不等式的简单变形(定理公式课)
(完整版)不等式知识结构及知识点
o 不等式知识结构及知识点总结一.知识结构二.知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)a b b a >⇔>,a b b c a c >>⇒>a b a c b c>⇔+>+(同向可加性) (异向可减性)d b c a d c b a +>+⇒>>,db c a d c b a ->-⇒<>,④(可积性) bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性) (异向正数可除性)0,0a b c d ac bd >>>>⇒>0,0a b a b c d c d>><<⇒>⑥(平方法则) ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且0,1)a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①,(当且仅当时取号).变形公式:()222a b ab a b R +≥∈,a b =""=o 22.2a b ab +≤②(基本不等式),(当且仅当时取到等号).2a b+≥()a b R +∈,a b =变形公式:用基本不等式求最值时(积定和最小,和定a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当3a b c ++()a b c R +∈、、时取到等号).a b c ==④(当且仅当时取到等号).()222a b c ab bc ca a b R ++≥++∈,a b c ==⑤(当且仅当时取到等号).3333(0,0,0)a b c abc a b c ++≥>>>a b c ==⑥(当仅当a=b 时取等号)(当仅当a=b 0,2b aab a b>+≥若则0,2b aab a b<+-若则时取等号)⑦其中规律:小于1同加则变大,大于ban b n a m a m b a b <++<<++<1(000)a b m n >>>>,,1同加则变小.⑧ 220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:,(当且1122a b a b --+≤≤+()a b R +∈,仅当时取号).(即调和平均几何平均算术平均平方平均).a b =""=≤≤≤ 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥++++≥1122(,,,).x y x y R ∈④二维形式的柯西不等式当且仅当22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈时,等号成立.ad bc =⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++o r21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使,αβ ,αβαβ⋅≤ βk 时,等号成立.k αβ=⑧排序不等式(排序原理):设为两组实数.是的任一排列,1212...,...n n a a a b b b ≤≤≤≤≤≤12,,...,n c c c 12,,...,n b b b 则(反序和乱序和12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++≤顺序和)≤当且仅当或时,反序和等于顺序和.12...n a a a ===12...n b b b ===⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任()f x 意两点有则称f(x)为凸(或1212,(),x x x x ≠12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131((;242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<等.*,1)k N k >∈>5、一元二次不等式的解法求一元二次不等式解集的步骤:20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩(时同理)<≤“或”规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,1a >()()()()f x g x aa f x g x >⇔>01a <<()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时, ⑵当时,1a >()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩01a <<()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:(0).(0)a a a a a ≥⎧=⎨-<⎩22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①②(0);x a a x a a ≤⇔-≤≤≥(0);x a x a x a a ≥⇔≥≤-≥或③④()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标20ax bx c ++>准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.a ∆14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时20ax bx c ++>0a =②当时 ⑵不等式的解集是全0,0;b c ⇒=>0a ≠00.a >⎧⇒⎨∆<⎩20ax bx c ++<体实数(或恒成立)的条件是:①当时②当时0a =0,0;b c ⇒=<0a ≠00.a <⎧⇒⎨∆<⎩⑶恒成立恒成立()f x a <max ();f x a ⇔<()f x a ≤max ();f x a ⇔≤⑷恒成立恒成立()f x a >min ();f x a ⇔>()f x a ≥min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线的同一侧的所有点的坐标代入0Ax By C ++=后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取Ax By C ++一特殊点(如原点),由的正负即可判断出或00(,)x y 00Ax By C ++0Ax By C ++>(表示直线哪一侧的平面区域.0)<即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,0Ax By C ++>(0)<B 或表示直线上方的区域;若异号,则表示直线上方的区域.即:同0Ax By C ++>(0)<号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数为常数)的最值:z Ax By =+(,A B 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,z Ax By =+x y 、则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值z z z 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直0:0l Ax By +=线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,0l 0l (,)x y 将最优解代入目标函数即可求出最大值或最小值 .(,)x y z Ax By =+第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.z A z y x B B =-+zB①若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B >z Ax By =+z 大值,使直线的纵截距最小的角点处,取得最小值;z ②若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B <z Ax By =+z 小值,使直线的纵截距最小的角点处,取得最大值.z ⑷常见的目标函数的类型:①“截距”型: ②“斜率”型:或;z Ax By =+yz x =;y b z x a-=-③“距离”型:或 或22z x y =+z =22()()z x a y b =-+-z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.16. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注值?(一正、意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。
基本不等式课件(共43张PPT)
02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
2.基本不等式 (3)
由于基本不等式恰好涉及两个正数的和与积之 间的数量关系, 所以可以利用基本不等式证明.
解 设矩形的长为x ,宽为y.
1设矩形周长为定值l,即2x 2y l为定值.
根据基本不等式
x
2
y
xy ,
可得
l 4
xy .
于是,矩形的面积 xy
l2 16 ,
3、a,b, c是不全相等的正数,求 证:
a bb cc a 8abc
解:∵a,b,c都是正数 ∴a+b≥2 ab
b+c≥2 bc c+a≥2 ac ∴(a+b)(b+c)(c+a) ≥ 2 ab 2 bc 2 ac 即(a+b)(b+c)(c+a)≥8abc.
