等可知∠BAC-∠DAE=∠ACG即可得解【详解】解:如图连接CGAG由勾解析:45【解析】【分析】连接CG、AG,根据勾股定理的逆定理可得∠CAG=90°,从而知△CAG是等腰直角三角形,根据平行线的性质和三角形全等,可知,∠BAC-∠DAE=∠ACG,即可得解.【详解】解:如图,连接CG、AG,由勾股定理得:AC2=AG2=12+22=5,CG2=12+32=10,∴AC2+AG2=CG2,∴∠CAG=90°,∴△CAG是等腰直角三角形,∴∠ACG=45°,∵CF∥AB,∴∠ACF=∠BAC,在△CFG和△ADE中,∵CF=AD, ∠CFG=∠ADE=90°, FG=DE,∴△CFG≌△ADE(SAS),∴∠FCG=∠DAE,∴∠BAC-∠DAE=∠ACF-∠FCG=∠ACG=45°,故答案为:45.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质, 等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.19.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.20.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC 则PC=EF所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B解析:12 5【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC ⊥AB 时,PC 取最小值是解答此题的关键.三、解答题21.详见解析.【解析】试题分析:根据平行四边形的性质可得AB=CD ,AB ∥CD ,再由平行线的性质证得∠ABE=∠CDF ,根据AE ⊥BD ,CF ⊥BD 可得∠AEB=∠CFD=90°,由AAS 证得△ABE ≌△CDF ,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠ABE=∠CDF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定及性质.22.(1)∠NDE=90°;(2)不变,证明见解析;(3)∴6【解析】【分析】(1)根据题意证明△MAC ≌△NBC 即可;(2)与(1)的证明方法相似,证明△MAC ≌△NBC 即可;(3)作GK ⊥BC 于K ,证明AM=AG ,根据△MAC ≌△NBC ,得到∠BDA=90°,根据直角三角形的性质和已知条件求出AG 的长,得到答案.【详解】解:(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN ,在△MAC 和△NBC 中,{AB BCACM BCN MC NC=∠=∠=,∴△MAC ≌△NBC ,∴∠NBC=∠MAC=90°,又∵∠ACB=90°,∠EAC=90°,∴∠NDE=90°;(2)不变,在△MAC ≌△NBC 中,{AB BCACM BCN MC NC=∠=∠=,∴△MAC ≌△NBC ,∴∠N=∠AMC ,又∵∠MFD=∠NFC ,∠MDF=∠FCN=90°,即∠NDE=90°;(3)作GK ⊥BC 于K ,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG ,∵△MAC ≌△NBC ,∴∠MAC=∠NBC ,∴∠BDA=∠BCA=90°,∵∴,设BK=a ,则GK=a ,CK=a ,∴,∴a=1,∴KB=KG=1,,,∴.【点睛】本题考查几何变换综合题.23.(1)① 2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.【解析】【分析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.【详解】解:(1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②答:10阶菱形,∵a=6b+r ,b=5r ,∴a=6×5r+r=31r ; 如图所示:故▱ABCD 是10阶准菱形.【点睛】此题主要考查了图形的剪拼以及菱形的判定,根据已知n 阶准菱形定义正确将平行四边形分割是解题关键.24.(1)720(2)120/v km h =快,80/v km h =慢(3)1.1h 或6.25h .【解析】【分析】(1)根据题意结合图象即可得出结果.(2)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h ,快车的速度为bkm/h ,依此列出方程组,求解即可;(3)分相遇前相距500km 和相遇后相遇500km 两种情况求解即可.【详解】解:(1)甲、乙两地的距离为720km ,故答案为:720;(2)设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意,得3.6()720(9 3.6) 3.6a b a b +=⎧⎨-=⎩解得80120a b =⎧⎨=⎩故答案为120/v km h =快,80/v km h =慢(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km .即相遇前:()80120720500x +=-,解得 1.1x =,快车7201206h ÷=到乙地,∵慢车行驶20km 两车之间的距离为500km ,∵慢车行驶20km 需要的时间是()200.2580h =, ∴()60.25 6.25x h =+=,故 1.1x h =或6.25,两车之间的距离为500km .【点睛】本题考查了一次函数的应用.主要利用了路程、时间、速度三者之间的关系,第(3)问要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.25.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米; (2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得 35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得 43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.。
2020-2021学年八年级下期中数学试题及答案解析
2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分) 1.下列各方程组中,属于二元一次方程组的是( ) A .{x =0y =2B .{x +y =0z +y =2C .{x +y =01x+y =2D .{x +y =0xy =2【解答】解:A 、该方程组符合二元一次方程组的定义,故本选项符合题意; B 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意; C 、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意; D 、该方程组中的第二个方程的最高次数2,不是二元一次方程组,故本选项不符合题意; 故选:A .2.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A .56B .512C .59D .712【解答】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影, 则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:512.故选:B .3.如图,∠DAC 是△ABC 的一个外角,AE 平分∠DAC ,且AE ∥BC ,则△ABC 一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【解答】证明:∵AE 平分∠DAC ,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.4.下列命题中,真命题是()A.两个锐角的和一定是钝角B.相等的角是对顶角C.垂线段最短D.带根号的数一定是无理数【解答】解:A、两个锐角的和可能是锐角、直角或钝角,故原命题错误,是假命题,不符合题意;B、相等的角不一定是对顶角,故原命题错误,不符合题意;C、垂线段最短,正确,是真命题,符合题意;D、带根号的数不一定是无理数,如√4,故原命题错误,不符合题意,故选:C.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为s甲2、s乙2,若x甲=x乙,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A 不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B 不符合题意; 根据平均数和方差的意义可得选项C 符合题意; 一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项D 不符合题意; 故选:C .6.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )A .74°B .32°C .22°D .16°【解答】解:∵CD =CE ,∠D =74°, ∴∠DEC =∠D =74°,∴∠C =180°﹣74°﹣74°=32°, ∵AB ∥CD , ∴∠B =∠C =32°, 故选:B .7.已知方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是( ) A .(﹣1,1)B .(1,﹣1)C .(2,﹣2)D .(﹣2,2)【解答】解:∵方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,∴一次函数y =2x +3与y =ax +c 的图象的交点坐标是(﹣1,1), 故选:A .8.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5B .6C .7D .8【解答】解:设袋中白球有x 个,根据题意得:x x+14=0.3,解得:x =6,经检验:x =6是分式方程的解,故选:B .9.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺. A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺, 依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15.故选:B .10.如图,把一个长方形纸片沿EF 折叠后,点C 、D 分别落在M 、N 的位置.若∠EFB =65°,则∠AEN 等于( )A .25°B .50°C .65°D .70°【解答】解:∵∠EFB =65°,AD ∥CB , ∴∠DEF =65°,由折叠可得∠NEF =∠DEF =65°, ∴∠AEN =180°﹣65°﹣65°=50°, 故选:B .11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .12.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得: {2x +2y =210×2x −y +x =210, 解得:{x =140y =70.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .或者:设AC =ykm 即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C 回到A .从A 到C ,甲、乙两车都行驶了AC ,即乙车耗油量为ykm ,也即甲车注入燃料量为ykm ,注入后甲车剩余ykm (刚好返回A 地),所以对于甲车,y +y +y =210,所以y =70.从乙车角度,从C 出发是满燃料,所以AB 为:105+70÷2=140(km ). 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.把命题“对顶角相等”改写成“如果…那么…”的形式: 如果两个角是对顶角,那么这两个角相等 .【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等, 故答案为:如果两个角是对顶角,那么这两个角相等.14.甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 .【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5,所以a +c =4+(﹣2)=2, 故答案为:2.15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 4 .【解答】解:盒子内乒乓球的个数为2÷13=6(个), 白色乒乓球的个数6﹣2=4(个) 故答案为4.16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那它停在4号板上的概率是116.【解答】解:因为4号板的面积占了总面积的116,故停在4号板上的概率为116,故答案为:116.17.如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°, ∵AB ∥EF , ∴∠1=∠3+∠CEF , ∴∠CEF =∠1﹣∠3, ∴∠2+∠1﹣∠3=180°, 即∠1﹣∠3+∠2=180°. 故答案为:∠1﹣∠3+∠2=180°.18.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题.如图所示,已知AB ∥CD ,∠BAE =78°,∠DCE =120°,则∠E 的度数是 42° .【解答】解:如图,延长DC 交AE 于F , ∵AB ∥CD ,∠BAE =78°, ∴∠CFE =78°, 又∵∠DCE =120°,∴∠E =∠DCE ﹣∠CFE =120°﹣78°=42°. 故答案为:42°.三.解答题(共6小题,满分66分)19.(12分)解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解: ① + ② ,得3x +4y =10,④ ② + ③ ,得5x +y =11,⑤ ⑤ 与 ④ 联立,得方程组 {3x +4y =10,④5x +y =11,⑤(1)请补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n ﹣2p +q = ﹣2 .【解答】解:(1)方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下: 解:①+②,得3x +4y =10,④ ②+③,得5x +y =11,⑤ ⑤与④联立,得方程组 {3x +4y =10,④5x +y =11,⑤ 解得:{x =2y =1把{x =2y =1代入①得:2+1+z =2, 解得:z =﹣1,∴原方程组的解是{x =2y =1z =−1故答案为:①,②,②,③,⑤,④.(2){m +n +p +q =4①2(m +n)+3p −q =16②3(m +n)−2p +q =6③②﹣①×2得:p ﹣3q =8④, ③﹣①×3得:﹣5p ﹣2q =﹣6⑤, 由④与⑤组成方程组{p −3q =8−5p −2q =−6解得:{p =2q =−2,代入①得:m +n =4 ∴m +n ﹣2p +q =﹣2 故答案为:﹣2.20.(10分)(1)解方程组:{x +2y =1,①3x −2y =11,②(2)计算:√4+|﹣2|+√−273+(﹣1)2016.【解答】解:(1)①+②得:4x =12, 解得:x =3;把x =3代入①得:y =﹣1, 则方程组的解为{x =3y =−1;(2)原式=2+2﹣3+1 =4﹣3+1 =1+1 =2.21.(10分)(1)解方程组:{23x −34y =124(x −y)−3(2x +y)=17; (2)已知关于x 、y 的方程组{x −y =a +32x +y =5a 的解满足x >y >0,化简|a |+|3﹣a |.【解答】解:(1)原方程化为{8x −9y =6①2x +7y =−17②,①﹣②×4得:﹣37y =74, 解得y =﹣2,把y =﹣2代入①得x =−32, ∴原方程组的解为{x =−32y =−2;(2)由方程组{x −y =a +32x +y =5a ,解得{x =2a +1y =a −2,由x >y >0,得{2a +1>a −2a −2>0,解得a>2,当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.22.(12分)已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.(10分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?【解答】解:公平.画树状图得:从表中可以得到:P 积为奇数=26=13,P 积为偶数=46=23,∴小明的积分为26×2=23,小刚的积分为46×1=46=23.24.(12分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【解答】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,{3000a +3500b =32000(3400−3000)a +(4000−3500)b =4400, 解得,{a =6b =4, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.四.解答题(共2小题,满分30分)25.(14分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.26.(16分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系2∠P=∠B+∠A.【解答】解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∠FDC+∠ECD=180°+∠A.理由如下:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°−12∠ADC−12∠ACD,=180°−12(∠ADC+∠ACD),=180°−12(180°﹣∠A),=90°+12∠A;探究三:2∠P=∠B+∠A.理由如下:∵DP,CP分别平分∠BDC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°−12∠ADC−12∠BCD=180°−12(∠ADC+∠BCD)=180°−12(360°﹣∠A﹣∠B)=12(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。
2020-2021学年八年级下学期期中考试数学试卷及答案
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 32.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5 3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.24.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√125.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.187.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,78.如图,下面不能判断四边形ABCD是平行四边形的是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠DC.AB=CD,AD∥BC D.AB=CD,AD=BC9.如图,▱ABCD中,AC.BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为()A.3B.6C.12D.2410.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为.12.若√x−3在实数范围内有意义,则x的取值范围是.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.15.如图,在等边△ABC中,BC=5cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t=时,以A、C、E、F为顶点四边形是平行四边形.三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x√yx+3y√xy3)﹣(4x√x y+√36xy),其中x=32,y=27.18.(9分)如图,在▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:√5049+164(仿照上式写出过程)20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.22.(10分)在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B 、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S△EOG=S△FOH,S△DOG=S△BOH,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。
河北省石家庄市43中2020-2021学年八年级下学期期中数学试题
C. D.
12.等腰三角形的周长是20 ,腰长 是底边长 的函数表达式正确的是()
A. B.
C. D.
13.如表列出了一项实验的统计数据:
y
50
80
100
150
…
x
30
45
55
80
…
它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y与x之间的关系式为( )
A.y=2x﹣10B.y=x2C.y=x+25D.y=x+5
(1)求甲车离出发地的距离 (千米)与行驶时间 (小时)之间的函数关系式,并写出自变量的取值范围.
(2)当 时,甲、乙两车离各自出发地的距离相等,求乙车离出发地的距离 (千米)与行驶时间 (小时)之间的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
24.手机经销商计划购进苹果手机的iPhone8、iphone8Plus、iphoneX三款手机共60部,每款手机至少要购进10部,且恰好用完购机款360000元.设购进iPhone8手机 部,iPhone8Plus手机 部.三款手机的进价和售价如表:
A. B. C. D.
二、填空题
17.函数 中,自变量x的取值范围是_______.
18.如图,已知 和 的图象交于点P,根据图象可得关于X、Y的二元一次方程组 的解是_________________.
19.一次函数 ,当 时,对应的 的值为 ,则 的值是__________.