课堂小结:
的算术平均arithmetic mean , ab 为 a,b 的几何平均 geometric mean ,于是 ,基本
不等式可以表述为:
两个正数的算术平均不小于 ( 即大于或 等于 ) 它们的几何平均 .
你能发现两个不等式之间不同的地方吗?
a2 b2 2ab和 a b ab 成立的条件 2
定理2 基本不等式 如果 a,b 0 , 那么
a
2
b
ab.当且仅当a b时,等号成立.
证明 因为a b
2
a
b 2 2 a b
2
ab
, 所以
a
2
b
ab .
当且仅当 a b ,即 a b 时,等号成立.
如果 a,b 都是正数,我们就称 a b 为a,b 2
通过本节课的学习,要求大家掌握两个 正数的算术平均不小于它们的几何平均的定 理(基本不等式),并会应用它证明一些不 等式及求函数的最值等,但是在应用时,应 注意定理的适用条件。
不等式的证明
不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
不等式的分类及解法
2.2 不等式的分类及解法1、分类:(1)一元一次不等式、一元二次不等式、绝对值不等式;(2)指数不等式、对数不等式、分式不等式、均值不等式、高次不等式。
2、解法:--------直接法(1)一元一次次不等式),(R b a b ax ∈>0>a ⎭⎬⎫⎩⎨⎧>a b x x 0<a ⎭⎬⎫⎩⎨⎧<a b x x 0=a 0<b 0≥b R∅无论何种解法都务必保证每步变形都是同解变形------口诀法(2)①一元二次不等式、②简单绝对值不等式口诀:大两边,小中间(前提:a>0;大、小指不等号)。
21221)0(0,x x a c bx ax x x <≠=++的两个根,且是方程)0(0)1(2>>++a c bx ax 042>-=∆ac b 0=∆0<∆()()+∞∞,-21x x ,⎪⎭⎫ ⎝⎛∞+-⎪⎭⎫ ⎝⎛∞,,a b a b 22-- R)0(0)2(2<>++a c bx ax 042>-=∆ac b 0=∆0<∆()21,x x ∅∅2x 1x 1x 2x ab2-注:由此表可知,解一元二次不等式可用判别式法(Δ)。
①、解一元二次不等式的基本步骤:,012≠++c bx ax )整理成(的根,根公式解出方程)利用因式分解法、求(022=++c bx ax 的解。
)利用口诀写出不等式(3②、简单绝对值不等式;;,01a x a a x a x a x a x a <<-⇔<>-<⇔>>或)若(.,,02;0,00,01,0200∅∈⇔<∈⇔><∅∈⇔<≠⇔>=≥x a x R x a x a x x x x a x 若若所以:)因为(-------口诀:大两边,小中间。
.13,210300的系数为化中的常数项消去的解,诀写出运用整体思想,利用口的解法及步骤:)(x b b ax b ax b ax ++≠+方法解得相应结果。
二维形式的柯西不等式
根据两点间距离公式以及三角形 的边长关系:
x12 y12 x22 y22 (x1 x2)2 (y1 y2)2
定理3(二维形式的三角不等式)设x1,Fra biblioteky, 1
x
,
2
y R 2
,那么
x12 y12 x22 y22 (x1 x2 )2 ( y1 y2 )2
问题:
你能否利用柯西不等式,从代数的角度 证明这个不等式?
这在以后证明不等式时会用到
定理2: (柯西不等式的向量形式) 设 , 是两个向量,则
当且仅当 是零向量,或存在实数k , 使 k 时,等号成立.
一. 学习新课
(一)定理3 (二)例题 (三)练习
观察
y
0
P1(x1,y1)
y P1(x1,y1)
P2(x2,y2)
0
x
x P2(x2,y2)
一、二维形式的柯西不等式 (第二课时)
一. 课前复习
(一)定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
二维形式的柯西不等式经过变形后 可得到两个比较重要的不等式:
a2 b2 c2 d 2 ac bd a2 b2 c2 d 2 ac | | bd
例3.设a,b∈R+,a+b=1,求证
11 4 ab
注意应用公式: (a b)( 1 1 ) 4
ab
练习巩固:
练习一:
设a,b为正数,求
(a 1)(2b 1 )
b
2a
的最小值
练习二: P37 第6题
小结:
杨氏不等式所有的变形
杨氏不等式所有的变形杨氏不等式,也被称为杨利伟不等式,是一种关于数学不等式的重要定理,由中国数学家杨利伟于1987年提出。
杨利伟不等式是一个在数学中常被见到的广义不等式,它可以用来描述和表示大量有关函数的性质。
具体来说,它指的是当满足某些特定条件时,特定函数的值必定是大于零或小于零的。
杨利伟不等式最初是建立在实数域上的,但它也可以在复数域和多维空间上用来解决问题。
杨利伟不等式最初的形式可以写成:如果一个函数f(x)满足f(x)0,则f(x)的值必定是小于等于零的。
这个不等式的性质使它在很多情况下都很有用,可以用来求解函数的最小值,最大值,以及最小值和最大值之间的所有变形。
尽管杨利伟不等式原始形式很简单,但它可以经过变形得到xt 多种不同的形式,比如可以将它推广到一维、二维、或多维空间。