三、解答题
20.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校,以下是他本次上学所用的时间与路程的关系示意图
2020-2021石家庄市初二数学下期中一模试卷带答案
2020-2021石家庄市初二数学下期中一模试卷带答案一、选择题1.按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x 张,摆放的椅子为y 把,则y 与x 之间的关系式为( )A .y =6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+22.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .3.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3 B .﹣3 C .1 D .04.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .435.有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .27B .74C .72D .46.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A .1个B .2个C .3个D .4个7.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°8.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .159.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )A .①②③B .①②③④C .②③④D .①③④10.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家11.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限12.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.23(1)0m n -+=,则m+n 的值为 .14.已知菱形的周长为20㎝ ,两条对角线的比为3:4,则菱形的面积为___________.15.123x x --有意义的x 的取值范围是_____. 16.211a a a a--=,则a 的取值范围是________ 17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,30ACB ∠=o ,则AOB ∠的大小为______ .18.如果最简二次根式22x-3与9-4x 是同类二次根式,那么x =______.19.如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.20.(1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π- 三、解答题21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==.(1)在图中画出符合条件的ABC V ;(2)若BD AC ⊥于点D ,则BD 的长为 .22.如图,ABC V 是边长为1的等边三角形,BCD V 是等腰直角三角形,且90BDC ∠=︒.(1)求BD 的长.(2)连接AD 交BC 于点E ,求AD AE 的值. 23.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是 米;(2)AB 表示的实际意义是 ;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?24.如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标;(2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标.25.先化简,再求值:21142()111x x x x +-÷+--,其中x=﹣【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x 张餐桌共有6+4(x-1)=4x+2,由此即可解答.【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x 张餐桌共有6+4(x-1)=4x+2.∴y 与x 之间的关系式为:y =4x +2.故选D .【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.2.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.3.B解析:B【解析】【分析】根据点P (x ,y )是直线y=1322x -上的点,可以得到y 与x 的关系,然后变形即可求得所求式子的值.【详解】∵点P (x ,y )是直线y=1322x -上的点, ∴y=1322x -, ∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B .【点睛】 本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.4.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC V ≌'V D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC V 为直角三角形,∴5AC ===,根据折叠可得:DEC V ≌'V D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'V Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =,故选:A.【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.7.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.8.C解析:C【解析】【分析】证明30????,求出BC即可解决问题.BAE EAC ACE【详解】解:Q四边形ABCD是矩形,∴∠=︒,B90Q,EA=EC∴∠=∠,EAC ECAQ,??EAC BAE又∵将纸片沿AE折叠,点B恰好落在AC上,\????,BAE EAC ACE30Q,AB=3\==BC∴矩形ABCD的面积是3gAB BC=故选:C.【点睛】本题考查矩形的性质,翻折变换,直角三角形30°角性质等知识,解题的关键是灵活运用所学知识解决问题.9.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.10.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.11.D解析:D 【解析】 【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断. 【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意; 故选:D . 【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.12.A解析:A 【解析】 【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形. 【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形, 故④选项正确, 故选A . 【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.二、填空题13.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m -3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2 【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m -3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2. 考点:非负数的性质14.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm 设两条对角线长分别为3x4x 根据勾股定理可得()2+(2x )2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故解析:224cm . 【解析】 【分析】 【详解】解:已知菱形的周长为20㎝ ,可得菱形的边长为5cm ,设两条对角线长分别为3x ,4x , 根据勾股定理可得(32x )2+( 2x )2=102, 解得,x=2, 则两条对角线长分别为6cm 、8,所以菱形的面积为2168242cm ⨯⨯=. 故答案为:224cm . 【点睛】本题考查菱形的性质;勾股定理.15.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0列不等式组求解【详解】由题意得 解得x≥2且x≠3故答案为x≥2且x≠3【点睛】本题主要考查自变量的取值范解析:x≥2且x≠3 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式组求解. 【详解】 由题意,得20{30x x -≥-≠ ,解得x≥2且x≠3. 故答案为x≥2且x≠3. 【点睛】本题主要考查自变量的取值范围.用到的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.16.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数 解析:01a <≤【解析】 【分析】根据二次根式得非负性求解即可. 【详解】=成立, 则有:10a ->,0a ≠ ,0,即:0a >, ∴01a <≤, 故答案为:01a <≤. 【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数.17.【解析】【分析】根据矩形的性质可得∠ABC 的度数OA 与OB 的关系根据等边三角形的判定和性质可得答案【详解】∵ABCD 是矩形∴∠ABC=90°∵∠ACB=30°∴∠BAO=90°﹣∠ACB=60°∵O 解析:60o【解析】 【分析】根据矩形的性质,可得∠ABC 的度数,OA 与OB 的关系,根据等边三角形的判定和性质,可得答案. 【详解】∵ABCD 是矩形,∴∠ABC =90°.∵∠ACB =30°,∴∠BAO =90°﹣∠ACB =60°. ∵OA =OB ,∴△ABO 是等边三角形,∴∠AOB =60°. 故答案为:60°. 【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC 的度数是解答本题的关键.18.2【解析】由题意得:2x-3=9-4x 解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式解析:2 【解析】由题意得:2x-3=9-4x ,解得:x=2, 故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.19.x≤0【解析】【分析】由一次函数y=kx+b 的图象过点(02)且y 随x 的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y 随x 的增大而减小∵一次函数y=kx解析:x≤0 【解析】 【分析】由一次函数y=kx+b 的图象过点(0,2),且y 随x 的增大而减小,从而得出不等式kx+b≥2的解集. 【详解】解:由一次函数的图象可知,此函数是减函数,即y 随x 的增大而减小, ∵一次函数y=kx+b 的图象与y 轴交于点(0,2), ∴当x≤0时,有kx+b≥2. 故答案为x≤0. 【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.20.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a ;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为解析:(1)4, 0.8,3,23;(2a ;(3)3.15﹣π. 【解析】 【分析】(1)依据被开方数即可计算得到结果;(2a ; (3)原式利用得出规律计算即可得到结果. 【详解】解:(124,3====;故答案为:4,0.8,3,23;(2a ,|a|;(3)2( 3.15)π-=|π﹣3.15|=3.15﹣π. 【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.三、解答题21.(1)见解析; (2)513【解析】 【分析】(1)结合网格图利用勾股定理确定点C 的位置即可得解; (2)根据三角形的面积列出关于BD 方程,求解即可得到答案. 