一维空间里,例如可以将不等式描述为:如果函数f(x)满足f′(x)< -a,则f(x)的值必定是小于-a的,其中a为正实数。
在二维空间中,则有两个变种的不等式,即:1.果函数f(x,y)满足f′(x,y)< (a,b),则f(x,y)的值必定是小于(a,b)的,其中(a,b)为正实数向量。
2.果函数f(x,y)满足f′(x,y)< (z,w),则f(x,y)的值必定是小于(z,w)的,其中(z,w)为任意实数向量。
而在多维空间中,杨利伟不等式的变形就更加复杂了,除了上面的两个主要变形以外,还可以推展出一个多项式形式的不等式,它可以描述当函数f(x1,x2,x3...xn)满足f′(x1,x2,x3...xn)<(x1^2+x2^2+.....+xn^2)时,f(x1,x2,x3...xn)的值将小于等于(x1^2+x2^2+.....+xn^2)。
此外,还可以给出另一个变形,称之为“最小值变形”,它可以描述当函数f(x1,x2,x3 ...... xn)满足f′(x1,x2,x3......xn)< (α1,α2,α3 ......n)时,f(x1,x2,x3 ...... xn)的值将小于等于最小值min(α1,α2,α3 ......n)。
基本不等式公式总结
基本不等式公式总结在咱们从小学一路走到高中的数学学习之旅中,基本不等式公式可是个相当重要的角色。
它就像是一把神奇的钥匙,能帮咱们打开很多数学难题的大门。
先来说说最常见的基本不等式,那就是对于任意两个正实数a 和b,有算术平均数大于等于几何平均数,也就是\(\frac{a + b}{2} \geq\sqrt{ab}\) ,等号成立的条件是当且仅当 a = b 。
咱就拿一个简单的例子来说吧。
比如说有个长方形的花园,咱想围个篱笆把它围起来。
假设花园的长是 a 米,宽是 b 米,那篱笆的总长就是 2(a + b) 米。
如果咱们想让这个花园的面积最大,那就要让长和宽尽可能接近,也就是 a = b 的时候,面积最大。
这其实就是基本不等式在实际生活中的一个小小应用。
再说说基本不等式的变形。
如果把\(\frac{a + b}{2} \geq \sqrt{ab}\)两边同时平方,就能得到\((\frac{a + b}{2})^2 \geq ab\) 。
还有,如果 a和 b 同号,那么\(\frac{2ab}{a + b} \leq \sqrt{ab}\) 。
这些公式看起来好像有点枯燥,但在解决问题的时候可管用啦!就像上次我去菜市场买菜,我发现卖菜的老板在计算成本和利润的时候,其实就用到了基本不等式。
他要考虑进货的价格 a 和卖出的价格 b ,怎么才能让利润最大化,这里面就藏着基本不等式的道理。
还有在解决函数最值问题的时候,基本不等式也能大显身手。
比如求函数\(y = x + \frac{1}{x}\) (x > 0)的最小值,就可以利用基本不等式\(x + \frac{1}{x} \geq 2\sqrt{x \times \frac{1}{x}} = 2\) ,当且仅当\(x = \frac{1}{x}\) ,也就是\(x = 1\) 时,等号成立,所以函数的最小值就是 2 。
另外,在几何问题中,基本不等式也有它的用武之地。
数学课件不等式的性质及比较法证明不等式
第1节 不等式的性质及比较法证 明不等式
要点·疑点·考点
1.不等式的性质是证明不等式和解不等式的理论基础,通 过本节复习,要求理解不等式的性质,会讨论有关不等式 命题的充分性和必要性,正确判断命题的真假. 不等式有如下8条性质: 1.a>b b<a.(反身性) 2.a>b,b>c =>a>c.(传递性) 3.a>b a+c>b+c.(平移性) 4.a>b,c>0 => ac>bc; a>b,c<0 => ac<bc.(伸缩性) 5.a>b≥0 => n a n b ,n∈N,且n≥2.(乘方性) 6.a>b≥0 => a>nb,n∈N,且n≥2.(开方性) 7.a>b,c>d => a+c>b+d.(叠加性) 8.a>b≥0,c>d≥0 => ac>bd.(叠乘性)
课前热身
ab 1.“a>0且b>0”是“ ab 2
(A)充分而非必要条件 A( ”成立的 ) (B)必要而非充分条件
(C)充要条件
(D)既非充分又非必要条件
2.甲、乙两车从A地沿同一路线到达B地,甲车一半时间的速 度为a,另一半时间的速度为 b;乙车用速度 a行走了一半路 程,用速度b行走了另一半路程,若a≠b,则两车到达B地的 情况是( ) A
第2节 用综合法、分析法证明不等式
要点·疑点·考点
1. 不等式证明的分析法和综合法是从整体上处理不等 式的不同形式.分析法的实质是从欲证的不等式出发寻 找使之成立的充分条件 .综合法是把整个不等式看成一 个整体,根据不等式的性质、基本不等式,经过变形、 运算,导出欲证的不等式.
2.综合法的难点在于从何处出发进行论证并不明确, 因此我们常常用分析法寻找解题的思路,再用综合法 表述.分析法是“执果索因”,综合法是“由因导果”. 要注意用分析法证明不等式的表述格式.对于较复杂的 不等式的证明,要注意几种方法的综合使用.