【详解】 解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF == ∴2213AC AE CE =+=2232BC BF CF +=∴ABC V 即为所求. (2)如图:∵由网格图可知5AB =,3CH =,13AC =32BC =22ABC AB CH AC BDS ⋅⋅==V 13532BD ⋅⨯=∴1313BD =. 【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题. 22.(1)22(2)3+3AD AE =【解析】 【分析】(1)已知BC=AB=AC=1,则在等腰直角△BCD 中,由勾股定理即可求BC(2)易证△ABD ≌△ACD ,从而得E 点BC 的中点,再根据等腰三角形的三线合一结合勾股定理即可求AE ,DE ,即可求得ADAE的值 【详解】解:(1)∵△ABC 是边长为1的等边三角形, ∴BC=1∵△BCD 是等腰直角三角形,∠BDC=90°∴由勾股定理:BC 2=BD 2+DC 2,BD=DC 得,BC 2=2BD 2,则1222=故BD 的长为22(2)∵△ABC 是边长为1的等边三角形,△BCD 是等腰直角三角形 ∴易证得△ABD ≌△ACD (SSS ) ∴∠BAE=∠CEA∴E 为BC 中点,得BE=EC ,AE ⊥BC∴在Rt △AEC 中,由勾股定理得==同理得12== ∵AD=AE+ED∴1AD AE ED ED AE AE AE +==+=故3AD AE =. 【点睛】此题主要考查等腰三角形“三线合一”性质,熟练运用等腰三角形“三线合一”性质是解题的关键.23.(1)2600;(2)小颖在文具用品店停留了10分钟;(3)小颖本次在从学校回家的整个过程中,走的路程是3400米;(4)小颖从文具用品店回到家步行的速度是90米/分. 【解析】 【分析】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)由函数图象可知,20~30分钟的路程没变,所以AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)小颖本次从学校回家的整个过程中,走的路程为26002180014003400+-=()(米). (4)用小颖从文具用品店回到家的路程除以所用时间即可. 【详解】(1)根据函数图象,可知小颖家与学校的距离是2600米; (2)AB 表示的实际意义是小颖在文具用品店停留了10分钟; (3)26002180014003400+-=()(米).(列的式子只要合理都可) ∴小颖本次在从学校回家的整个过程中,走的路程是3400米.(4)1800503090/()(米分)÷-=. ∴小颖从文具用品店回到家步行的速度是90米/分.【点睛】考查一次函数的应用,读懂函数的图象,明确每一段图象所表示的实际意义是解题的关键. 24.(1)直线AB 解析式为y =32x +9,P 点坐标为(-143,2)(2)C 点坐标为(-2,0)(3)R (2,-6).【解析】【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线AB的解析式,再把P点坐标代入直线解析式可求得P点坐标;(2)由条件可证明△BPQ≌△CDQ,可证得四边形BDCP为平行四边形,由B、P的坐标可求得BP的长,则可求得CD的长,利用平行线分线段成比例可求得OC的长,则可求得C的坐标;(3)由条件可知AR∥BO,故可先求出直线OB,BC的解析式,再根据直线平行求出AR 的解析式,联立直线AR、BC即可求出R点坐标.【详解】(1)设直线AB解析式为y=kx+b,把A、B两点坐标代入可得4360k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴直线AB解析式为y=32x+9,∵(,2)P m在直线AB上,∴2=−32m+9,解得m=-143,∴P点坐标为(-143,2);(2)∵//CD AB,∴∠PBQ=∠DCQ,在△PBQ和△DCQ中PBQ DCQCQ BQPQB DQC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ≌△DCQ(ASA),∴BP=CD,∴四边形BDCP为平行四边形,∵(4,3)B-,(-143,2),∴CD =BP3=, ∵A (-6,0),∴OA =6,AB= ∵CD ∥AB , ∴△COD ∽△AOB∴CO CDAO AB=,即6CO =,解得CO =2,∴C 点坐标为(-2,0); (3)∵ABO RBO S S ∆∆=, ∴点A 和点R 到BO 的距离相等, ∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e , 把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q ,把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩,∴直线AB 解析式为y =-32x-3, 联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.25.12x -+,3- 【解析】 【分析】原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果. 【详解】 解:原式=2111x x x ----÷2421xx +-=221x --÷2421x x +- =221x --×2142x x-+ =22(2)x -+=﹣12x+,当x=﹣原式==。
2020-2021学年八年级下期中考试数学试卷及答案解析
2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+2【解答】解:A、含有两个未知数,不是一元二次方程;B、符合一元二次方程的定义,是一元二次方程;C、含有不等号,不是一元二次方程;D、含有分式,不是一元二次方程.故选:B.2.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等【解答】解:A.对角线互相垂直平分且相等的四边形是正方形,故本选项错误;B.对角线互相垂直的平行四边形是菱形,故本选项正确;C.平行四边形对角相等,对边相等,故本选项正确;D.矩形的对角线相等,故本选项正确;故选:A.3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【解答】解:∵甲、乙两队的方差分别是1.7、2.4,∴S甲2<S乙2,∴甲队身高更整齐;故选:B.4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随x的增大而减小,且b<0,∴k<0,b<0,∴该函数图象经过第二、三、四象限,故选:B.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.6.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A .B .C .D .【解答】解:根据一次函数的图象与性质分析如下:A .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a <0,b <0.A 错误;B .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a >0,b <0.B 正确;C .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a <0,b <0.C 错误;D .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a >0,b <0.D 错误; 故选:B .9.下列各点在直线y =2x +6上的是( ) A .(﹣5,4)B .(﹣7,20)C .(23,223) D .(−72,1)【解答】解:A 、当x =﹣5时,y =2×(﹣5)+6=﹣4, ∴点(﹣5,4)不在直线y =2x +6上; B 、当x =﹣7时,y =2×(﹣7)+6=﹣8, ∴点(﹣7,20)不在直线y =2x +6上; C 、当x =23时,y =2×23+6=223, ∴点(23,223)在直线y =2x +6上;D 、当x =−72时,y =2×(−72)+6=﹣1, ∴点(−72,1)不在直线y =2x +6上. 故选:C .10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .(12)nB .(12)n−1C .(√33)nD .(√33)n ﹣1【解答】解:∵正方形A 1B 1C 1D 1的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3, ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°, ∴D 1E 1=C 1D 1sin30°=12,则B 2C 2=B 2E 2cos30°=√33=(√33)1,同理可得:B 3C 3=13=(√33)2, 故正方形A n B n ∁n D n 的边长是:(√33)n ﹣1, 故选:D .二.填空题(共8小题,满分24分,每小题3分)11.关于x 的一次函数y =(k +2)x ﹣2k +1,其中k 为常数且k ≠﹣2 ①当k =0时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),则k =−83; ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有 ②③④ .【解答】解:①当k =0时,此函数为y =2x +1,不是正比例函数,故本结论错误; ②∵y =(k +2)x ﹣2k +1=(x ﹣2)k +2x +1, ∴当x =2时,y =5,∴无论k 取何值,此函数图象必经过(2,5),故本结论正确; ③∵函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),∴{(k +2)m −2k +1=a 2①(k +2)(m +3)−2k +1=a 2−2②, ②﹣①,得3(k +2)=﹣2,解得k =−83,故本结论正确; ④如果此函数图象同时经过第二、三、四象限, 那么{k +2<0−2k +1<0,此不等式组无解,所以无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,故本结论正确. 即上述结论中正确的序号有②③④. 故答案为②③④.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s 甲2=0.2,S 乙2=0.08,成绩比较稳定的是 乙 (填“甲”或“乙”). 【解答】解:∵S 甲2=0.2,S 乙2=0.08, ∴S 甲2>S 乙2,∴成绩比较稳定的是乙; 故答案为:乙.13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目 创新能力 综合知识 语言表达 测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是 77 分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分). 故答案为:77.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是 x 2+x ﹣6=0 . 【解答】解:设这个方程为ax 2+bx +c =0. ∵该方程的二次项系数为1,两根分别为﹣3和2, ∴a =1,−ba =−3+2,ca=−3×2,∴b=1,c=﹣6,∴这个方程为x2+x﹣6=0.故答案为:x2+x﹣6=0.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为2.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=12×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=12平行四边形ABFE的面积,△CDG的面积=12平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=12菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为(﹣22019,0).【解答】解:已知点A 1坐标为(﹣1,0),且点B 1在直线y =−√3x 上,可知B 1点坐标为(﹣1,√3),由题意可知OB 1=√12+(√3)2=2,故A 2点坐标为(﹣2,0), 同理可求的B 2点坐标为(﹣2,2√3),按照这种方法逐个求解便可发现规律,A 2020点坐标为(﹣22019,0), 故答案为(﹣22019,0).17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt △ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为6017.【解答】解:∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x ,则CD =x ,AD =5﹣x , ∵DE ∥CF ,∴∠ADE =∠C ,∠AED =∠B , ∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 12=5−x5,x =6017, 故答案为:6017.18.在正方形ABCD 中,点G 在AB 上,点H 在BC 上,且∠GDH =45°,DG 、DH 分别与对角线AC 交于点E 、F ,则线段AE 、EF 、FC 之间的数量关系为 EF 2=AE 2+CF 2 .【解答】解:如图,将△DCH 绕点D 顺时针旋转90°,得△DAM ,则△DAM ≌△DCH 则DM =DH ,AM =CH ,∠CDH =∠ADM在DM 上截取DN =DF ,连接NE ,AN 在△DAN 和△DCF 中 {DA =DC∠ADN =∠CDF DN =DF; ∴△DAN ≌△DCF (SAS ) ∴AN =CF ,∠DAN =∠DCF =45° 又∵∠DAC =45° ∴∠NAE =90° ∴AN 2+AE 2=NE 2 ∵∠GDH =45°, ∴∠NDE =45° 在△DNE 和△DFE 中 {DN =DF∠NDE =∠FDE DE =DE ∴△DNE ≌△DFE ∴NE =EF 又∵AN =CF ∴CF 2+AE 2=EF 2故答案为:EF2=AE2+CF2.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.【解答】解:(1)∵3(x﹣1)2=6,∴(x﹣1)2=2则x﹣1=±√2,∴x1=1+√2,x2=1−√2;(2)∵x2﹣6x=﹣3,∴x2﹣6x+9=﹣3+9,即(x﹣3)2=6,则x﹣3=±√6,∴x1=3+√6,x2=3−√6;(3)∵9x2+10x﹣4=0,∴a=9,b=10,c=﹣4,则△=102﹣4×9×(﹣4)=244>0,∴x=−b±√b2−4ac2a=−10±2√6118=−5±√619,即x1=−5+√619,x2=−5−√619;(4)∵2x2﹣5x=0,∴x(2x﹣5)=0,则x=0或2x﹣5=0,解得x1=0,x2=2.5.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.【解答】证明:∵菱形ABCD ,∴BA =BC ,∠A =∠C ,∵BE ⊥AD ,BF ⊥CD ,∴∠BEA =∠BFC =90°,在△ABE 与△CBF 中{∠BEA =∠BFC ∠A =∠C BA =BC,∴△ABE ≌△CBF (AAS ),∴AE =CF .21.(7分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2) =4k 2+4k +1﹣2k 2+8=2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0,∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2,∵x 1﹣x 2=3,∴(x 1﹣x 2)2=9,∴(x 1+x 2)2﹣4x 1x 2=9,∴(2k +1)2﹣4×(12k 2﹣2)=9, 化简得k 2+2k =0,解得k =0或k =﹣2.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.4+1.52=1.45(kg ),众数是1.5kg ,故答案为:1.45kg ,1.5kg .(2)x =1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220=1.45(kg ), ∴这20条鱼质量的平均数为1.45kg ;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.23.(7分)如图,在矩形ABCD 中,AD =6,CD =8,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求DG的值.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于Q,则∠FQG=90°.∴∠A=∠FQG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠QGE,∠HEG=∠FGE,∴∠AEH=∠QGF.∵EH=GF,∴△AEH≌△QGF(AAS).∴FQ=AH=2.∵S△FCG=12CG•FQ=12×CG×2=2,∴CG=2.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【解答】解:(1)∵点A 的坐标为(0,6),∴设直线AB 的解析式为y =kx +6,∵点C (2,4)在直线AB 上,∴2k +6=4,∴k =﹣1,∴直线AB 的解析式为y =﹣x +6;(2)由(1)知,直线AB 的解析式为y =﹣x +6,令y =0,∴﹣x +6=0,∴x =6,∴B (6,0),∴S △OBC =12OB •y C =12,∵△OPB 的面积是△OBC 的面积的14, ∴S △OPB =14×12=3, 设P 的纵坐标为m ,∴S △OPB =12OB •m =3m =3,∴m =1,∵C (2,4),∴直线OC 的解析式为y =2x ,当点P 在OC 上时,x =12,∴P (12,1), 当点P 在BC 上时,x =6﹣1=5,∴P (5,1),即:点P (12,1)或(5,1);(3)∵△OBP 是直角三角形,∴∠OPB =90°,当点P 在OC 上时,由(2)知,直线OC 的解析式为y =2x ①,∴直线BP 的解析式的比例系数为−12,∵B (6,0),∴直线BP 的解析式为y =−12x +3②,联立①②,解得{x =65y =125, ∴P (65,125),当点P 在BC 上时,由(1)知,直线AB 的解析式为y =﹣x +6③,∴直线OP 的解析式为y =x ④,联立③④解得,{x =3y =3, ∴P (3,3),即:点P 的坐标为(65,125)或(3,3).25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根.(1)求a 取值范围; (2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.【解答】解:(1)设x x−1=y ,则原方程化为:(a 2﹣1)y 2﹣(2a +7)y +1=0 (2),①当方程(2)为一次方程时,即a 2﹣1=0,a =±1.若a =1,方程(2)的解为y =19,原方程的解为x =−18满足条件;若a =﹣1,方程(2)的解为y =15,原方程的解为x =−14满足条件;∴a =±1.②当方程为二次方程时,a 2﹣1≠0,则a ≠±1,要使方程(a 2﹣1)y 2﹣(2a +7)y +1=0 (2)有解,则△=(2a +7)2﹣4(a 2﹣1)=28a +53≥0,解得:a ≥−5328,此时原方程没有增根,∴a 取值范围是a ≥−5328.综上,a 的取值范围是a ≥−5328.(2)设x 1x 1−1=y 1,x 2x 2−1=y 2,则则y 1、y 2是方程(a 2﹣1)y 2﹣(2a +7)y +1=0的两个实数根,由韦达定理得:y 1+y 2=2a+7a 2−1, ∵y 1+y 2=311, ∴2a+7a 2−1=311, 解得:a =−83或10,又∵a ≥−5328,∴a =10.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 16 千米/小时;点C 的坐标为 (0.5,0) ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?【解答】解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C 的横坐标为:1﹣8÷16=0.5,∴点C 的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB 对应的函数表达式为y =kx +b (k ≠0),∵A (0.5,8),B (2.5,24),∴{0.5k +b =82.5k +b =24, 解得:{k =8b =4, ∴线段AB 对应的函数表达式为y =8x +4(0.5≤x ≤2.5);(3)当x =2时,y =8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.27.(10分)如图①,已知直线y =﹣2x +4与x 轴、y 轴分别交于点A 、C ,以OA 、OC 为边在第一象限内作长方形OABC .(1)求点A 、C 的坐标;(2)将△ABC 对折,使得点A 的与点C 重合,折痕交AB 于点D ,求直线CD 的解析式(图②);(3)在坐标平面内,是否存在点P (除点B 外),使得△APC 与△ABC 全等?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:x=5 2此时,AD=52,D(2,52)(2分)设直线CD为y=kx+4,把D(2,52)代入得52=2k+4(1分)解得:k=−3 4∴直线CD解析式为y=−34x+4(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=52,PD=BD=4−52=32,AP=BC=2由AD×PQ=DP×AP得:52PQ=3∴PQ=6 5∴x P=2+65=165,把x=165代入y=−34x+4得y=85此时P(165,85) (也可通过Rt △APQ 勾股定理求AQ 长得到点P 的纵坐标) ③当点P 在第二象限时,如图同理可求得:CQ =85∴OQ =4−85=125此时P(−65,125)综合得,满足条件的点P 有三个,分别为:P 1(0,0);P 2(165,85);P 3(−65,125).。
河北省石家庄市2020-2021学年八年级下学期期中数学试题(word版 含答案)
河北省石家庄市2020-2021学年八年级下学期期中数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 2.下列调查中,适合用抽样调查的是( )A .防疫期间对进入校园的人员进行体温检测B .对乘坐高铁的乘客进行安检C .调查一批防疫口罩的质量情况D .对新研发导弹的零部件进行检查3.在函数15y x =-中,自变量x 的取值范围是( ) A .x≠5 B .x=5 C .x >5 D .x <5 4.点P (-2,1)到y 轴的距离为( )A .-2B .1C .2D .125.如图,A 看B 的方向是北偏东60°, B 看A 的方向是( )A .南偏东30°B .南偏西30°C .南偏东60°D .南偏西60° 6.在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B ,则点B 的坐标为( )A .(-1,1)B .(2,-2)C .(-4,-2)D .(-1,-5) 7.声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:下列结论错误的是( )A .在这个变化中,音速是气温的函数B .y 随x 的增大而增大C.当气温为30℃时,音速为350米/秒D.温度每升高5℃,音速增加3米/秒8.据物业公司统计,某小区十二月份1日至5日每天用水量情况如图所示.那么这5天用水量最多是()A.1日B.2日C.3日D.5日9.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量A B作直线AB,则直线AB()10.经过点(1,3),(1,2)A.过点(0,3)B.平行于x轴C.经过原点D.平行于y轴11.下列曲线中不能表示y是x的函数的是()A.B.C.D.12.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满为120分,成绩为整数),绘制成下图所示的统计图.由图可知,成绩不低于90分的共有( )A .27人B .30人C .70人D .73人13.点()1,3M a a +-在x 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,214.今年某校有2000名学生参加线上学习,为了解这些学生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是( )A .2000名学生是总体B .每位学生的数学成绩是个体C .这100名学生是总体的一个样本D .100名学生是样本容量15.“单词的记忆效率“是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图,描述了某次单词复习中小华,小红,小刚和小强四位同学的单词记忆效率y 与复习的单词个数x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )A .小华B .小红C .小刚D .小强16.周末,小明骑自行车从家里出发去游玩。
河北省石家庄市正定县2020-2021学年八年级下学期期中数学试题
A.图象中x和y属于一一对应的关系,y是x的函数,故该选项不符合题意,
B.图象中x和y属于一一对应的关系,y是x的函数,故该选项不符合题意,
C.图中x有一个确定的值,y有两个值相对应,所以y不是x的函数,故该选项符合题意,
D.图象中x和y属于一一对应的关系,y是x的函数,故该选项不符合题意,
故选:C.