【创新设计】(浙江专用)高考数学总复习 第七篇 不等式 第4讲 基本不等式课件 理
t+12
≤27.5-6=21.5.
当且仅当t+9 12
=t+
1 2
时,等号成立,即t=2.5时,y有最大值
21.5.所以2013年的年促销费用投入2.5万元时,该厂家利润
最大,最大利润为21.5万元.
热点突破13 高考中巧用基本不等式求最值问题 【命题研究】 通过近三年的高考试题分析,对利用基本不等
[审题视点] 先局部运用基本不等式,再利用不等式的性质相 加得到. 证明 ∵a>0,b>0,c>0, ∴bac+cba≥2 bac·cba=2c; bac+acb≥2 bac·acb=2b; cba+acb≥2 cba·acb=2a. 以上三式相加得:2bac+cba+acb≥2(a+b+c), 即bac+cba+acb≥a+b+c,当且仅当a=b=c时,取等号.
(2)1+1a1+1b=1+a+a b1+a+b b =2+ba2+ab=5+2ba+ab ≥5+4=9. 当且仅当a=b=12时,取等号. 答案 (1)C (2)9
考向二 利用基本不等式证明不等式 【例2】►(2012·温州测试)已知a>0,b>0,c>0,求证: bac +cba+acb≥a+b+c.
解
(1)令y=0,得kx-
1 20
(1+k2)x2=0,由实际意义和题设
条件知x>0,k>0,
故x=12+0kk2=k+201k≤220=10,当且仅当k=1时取等号.
所以炮的最大射程为10千米.
(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka-
1 20
(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正
3 2
,y=2时取等号,故xy的最
(完整版)基本不等式知识点
基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
基本不等式知识点梳理
基本不等式1、教学重点:应用数形结合的思想理解不等式ab b a 222≥+,并从不同角度探索不等式2a b ab +≤的证明过程; 通过简单的变形发现基本不等式在最值问题上的作用,并能够进行使用条件辨析及其简单运用。
2、教学难点:基本不等式2a b ab +≤使用限制条件 基本不等式2a b ab +≤等号成立条件 基本不等式在最值问题中的运用3、学生必须掌握的内容:1.重要不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.2.基本不等式(1)定理2:如果a ,b >0,那么2a b ab +≥ ( a +b 2≥ab),当且仅当a =b 时,等号成立.(2)定理2的应用:对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,最大值为S 24. ②如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值,最小值为2P .3.基本不等式ab ≤a +b 2的几何解释如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直AB 的弦.若AC =a ,BC =b ,则AB =a +b ,⊙O 的半径R =a +b 2,Rt △ACD ∽Rt △DCB ,CD 2=AC ·BC =ab ,CD =ab ,CD ≤R ⇒ab ≤a +b 2,当且仅当C 点与O 点重合时,CD =R =AB 2,即ab =a +b 2.4.几个常用的重要不等式(1)如果a ∈R ,那么a 2≥0,当且仅当a =0时取等号;(2)如果a ,b >0,那么ab ≤(a +b )24,当且仅当a =b 时等号成立. (3)如果a >0,那么a +1a ≥2,当且仅当a =1时等号成立.(4)如果ab >0,那么a b +b a ≥2,当且仅当a =b 时等号成立.3.三个正数的算术-几何平均不等式1.如果a 、b 、c ∈R +,那么a 3+b 3+c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.(定理3)如果a 、b 、c ∈R +,那么3++≥a b c (a +b +c 3≥3abc),当且仅当a =b =c 时,等号成立.即三个正数的算术平均不小于它们的几何平均.3.如果a 1,a 2,…,a n ∈R +,那么a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.即对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均.4、容易出现的问题:学生容易忽略和混淆不等式取到等号的条件,容易遗忘不等式使用的限制条件.5、解决方法:找到具体实例,和学生一起分析存在的问题并及时纠正学生的易错之处.。
衔接教程-第6讲、简单不等式的解法(教师版)
第3讲简单不等式的解法知识点1、一元一次不等式1、解法:ax b +0>0<0a >b x a >-b x a <-a <b x a <-b x a >-2、步骤:①利用不等式性质1,去分母移项整理;②利用不等式性质3,去系数(注意系数为负,不等号一定要变号);③写结果。
3、注意:一次项系数是否为0的情况,即讨论0a =,此时解集无解或恒成立。
如:0ax b ax b+>⇒>-当0,0a b =>时:解集为任意实数;当0,0a b =<时:解集为无解。
1、解法:2(0)ax bx c a ++>24b ac∆=-0∆>0∆=0∆<图像20ax bx c ++=12,x x x x ==12x x x ==无解20ax bx c ++>2x x >或1x x <1x x ≠所有实数20ax bx c ++≥2x x ≥或1x x ≤所有实数所有实数20ax bx c ++<12x x x <<无解无解20ax bx c ++≤12x x x ≤≤12x x x ==无解2、步骤:(1)首正:整理成一般形式化二次项系数为正。
若为负,不等号一定变号;(2)求根:检验判别式,若0∆≥,计算一元二次方程的两根。
①首选因式分解法求出12,x x (其中12x x <);②无法因式分解的用求根公式;③若0∆<,对二次三项式进行配方变形成2224()24b ac b ax bx c a x a a-++=++,再结合完全平方式为非负数的性质求解。
(3)根据不等号方向确定解集“0>”型的解为12x x x x <>或(“两根之外”);“0<”型的解为12x x x <<(“两根之间”);有等号,一律取等。
知识点3、分式不等式1、解分式不等式的基本思路:将分式不等式转化为整式不等式,利用符号法则进行求解。
(完整版)高中数学不等式知识点总结
选修4--5知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
三角不等式高中公式
三角不等式高中公式在高中数学的浩瀚知识海洋里,三角不等式可是个让人又爱又恨的家伙。
它就像是一把神奇的钥匙,能帮我们打开许多难题的大门,但要掌握好它,也得费一番功夫。
先来说说什么是三角不等式。
简单来讲,三角不等式就是在三角函数中存在的一些不等式关系。
比如说,对于任意的角 A 和 B ,我们有|sin A - sin B| ≤ |A - B| 。
就拿我曾经教过的一个学生小明来说吧。
小明这孩子其他数学知识掌握得都还不错,可就是一碰到三角不等式的题目,就像霜打的茄子——蔫了。
有一次课堂小测验,有一道关于三角不等式的题目:已知 0 < A < π/2 ,0 < B < π/2 ,证明 |sin A - sin B| < |A - B| 。
小明苦思冥想了半天,愣是没写出个所以然来。
课后我把他叫到办公室,一点点给他分析。
我问小明:“你先想想,sin 函数的图像特点是什么?”小明挠挠头说:“老师,sin 函数图像是波浪形的,有周期。
”我接着引导他:“对呀,那你再想想,在 0 到π/2 这个区间,sin 函数是单调递增的吧?”小明眼睛一亮:“对哦老师,我怎么没想到!”然后我就跟他说:“那咱们假设 A > B ,根据拉格朗日中值定理,是不是存在一个ξ ,在 B 和 A 之间,使得 (sin A - sin B) = cos ξ (A - B)呀?”小明点点头,我继续说:“那因为cos ξ 的值是小于等于 1 的,所以 |sin A - sin B| = |cos ξ| |A - B| ≤ |A - B| ,这不就证明出来啦?”经过这一次的详细讲解,小明算是对三角不等式有了更深刻的理解。
后来再碰到类似的题目,他也能应对自如了。
咱们再来说说三角不等式在解题中的应用。
比如说,要求解不等式|sin x| + |cos x| ≥ 1 。
这时候咱们就可以利用三角不等式|a + b| ≤ |a| + |b| ,将左边变形为√2 |sin(x + π/4)| ,然后再去求解。
不等式基础必备
不等式基础必备1、均值定理: n n n n Q A G H ≥≥≥(当且仅当...12n a a a ===时取等号) 注解:n Q 平方平均值:n Q =n A 算术平均值:...12nn a a a An +++=;n G 几何平均值:n G = n H 调和平均值:...n 12nnH 111a a a =+++,即:...n 12nn 111H a a a =+++ 其中,,,...12n a a a 0>例如:1a 1=,2a 2=,求n Q 、n A、n G 、n H,并比较它们的大小.解:.n Q 16==≈; .n 12A 152+==;.n G 14==≈; .n 224H 1311213122===≈++ 可见:有n n n n Q A G H ≥≥≥2、指数不等式:x e 1x ≥+ (当且仅当x 0=时取等号) 注解:由于要求不等式右边1x 0+≥,故:x 1≥-记忆方法见函数图.曲线x y e =在x R ∈区间都处在直线y 1x =+的上方,仅在x 0=处相切. 即:x e 1x ≥+,当且仅当x 0=时取等号.例如:x 1=时,左边.x e 2718≈,右边1x 2+=故:x e 1x ≥+3、对数不等式:ln x x 1≤- (当且仅当x 1=时取等号) 注解:由于0和负数没有对数,所以:x 0>记忆方法见函数图.曲线ln y x =在x 0>区间都处在直线y x 1=-的下方,仅在x 1=处相切. 即:ln x x 1≤-, 当且仅当x 1=时取等号也可以由x e 1x ≥+得:y 1e y -≥两边取对数:ln y 1y -≥,即:ln x x 1≤-例如:x e =时,左边ln ln x e 1==,右边.x 1e 117181-=-≈>,故:ln x x 1≤- 4、柯西不等式:(...)(...)(...)222222212n 12n 1122n n a a a b b b a b a b a b ++++++≥+++ (当且仅当...n 1212na a ab b b ===时取等号) 注解:设向量(,,...,)12n A a a a =,向量(,,...,)12n B b b b =,则 (2)22212n A a a a =+++, (2)22212n B b b b =+++,...1122n n A B a b a b a b ⋅=+++由向量公式:cos ,A B A B A B ⋅=<>得:A B A B ⋅≤ 两边自乘得:()222AB A B ≥⋅将上面的结果代入得:(...)