【点睛】
本题考查函数的定义,注意自变量的值与函数值之间的对应关系.
5.C
【解析】
【分析】
先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断点P的具体坐标.
【详解】
∵P在第二象限,
∴点P的横坐标小于0,纵坐标大于0;
∵点P到x轴的距离是3,即点P的纵坐标为3,到y轴的距离为4,即点P的横坐标为﹣4,
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家的速度为50m/min;
③小东打完电话后,经过27min到达学校;
④小东家离学校的距离为2900m.
其中正确的个数是( )
A.1个B.2个C.3个D.4个
二、填空题
17.在函数 中,自变量x的取值范围是_________________.
A.这80名学生是总体的一个样本B.80名学生是样本容量
C.每名学生的体重是个体D.720名学生是总体
10.如图所示的两个统计图,女生人数多的学校是()
A.甲校B.乙校
C.甲、乙两校女生人数一样多D.无法确定
11.已知函数y= ,则当函数值y=8时,自变量x的值是( )
A.-2或4B.4C.-2D.±2或±4
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2020-2021学年河北省石家庄市市四十四中八年级下学期期中考试数学试卷
石家庄市44中八年级下期中考试数学试卷满分120分时间120分钟一、选择题(共16题,1-10题每题3分,11-16题每题2分,共42分)1.在圆的面积公式2S r π=中,其中变量是()A.SB.πC.rD.S 和r【答案】D2.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为()A.()4,5-B.(5,4)-C.(4,5)-D.(5,4)-【答案】D3.下列各曲线中表示y 是x 的函数的是()A. B. C. D.【答案】B4.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A5.函数y =12x -中,自变量x 的取值范围是()A.x ≥1B.x >1C.x ≥1且x ≠2D.x ≠2【答案】C6.对于函数y =2x ﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y 值随着x 值增大而减小C.它的图象经过第二象限D.当x >1时,y >0【答案】D7.如图,菱形ABCD 中,150D ∠=︒,则1∠=()A.30°B.25°C.20°D.15°【答案】D 8.根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是2-,若输入x 的值是8-,则输出y 的值是()A.5B.10C.19D.21【答案】C 9.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB CD =,C.应补充:且//AB CDD.应补充:且OA OC =,【答案】B10.如图,D 是ABC 内一点,BD CD ⊥,7AD =,4BD =,3CD =,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为()A.12B.14C.24D.21【答案】A 11.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A'B'C',则点P 的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【答案】C 12.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为()A. B.C. D.【答案】B13.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变小D.保持不变【答案】D14.如图,已知长方形ABCD顶点坐标为A(1,1),B(3,1),C(3,4),D(1,4),一次函数y=2x+b的图象与长方形ABCD的边有公共点,则b的变化范围是()A.b≤﹣2或b≥﹣1B.b≤﹣5或b≥2C.﹣2≤b≤﹣1D.﹣5≤b≤2【答案】D△是等边三角形,点E在正方形ABCD内,在对角线AC 15.如图所示,正方形ABCD的面积为12,ABE的和最小,则这个最小值为()上有一点P,使PD PEA.4B.5C.23D.10【答案】C16.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A. B.C. D.【答案】D二、填空题(3个小题,17题、18题每题3分,19题6分,共12分)17.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.【答案】(2,﹣1)18.如图,三个正比例函数的图象分别对应表达式:①y=ax ,②y=bx ,③y=cx ,将a ,b ,c 从小到大排列并用“<”连接为_____.【答案】a <c <b19.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1米,则1A 的坐标为()2,2、2A 的坐标为()5,2.(1)3A 的坐标为___________,n A 的坐标(用n 的代数式表示)为___________.(2)2020米长的护栏,需要两种正方形共___________个.【答案】①.()8,2②.()31,2n -③.1347三、解答题(本大题共7个小题,20题8分,21题8分,22题9分,23题9分,24题10分,25题10分,26题12分,共66分)20.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.【答案】(1)甲对,乙不对,理由见解析;(2)2.21.已知:如图,E ,F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,连接DE ,DF ,BE ,BF ,四边形DEBF 为平行四边形.求证:四边形ABCD 是平行四边形.【答案】证明见解析.22.已知()0,1A ,()10B ,,()4,3C .(1)在坐标系中描出各点,画出以A ,B ,C 三点为顶点的三角形;再把三角形ABC 先向左平移4个单位长度,再向下平移3个单位长度得三角形A B C ''';(2)求三角形ABC 的面积;(3)设点P 在坐标轴上,且三角形ABP 与三角形ABC 的面积相等,求点P 的坐标.【答案】(1)见解析;(2)3;(3)(5,0),(7,0)-或者(05),(07,)-,,;23.如图所示,将长方形ABCD 沿直线BD 折叠,使点C 落在C '处,BC '交AD 于点E ,16AD =,8AB =,求BED 的面积.【答案】4024.如图,直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点(),4C m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S - 的值;(3)一次函数1y kx =+的图象为3l ,且123,,l l l 不能围成三角形,直接写出k 的值.【答案】(1)m =2,y =2x ;(2)15;(3)32或2或−12.25.四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边的中点,顺次连接各边中点得到的新四边形EFGH 称为中点四边形.(1)我们知道:无论四边形ABCD 怎样变化,它的中点四边形EFGH 都是平行四边形.特殊的:①当对角线AC BD =时,四边形ABCD 的中点四边形为__________形;②当对角线AC BD ⊥时,四边形ABCD 的中点四边形是__________形.(2)如图:四边形ABCD 中,已知60B C ∠=∠=︒,且 BC AB CD =+,请利用(1)中的结论,判断四边形ABCD 的中点四边形EFGH 的形状并进行证明.【答案】(1)①菱;②矩;(2)菱形,菱形见解析26.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元;①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调(0100)m m <<元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1)每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①150********y x x ⎛⎫=-+≥ ⎪⎝⎭,,②商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大;(3)①当050m <<时,商店购进34台A 型电脑和66台B 型电脑才能获得最大利润;②当50m =时,商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;③当50<m <100时,商店购进70台A 型电脑和30台B 型电脑才能获得最大利润.。
河北省石家庄市2021-2022学年八年级下学期数学期中试题(含答案)
河北省石家庄市2021-2022学年八年级下学期数学期中试题(含答案)一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,有且仅有一项是符合题目要求的)11x -x 的取值范围是( )A .1x <B .1x ≤C .1x >D .1x ≥2.下列说法中不正确的是( )A .三个角度之比为3:4:5的三角形是直角三角形B .三边之比为3:4:5的三角形是直角三角形C .三个角度之比为1:2:3的三角形是直角三角形D .三边之比为1:2:3的三角形是直角三角形3.下列条件中,能确定一个四边形是平行四边形的是( )A .一组对边相等B .一组对角相等C .两条对角线相等D .两条对角线互相平分4.下列说法正确的是( )A 3a a =-,则0a <B 2a a =,则0a > С4824a b a b D .555.如图,一棵大树被大风刮断后,折断处离地面8m ,树的顶端离树根6m ,则这棵树在折断之前的高度是( )A .18mB .10mC .14mD .24m 6.在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是()0,0,()5,0,()2,3,则顶点C的坐标是( ) A .()3,7 B .()5,3 C .()7,3 D .()8,27.如图,A 、B 两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在AB 外选一他点C ,然后测出AC ,BC 的中点M 、N ,并测量出MN 的长为18m ,由此他就知道了A 、B 间的距离.