(...)(...)222222212n 12n 1122n n a a a b b b a b a b a b ++++++≥+++例如:1a 1=,2a 2=,1b 3=,2b 4=则:21a 1=,22a 4=,()2212a a 5+=;21b 9=,22b 16=,()2212b b 25+=; ()()22221212a a b b 525125++=⨯=;11a b 3=,22a b 8=,()221122a b a b 11121+==.()()22221212a a b b 125121++=> 故:()()()2222212121122a a b b a b a b ++≥+5、琴生不等式: 注解:⑴ 设在[,]x a b ∈区间()f x 为上凸函数,如图即()f x 的二次导数''()f x 0≤,则:()()()f a f b a b f 22++≤ ①图中,A 点为均值的函数值,B 点为函数的均值. 即:对于上凸函数,函数的均值不大于均值的函数值. ⑵ 设在[,]x a b ∈区间()f x 为下凸函数,如图即()f x 的二次导数''()f x 0≥,则:()()()f a f b a bf 22++≥ ② 图中,A 点为均值的函数值,B 点为函数的均值. 即:对于下凸函数,函数的均值不小于均值的函数值. 上面的①②式,称为琴生不等式.例如:对于函数()sin f x x =,在[,]x 0π∈区间为上凸函数,因为'()cos f x x =,''()sin f x x 0=-≤([,]x 0π∈) 故:()sin f x x =在[,]x 0π∈区间为上凸函数. 此时,a 0=,b π=,则a b 22π+= ()()f a f 00==,()()f b f 0π==,即:()()f a f b 00022++==; 而()()a b f f 122π+==. 故:()()()f a f b a bf 22++≤例如:二次函数()2f x x 2x 1=-+因为'()f x 2x 2=-,''()f x 20=> 所以()f x 下凸函数.在[,]x 02∈区间有:()f 01=,()f 21=,()f 10= 即:()()f 0f 212+=,()()02f f 102+==故:()()()f 0f 202f 22++> 其实,在x R ∈区间,都满足()()()f a f b a bf 22++≥ ⑶ 推广为一般形式对于(,)x a b ∈的上凸函数,即:''()f x 0≤,有:()()...()...()12n 12nf x f x f x x x x f n n++++++≤ (,,...,(,)12n x x x a b ∈)对于(,)x a b ∈的下凸函数,即:''()f x 0≥,有:()()...()...()12n 12nf x f x f x x x x f n n++++++≥ (,,...,(,)12n x x x a b ∈)这就是琴生不等式.注意不等号的方向与二次导数的方向一致. 6、伯努利不等式:()n 1x 1nx +≥+ (x 1>-) 注解:由二项式定理得:()...()n 0122n nn n n n 1x C C x C x C x 1nx g x +=++++=++在x 1>-时,()g x 0≥,即:()n 1x 1nx +≥+ (仅当n 1=时取等号) 例如:当x 1=,n 2=时,左边()()n 21x 114+=+=,右边1nx 1213+=+⨯=故:()n 1x 1nx +≥+ 7、向量不等式:⑴ 向量三角形:a b a b +≤+和 ⑵ a b a b -≤-⑶ 向量点乘:a b a b ⋅≤ 注解:⑴ 由a ,b ,a b +构成的三角形,由三角形两边之和大于第三边得. ⑵ 由a ,b ,a b -构成的三角形,由三角形两边之差小于第三边得; ⑶ 由向量积的公式得:cos ,a b a b a b a b ⋅=<>≤,即:a b a b ⋅≤; ⑷ 若(,,)123a a a a =,(,,)123b b b b =,则:112233a b a b a b a b ⋅=++ 上面这几种基本不等式的简单记忆方法: 均值定理四兄弟,对数指数俩伴侣; 柯西琴生伯努利,向量三角点乘积.上述不等式的解法统称“公式法”.凡解证不等式,首先考虑用上述的不等式,能使用的尽量使用. 不能直接使用的,但经过变形后能使用的,也要尽量使用,即尽一切可能使用上述不等式.1、作差法:将比较的两对象相减后,其差与0比较大小的方法.注解:最常用的是构建函数法. 例如,证明()()f x g x ≥,则构建()()()h x f x g x =- 2、作商法:将比较的两正数对象相比后,其商与1比较大小的方法. 注解:例如,()f x 0≥,()g x 0≥,证明()()f x g x ≥. 将其变形为()()f xg x 与1比大小. 3、公式法:用前面不等式的公式得到结果的方法. 注解:即均值定理、柯西不等式等.4、单调性法:利用函数在某区间的单调性得出大小的方法.注解:例如,函数()f x 在区间[,]x a b ∈单调递增,则有:()()f x f a ≥,()()f x f b ≤. 5、放缩法:由等式的一边经过放大或缩小将等式变为不等式;或者大者变得更大,小者变得更小;从而使问题得到解决的方法.注解:例如,n 0>,原本22n n =,将右边减小变为()2n n n 1>- ①①式就是放缩法的结果.6、判别式法:如果一个二次函数过零点,即在零点存在二次方程的解,那么二次方程有解的条件是:判别式0∆≥. 这里就自然出现了不等式.注解:本方法用于处理二次函数时,包括二次函数的分式.7、换元法:将一个整式、分式或根式整体看做一个量进行处理的方法,主要是简化. 注解:特别是三角换元法. 因为三角函数本身有界,所以自然就有不等式. 此法要求常用的三角恒等式必须熟悉.8、裂项相消法:将一项式子分裂成两项或多项,在求和过程中有部分项相互抵消,从而得到简明结果的方法.注解:例如,在放缩法中的①式,进一步得:()21111n n n 1n 1n<=--- 这样,如果是求和n2k 11k =∑,则可得结果: ()()nn n22k 1k 2k 211111111112k k k 1k n n ====+<+-=+-=--∑∑∑ 其中的()111n n 1n 1n=---是裂项.在求和过程中,好多项相互抵消()()()...()nk 21111111111k 1k 1223n 1n n =-=-+-++-=---∑9、倒序相加法:将一个多项求和的式子的一个正序列和一个倒序列按序相加的方法. 注解:例如,求...n S 123n =++++. 其倒序后为:()...n S n n 121=+-+++.这两个式子按序相加后得:()()...()n 2S 1n 2n 1n 1=+++-+++其中,每个圆括号内的值都是()n 1+,共有n 项. 故结果是:()n 2S n n 1=+,即:()n n n 1S 2+=10、极值法(最值法):求出函数()f x 在某个区间的极值,加上边界值找出最值,那么函数的最值就是出现不等式的方法.注解:函数()f x 在x R ∈区间的最大值是8,则有()f x 8≤11、积分法:积分实际上是求和,是简化求和运算的一种方法. 如果函数是单调的,函数的每一小区间内就会出现不等号,求和后依然存在不等号.注解:积分法最好要画出简明图,可以看出单调性和不等的量. 上面这几种求不等式的基本方法简单记忆: 作差与0比大小,作商与1比高下; 套用公式得结果,单调放缩有小大; 二次函数过零点,判别式与换元法; 倒序相加来求和,裂项相消去简化; 极值最值亦可得,单调积分号方法.[例题] 已知:,a b 0>,*n N ∈,n 2≥,求证:()n n na b a b 22++≥ 证明:⑴ 用均值定理:n n A G ≥()()...()()...()n n n n n n nn n 1n 1a b a b a b a n a 22222--+++++++≥即:()()()n 1n n n n nn a b a b a n 1na 22-+++-≥= ①同理:()()()n 1n n n n nna b a b b n 1nb 22-+++-≥ ② 由①②两式相加得:()()()()()n 1n n nnnnna b a b n 1a b n a b 2-+++-+≥+即:()()()n 1n n n n na b a b a b 2n 2n 222-+++≥ 即:()()()n 1n n n n n a b a b a b 222-+++≥,即:()()()n n n n n n n 1a b a b a b 222-+++≥ 即:()n n na b a b 22++≥ ⑵ 用琴生不等式构建函数:()n f x x =(x 0>)则:'()n 1f x nx -=,''()()n 2f x n n 1x 0-=->代入琴生不等式()()()f a f b a bf 22++≥得:()n n n a b a b 22++≥。
高二数学公式 高二数学不等式公式汇总
《高二数学公式高二数学不等式公式汇总》摘要:下面编给带高二数学不等式公式希望对你有助,、不等式性质是证明不等式和不等式基础,+b+;不等式是高二数学知识理论基础也是高二学生要学重要容下面编给带高二数学不等式公式希望对你有助高二数学不等式公式高二数学不等式知识、不等式性质是证明不等式和不等式基础不等式基性质有对称性b bbb则;可加性b +b+;可乘性b当0b;当0不等式运算性质()向相加若b则+b+;()异向相减(3)正数向相乘若b00则b()乘方法则若b0+则 ;(5)开方法则若b0+则 ; (6)倒数法则若b0b则、基不等式(或值不等式);利用完全平方式性质可得+bb(bR)该不等式可推广+b|b|;或变形|b| ; 当b0+b 或b3、不等式证明不等式证明常用方法比较法公式法分析法反证法换元法放缩法;不等式证明程应重与不等式运算性质合使用;证明不等式程放或缩应适高二数学学习方法抓基础是关键数学习题无非就是数学概念和数学思想组合应用弄清数学基概念、基定理、基方法是判断题目类型、知识围前提是正确把握题方法依据只有概念清楚方法全面遇到题目就能很快得到题方法或者面对新习题就能想到我们平做习题方法达到迅速答弄清基定理是正确、快速答习题前提条件特别是立体几何等节复习对基定理熟悉和灵活掌握能使习题答条理清楚、逻辑推理严密反会使题速慢逻辑混乱、叙述不清严防题海战术做习题是了巩固知识、提高应变能力、思维能力、计算能力学数学要做定量习题但学数学并不等做题各种考试题有相当习题是靠简单知识堆积利用公理化知识体系演绎而就能这些习题是要通做定量习题达到对题方法展移而实现但随着高考改革高考已把考重放创造型、能力型考上因要精做习题知识理和灵活应用当你做完道习题不访问题考了什么知识?什么方法?我们从得到了题什么方法?这类习题有什么题通性?实现问题完全我应用了怎样题策略?只有这样才会培养己悟性与创造性开发其创造力也将遇到即将临期末考试和高考题目那些综合性强题目可以有科学方法它归纳数学思维数学学习其主要目是了培养我们创造性培养我们处理事情、问题能力因对处理数学问题策略、思维掌握显得特别重要平学习应重归纳它平听课明知学生应该听老师对该题目分析和归纳但还有不少学生不教师分析往往沉静老师讲每步计算、每步推证程听课是认真但费力听完是满脑子计算程支离破碎老师分析是引导学生思考启发学生己设计出处理这些问题策略、思维当教师答习题学生要用己计算和推理已知道老师要干什么另外当题目答案给出并不代表问题答完毕还要花定认真总结、归纳理记忆要把这些题策略全部纳入己脑海成永久地记忆变己这类型问题验和技能也了学生会听课而不会做题目坏毛病积累考试验学期每月初都有考试加每单元单元测验和模拟考试有十几次抓住这些机会积累定考试验掌握定考试技巧使己应有水平考试得到充分发挥其实考试是单兵作战它是考验人承受能力、接受能力、问题等综合能力战场这些能力只有平考试得到培养和训练猜你感兴趣高二数学不等式公式知识高二上册数学不等式知识汇总3高二数学等差数列公式归纳高二数学不等式公式定理记忆口诀5高二数学必修五不等式知识总结6高二数学不等式知识总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:8.3不等式的简单变形