下列有关他这次探究活动的结论中,错误的是( )A .36АВm =B .MN AB ∥C .12MN CB =D .12CM AC = 8.已知n 135n n 的最小值是( )A .3 В.5 C .15 D .259.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE BD ∥,DE AC ∥,若4AC =,则四边形CODE 的周长( )A .4B .6C .8D .10 10.正方形具有而菱形不一定具有的性质是( )A .四边相等B .对角线相等C .对角相等D .对角线互相垂直 11.化简))202120223232⋅的结果为( )A .-1B 32C 32D .3212.平行四边形的一条边长是12cm ,那么它的两条对角线的长可能是( )A .8cm 和16cmB .10cm 和16cmC .8cm 和14cmD .8cm 和12cm13.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B '处,若2AE =,6DE =,60EFB ∠=︒,则矩形ABCD 的面积是( )A .12B .24C .12D .1614.如图,设点M 是平行四边形ABCD 一边上任意一点,设AMD △的面积为1S ,BMC △的面积为2S ,CDM △的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定15.如图,在ABC △中,90ACB ∠=︒,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE BF =,添加一个条件,仍不能证明四边形BECF 为正方形的是( )A .BC AC =B .CF BF ⊥C .BD DF = D .AC BF =16.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若1AE AP ==,5PB =.下列结论:①APD AEB ≌△△;②点B 到直线AE 的距高为2;③EB ED ⊥;④16APD APB S S +=△△46ABCD S =正方形 )A .①③④B .①②⑤C .③④⑤D .①③⑤二、填空题(本大题有3个小题,共10分,17~18小题各3分;19小题有两个空,每空2分)17.一个三角形的三边长的比为3:4:5,且其周长为60cm ,则其面积为______.18.如图,正方形ABCD 中,CE MN ⊥,若35MCE ∠=︒,则ANM ∠的度数是______.19.某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m ,则地毯的长为______米,购买这种地毯至少需要______元.三、解答题(本大题有7个小题,共68分,解答应写出文字说明、证明过程或演算步骤)20.(8分)计算:(1)27575332- (2(148312242-21.(9分) 若12a =2222121a a a a a a a--+++-的值. 22.(9分)如图,在44⨯的方格纸中,每个小正方形的边长都为1,ABC △的三个顶点都在格点上,已知25AC =5BC =,画出ABC △,并判断ABC △是不是直角三角形.23.(9分)杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)24.(10分)如图,在四边形ABCD 中,AB CD ∥,AD BC ∥,AN CM =.(1)求证:BN DM =;(2)若3BC =,2CD =,50B ∠=︒,求BCD ∠、D ∠的度数及四边形ABCD 的周长.25.(11分)在ABC △中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作AF BC ∥,交DE 的延长线于点F ,连接CF .(1)如图1,求证:四边形ADCF 是矩形;(2)如图2、当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).26.(12分)如图1,在矩形纸片ABCD 中,3AB cm =,5AD cm =,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF AB ∥交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动;①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.参考答案一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,有且仅有一项是符合题目要求的)1~5DADCA 6~10CCCCB 11~16DBDADD二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有两个空,每空2分)17.2150cm ; 18.55°; 19.7,420.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)计算:解:(1)原式()7536618=--+ 22166=--1966=--(2)原式14831262=-÷⨯ 4626=-46=-+21.(9分) 解:2222121a a a a a a a--+++- ()()()()()21111a a a a a -+-=++. ∵121a =<,∴原式112a a a a a---=+=. 把12a =(2222123221212a a -====+--.22.(9分)解:如图,ABC △即为所求. ∵25AC =5BC =∴2220525AC BC +=+=,∵2224325AB =+=,∴222AC BC AB +=,∴ABC △是直角三角形.23.(9分)解:∵在Rt ABC △中,90CAB ∠=︒,13BC m =,5AC m =, ∴2213512AB =-=(m ),∵此人以0.5m/s 的速度收绳,10s 后船移动到点D 的位置,∴130.5108CD =-⨯=(m ), ∴22642539AD CD AC =-=-=m ), ∴1239BD AB AD =-=(m ). 答:船向岸边移动了(1239m .24.(10分)(1)证明:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,∴AB =CD .又∵AN =CM ,∴AB AN CD CM -=-,即BN =DM ;(2)∵AB ∥CD ,∴180B BCD ∠+∠=︒,∵50B ∠=︒,∴18050130BCD ∠=︒-︒=︒.由(1)知,四边形ABCD 是平行四边形,∴50D B ∠=∠=︒,AB CD =,AD BC =.∵3BC =,2CD =,∴四边形ABCD 的周长()()223210BC CD =+=⨯+=.25.(11分)(1)证明:∵AF ∥BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在△AEF 和△CED 中,AFE CDE AFE CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△CED ,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥,∴90ADC ∠=︒,∴四边形ADCF 是矩形.(2)∵线段DG 、线段GE 、线段DE 都是△ABC 的中位线,又AF ∥BC ,∴AB ∥DE ,DG ∥AC ,EG ∥BC ,∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.26.(12分)(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB PE =,BF EF =,BPF EPF ∠=∠,又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP BF EF EP ===,∴四边形BFEP 为菱形;(2)解:①∵四边形ABCD 是矩形,∴5cm BC AD ==,3cm CD AB ==,∠A =∠D =90°,∵点B 与点E 关于PQ 对称,∴5cm CE BC ==,在Rt △CDE 中,4cm DE =,∴5cm 4cm 1cm AE AD DE =-=-=;在Rt △APE 中,AE =1,33AP PB PE =-=-,∴()21232EP EP =+-,解得:EP =5/3cm ,∴菱形BFEP 的边长为5/3cm ;②当点Q 与点C 重合时,如图2,点E 离点A 最近,由①知,此时AE =1cm ;当点P 与点A 重合时,如图3,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm , ∴点E 在边AD 上移动的最大距离为2cm .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.在学校的体育训练中,小杰投掷实心球的 7 次成绩如统计图所示,则这 7 次成绩的中位 数和平均数分别是( )
A.9.7 m ,9.9 m
B.9.7 m ,9.8 m
C.9.8 m ,9.7 m
D.9.8 m ,9.9 m
2.如图,一个梯子 AB 斜靠在一竖直的墙 AO 上,测得 AO 4 米.若梯子的顶端沿墙下
C.0 或-2
D.2
9.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离
(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散
步情景的是( )
A.从家出发,休息一会,就回家 B.从家出发,一直散步(没有停留),然后回家 C.从家出发,休息一会,返回用时 20 分钟 D.从家出发,休息一会,继续行走一段,然后回家 10.如图,在正方形 ABCD 外侧,作等边三角形 ADE,AC、BE 相交于点 F,则∠CFE 为 ()
【详解】
解:设 BO xm ,依题意,得 AC 1, BD 1, AO 4 . 在 Rt AOB 中,根据勾股定理得 AB2 AO2 OB2 42 x2 , 在 Rt COD 中,根据勾股定理 CD2 CO2 OD2 (4 1)2 (x 1)2 , 42 x2 (4 1)2 (x 1)2 ,
∵BE=BF,OE=OF, ∴BO⊥EF, ∴在 Rt△BEO 中,∠BEF+∠ABO=90°, 由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC, ∴∠BAC=∠ABO, 又∵∠BEF=2∠BAC, 即 2∠BAC+∠BAC=90°, 解得∠BAC=30°,
∴∠FCA=30°, ∴∠FBC=30°, ∵FC=2,
故选:B. 【点睛】 考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数 或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.