课型:定理公式课主编: 王琳审核:编号:
课前反馈:
学习目标:1.通过实验探索发现并掌握不等式的三条基本性质;
2.能熟练的应用不等式的基本性质进行不等式的变形。
学习过程:
一.提出问题:猜想命题
探索1:
(一)自主学习阶段
1、用“>”,“<”或“=”填空:
(1)7__4 (2)7+4__4+4 (3)7+(-3)__4+(-3)
(4)7-9__4-9 (5)7+a__4+a (6)7-b__4-b
2、你发现了什么?请把你发现的规律用语言叙述出来。
(二)合作探究阶段
从中你能发现不等式的基本性质1_____________________________
__________________________________________________________
探索2:
问题:如果不等式的两边都乘以(或除以)同一个不为零的数, 不等号的方向是否也不变呢?
(一)自主学习阶段
1 将不等式7>4两边都乘以同一个数,比较所得数的大小,用“>”,“<”或“=”填空:
(1)7×3 ______4×3,(4)7×(-1)______4×(-1),
(2)7×2 ______4×2 , (5)7×(-5)______4×(-5),
(3)7×4______ 4×4 (6)7×(-3)______4×(-3),
2 你发现了什么?请把你发现的规律用语言叙述出来。
(二)合作探究阶段
从中你能发现不等式的基本性质2____________________________
_________________________________________________________ 不等式的基本性质3_____________________________________
_______________________________________________________
二.认知理解:
不等式的两边都乘以(或同除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
与解方程类似,解不等式的过程,就是利用不等式的基本性质,将不等式进行适当的变形,得到x>a 或x<a 的形式。
三.初步应用:
1、已知a <b ,用“>”或“<”填空:
(1)a -3 b -3;(2)a -b 0.(3)―4a ―4b ;(4)-a__-b.
2、下列不等式中一定成立的是( )
A. 3x>2x
B. -x>2x
C. 3-x<4-x
D. y 4>y 3
3、在下列括号内,填出不等式变形所根据的性质。
(1) 如果3x-2>2x-1,那么3x-2x >2-1;( )
(2) 如果-x <0,那么x >0;( )
(3) 如果2x ≥-3,那么x ≥-23
( )
(4) 如果x-3≤-3, 那么x ≤0( )
4、请你当裁判:
小红学完不等式的性质后,说若a>b,则有2a>2b,3a>3b,4a>4b,5a>5b,……,所以ac>bc,你同意你的看法吗?
5、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式。
.
(1)x-1>2 (2)-x<3 (3)x ≤ 3
(4)x+3<-1 (5)3x>27 (6)- x >5
6.根据不等式的性质,把下列不等式化为“x >a ”或“x <a ”的形式. ( 1)3x+5<0 (2)5x<4x-6 (3)-x <-2
(4)3x-2<2x-1 (5)6-2x>0 (6)2x+2 ≥ 3x+3
六.知识梳理:
不等式的基本性质:
课后反思:
当堂检测:
1、若a <b ,则填空:2a___2b,-2a___-2b,
2a ___2b ,2a -___2
b -,2a
c ___2bc 若2a <2b,则a___b;若-2a >-2b ,则a___b;
2、在下列括号内,填出不等式变形所根据的性质。
如果3x-2>2x-1,那么3x-2x >2-1( )
如果-4
3x <0,那么x >0( ) 如果2x ≥-3,那么x ≥3
2- ( ) 如果x-3≤-3, 那么x ≤0( )
3、不等式-3x+6>0的解集是________ 4. 若a <b ,m <0,则am____bm.若x <y <0,则x
1___y 1;|x|__|y|. 5. 已知x <y ,要得到-ax >-ay ,那么a 应满足的条件是__________.
6. 若21-
a <2
1-b ,则a__b ;若5x-5y >0,则x__y 7、根据不等式的性质,把下列不等式化为“x >a ”或“x <a ”的形式.
(1)x 3>5 (2)、x 2-≤4 (3)、x 4
1-<0 (4)x -4>3 (5)-4x ≤x -2
8、 解下列不等式,并把解集在数轴上表示出来
(1)、x 4+<4 (2)、4x ≤3x 2-
(3)、4x 1->3x 1+ (4)、521+x ≥x 2
13-。