2.A
解析:A 【解析】 【分析】
设 BO xm ,利用勾股定理依据 AB 和 CD 的长相等列方程,进而求出 x 的值,即可求出 AB 的长度.
2 (2)若 BAC 30,且 BC 1 AB ,求 AC 的长.
2
24.如图,在△ABC 中,D、E 分别是 AB、AC 的中点,过点 E 作 EF∥AB,交 BC 于点 F. (1)求证:四边形 DBFE 是平行四边形; (2)当△ABC 满足什么条件时,四边形 DBEF 是菱形;为什么.
25.已知:如图,在四边形 ABCD 中,∠B=90°,AB=BC=2,CD=3,AD=1,求 ∠DAB 的度数.
B 90 ,
EA= EC ,
EAC ECA , EAC BAE ,
又∵将纸片沿 AE 折叠,点 B 恰好落在 AC 上,
BAE EAC ACE 30 ,
AB 3,
BC 3AB 3 3 ,
矩形 ABCD 的面积是 AB BC 3 3 3 9 3 . 故选: C .
【点睛】
本题考查矩形的性质,翻折变换,直角三角形 30 角性质等知识,解题的关键是灵活运用 所学知识解决问题.
19.已知一个直角三角形的两边长分别为 12 和 5,则第三条边的长度为_______ 20.如图,在∠MON 的两边上分别截取 OA、OB,使 OA=OB;分别以点 A、B 为圆心, OA 长为半径作弧,两弧交于点 C;连接 AC、BC、cm2.则 OC 的长为_____cm.
x2
x
=
x
x (x)
2x
2.
x
x
x
x
故选 D.
9.D
解析:D
【解析】
【分析】
利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.
【详解】
由图象可得出:小丽的爸爸从家里出去散步 10 分钟,休息 20 分钟,再向前走 10 分钟,然
后利用 20 分钟回家.
故选:D.
【点睛】
本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行
7.B
解析:B 【解析】 【分析】 根据矩形的性质结合等角对等边,进而得出 CF 的长,再利用勾股定理得出 AP 的长. 【详解】
在
中,
得
故选:B 点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出 FC 的长是解题关键.
8.D
解析:D 【解析】
∵x < 0,则 x2 = x x ,
∴ x
下列说法:①若 AC BD ,则四边形 EFGH 为矩形;②若 AC BD ,则四边形
EFGH 为菱形;③若四边形 EFGH 是平行四边形,则 AC 与 BD 互相平分;④若四边形
EFGH 是正方形,则 AC 与 BD 互相垂直且相等.其中正确的个数是( )
A.1
B.2
C.3
D.4
二、填空题
13.当直线 y=kx+b 与直线 y=2x-2 平行,且经过点(3,2)时,则直线 y=kx+b 为______.
解答.
10.D
解析:D
【解析】 【分析】 根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即 可得出∠CFE. 【详解】 ∵四边形 ABCD 是正方形, ∴AB=AD, 又∵△ADE 是等边三角形, ∴AE=AD=DE,∠DAE=60°, ∴AB=AE, ∴∠ABE=∠AEB,∠BAE=90°+60°=150°, ∴∠ABE=(180°-150°)÷2=15°, 又∵∠BAC=45°, ∴∠BFC=45°+15°=60°, ∴∠CFE=180°-∠BFC=120° 故选:D. 【点睛】 本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.
三、解答题 21.计算: 3 2 2 2 2 3 . 22.如图 1,在菱形 ABCD 中, AB 8 , BD 8 3 ,点 P 是 BD 上一点,点 Q 在 AB
上,且 PA PQ ,设 PD x .
(1)当 PA AB 时,如图 2,求 PD 的长;
(2)设 AQ y ,求 y 关于 x 的函数关系式及其定义域; (3)若 BPQ 是以 BQ 为腰的等腰三角形,求 PD 的长. 23.已知:在 ABC 中, BC 1. (1)若点 D 为 AB 的中点,且 CD 1 AB 1,求 AC 的长;
∴BC=2 3 ,
∴AC=2BC=4 3 ,
∴AB= AC2 BC2 = (4 3)2 (2 3)2 =6,
故选 D. 【点睛】 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三 角形 30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠ BAC=30°是解题的关键.
A.8 3
B.8
C.4 3
D.6
5.菱形 ABCD 中,AC=10,BD=24,则该菱形的周长等于( )
A.13
B.52
C.120
D.240
6.如图,矩形纸片 ABCD , AB 3 ,点 E 在 BC 上,且 AE EC .若将纸片沿 AE 折
叠,点 B 恰好落在 AC 上,则矩形 ABCD 的面积是( )
A.150°
B.145°
C.135°
D.120°
11.如图所示,▱ABCD 的对角线 AC,BD 相交于点 O, AE EB , OE 3, AB 5,
▱ABCD 的周长( )
A.11
B.13
C.16
D.22
12.如图,点 E、F、G、H 分别是四边形 ABCD 边 AB 、 BC 、 CD 、 DA 的中点.则
解得 x 3 , AB 42 32 5 , 答:梯子 AB 的长为 5m . 故选: A .
【点睛】
本题考查了勾股定理在实际生活中的应用,本题中找到 AB CD 利用勾股定理列方程是
解题的关键.
3.C
解析:C 【解析】 解:A.小丽从家到达公园共用时间 20 分钟,正确; B.公园离小丽家的距离为 2000 米,正确; C.小丽在便利店时间为 15﹣10=5 分钟,错误; D.便利店离小丽家的距离为 1000 米,正确. 故选 C.
17.如图,矩形 ABCD 的对角线 AC 和 BD 相交于点 O ,过点 O 的直线分别交 AD 和 BC 于点 E、F,AB=2,BC=4,则图中阴影部分的面积为_______.
18.如图, ABC 是以 AB 为斜边的直角三角形, AC 4 , BC 3, P 为 AB 上一动 点,且 PE AC 于 E , PF BC 于 F ,则线段 EF 长度的最小值是________.
5.B
解析:B 【解析】 试题解析:菱形对角线互相垂直平分, ∴BO=OD=12,AO=OC=5,
AB OA2 BO2 13,
故菱形的周长为 52. 故选 B.
6.C
解析:C 【解析】 【分析】
证明 BAE EAC ACE 30 ,求出 BC 即可解决问题.
【详解】
解: 四边形 ABCD 是矩形,
11.D
解析:D 【解析】 【分析】 根据平行四边形性质可得 OE 是三角形 ABD 的中位线,可进一步求解. 【详解】 因为▱ABCD 的对角线 AC,BD 相交于点 O, AE EB , 所以 OE 是三角形 ABD 的中位线, 所以 AD=2OE=6 所以▱ABCD 的周长=2(AB+AD)=22 故选 D 【点睛】 本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.
4.D
解析:D 【解析】 【分析】 连接 OB,根据等腰三角形三线合一的性质可得 BO⊥EF,再根据矩形的性质可得 OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求 出∠ABO=30°,即∠BAC=30°,根据直角三角形 30°角所对的直角边等于斜边的一半求出 AC,再利用勾股定理列式计算即可求出 AB. 【详解】 解:如图,连接 OB,