运输问题表上作业法
运输问题 表上作业法
A B C 销量( 销量(bj)
第一步:从表4 中找出最小运价“1”, 第一步:从表4-1中找出最小运价“1”, 最小运 价所确定的供应关系为( ),在 价所确定的供应关系为(B,甲),在(B,甲) 的交叉格处填上“3”,形成表4 的交叉格处填上“3”,形成表4-2;将运价表的 甲列运价划去得表4 甲列运价划去得表4-3.
8.伏格尔法 8.伏格尔法
伏格尔法的基本步骤: 伏格尔法的基本步骤: 1.计算每行、列两个最小运价的差; 1.计算每行、列两个最小运价的差; 计算每行 2.找出最大差所在的行或列 找出最大差所在的行或列; 2.找出最大差所在的行或列; 3.找出该行或列的最小运价 确定供求关系, 找出该行或列的最小运价, 3.找出该行或列的最小运价,确定供求关系,最大量 的供应 ; 4.划掉已满足要求的行或 4.划掉已满足要求的行或 (和) 列,如果需要同时划 去行和列, 去行和列,必须要在该行或列的任意位置填个 0”; “0”; 5.在剩余的运价表中重复1~4步 在剩余的运价表中重复1~4 5.在剩余的运价表中重复1~4步,直到得到初始基可 行解。 行解。
2.表上作业法与单纯形法的关系 2.表上作业法与单纯形法的关系
表上作业法中的最小元素法和伏格尔法实质 上是在求单纯形表中的初始基可行解; 上是在求单纯形表中的初始基可行解; 表上作业法中的“位势法” 表上作业法中的“位势法”实质上是在求单 纯形表中的检验数; 纯形表中的检验数; 调运方案表中数字格的数实质上就是单纯形 法中基变量的值; 法中基变量的值; 调运方案表上的“闭回路法” 调运方案表上的“闭回路法”实质上是在做 单纯形表上的换基迭代。 单纯形表上的换基迭代。
甲 A B C 销量( 销量(bj) 表4-14 A B C
两最小元素之差
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是一种常见的工业应用问题,涉及到如何安排运输工具和货物,以最小化总成本或最大化利润。
表上作业法(Tableau Programming)是解决运输问题的一种有效方法,其解题思路和原理、具体步骤如下:1. 确定问题的状态在表上作业法中,我们需要先确定问题的状态。
状态是指某个特定时间段内,某个运输问题需要满足的条件。
例如,在一个例子中,我们可以将运输问题的状态定义为“需要从A城市运输货物到B城市,运输工具数量为3,运输距离为100公里”。
2. 定义状态转移方程接下来,我们需要定义状态转移方程,以描述在不同状态下可能采取的行动。
例如,在这个问题中,我们可以定义一个状态转移方程,表示当运输工具数量为2时,货物可以运输到B城市,而运输距离为80公里。
3. 确定最优解一旦我们定义了状态转移方程,我们就可以计算出在不同状态下的最优解。
例如,在这个问题中,当运输工具数量为2时,货物可以运输到B城市,运输距离为80公里,总成本为200元。
因此,该状态下的最优解是运输距离为80公里,运输工具数量为2,总成本为200元。
4. 确定边界条件最后,我们需要确定边界条件,以确保问题的状态不会无限制地变化。
例如,在这个问题中,当运输工具数量为3时,运输距离为120公里,超过了B城市的运输距离范围。
因此,我们需要设置一个限制条件,以确保运输工具数量不超过3,且运输距离不超过120公里。
表上作业法是一种简单有效的解决运输问题的方法,其原理和具体步骤如下。
通过定义状态转移方程、确定最优解、确定边界条件,我们可以计算出问题的最优解,从而实现最小化总成本和最大化利润的目标。
运输问题的求解方法
产销平衡表与单位运价表
表上作业法
产销不平衡的运输问题的求解方法
一、产销平衡表与单位运价表
运输问题还可用产销平衡表与单位运价表 进行描述。 假设某种物资有m个生产地点Ai(i=1, 2,…,m),其产量(供应量)分别为ai(i=1, 2,…,m),有n个销地Bj(j=1,2,…,n), 其销量(需求量)分别为bj(j=1,2,…,n)。 从Ai到Bj运输单位物资的运价(单价)为Cij。将 这些数据汇总可以得到产销平衡表和单位运价 表5.3.1。
P ,P ,P ,P ,P B ik lk ls us uj
而这些向量构成了闭回路见图
位势法
一种较为简便的求检验数的方法。
设 u1, , u2 ,, um ; v1 , v2 ,, vn 是对应运输问题的m+n 个约束条件的对偶变量。B是含有一个人工变量Xa的初始 基矩阵。 Xa在目标函数中的系数Ca ,由线性规划的对 偶理论可知
(1)确定初始调运方案,即找出初始 基可行解,在产销平衡表上给出 m+n-1个数 字格。
(2)求非基变量的检验数,即在表上计算 空格的检验数,判别是否达到最优解:是否存 在负的检验数?如果存在负的检验数,则初始 调运方案不是最优方案;如果所有检验数都非 负,则初始调运方案已经是最优方案了。如果 已经得到最优调运方案,则停止计算,否则转 入下一步。
考虑多余的物资在哪一个产地就地储存的问题。 xi ,n1 设 是产地Ai的储存量,于是有
n n 1 xij xi,n1 xij ai (i 1,2,, m) j 1 m j 1 xij b j ( j 1,2, n) m i 1 m n x i ,n 1 ai b j bn 1 i 1 j 1 i 1
管理运筹学 第七章 运输问题之表上作业法
最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。
第二节运输问题求解表上作业法-精品文档
应用西北角法、最小元素法和 Vogel法,每次填完数,都只划去一 行或一列,只有最后一个元例外(同 时划去一行和一列)。当填上一个数 后行、列同时饱和时,也应任意划去 一行(列),在保留的列(行)中没 被划去的格内标一个0。
11
[例 3-2] 某食品公司下属的 A1、A2、 A3 ,3 个厂生产方便食品,要运输到 B1、 B2、B3、B4 ,4 个销售点,数据如下: 表1 B1 B2 A1 3 11 A2 1 9 A3 7 4 销量 bj 3 6 求最优运输方案。 B3 3 2 10 5 B4 产量 ai 10 7 8 4 5 9 6 20(产销平衡)
(1)西 北 角 法 B3 B4 10
产量 ai 7
8 2 5 3 6 6
4
9
销量 bj
3
6
5
20
14
( 2) 最 小 元 素 法 B1 B2 A1 3 11
B3 3 4 10
B4
产 量 ai 7 3
A2
1 3
9
2 1
8
4
A3
7
4 6
10
5 3 5 6
9
销 量 bj
3
6
2015
( 2) 最 小 元 素 法 B1 B2 A1 3 11
(4)若运输平衡表中所有的行与列均被 划去,则得到了一个初始基本可行解。否 则在剩下的运输平衡表中选下一个变量, 转(4)。
4
上述计算过程可用流程图描述如下
取未划去的单元格xij ,令 xij = min { ai , bj }
ai’ = ai - xij bj’ = bj - xij
否
ai’ = 0?
第二节 运输问题求解 —表上作业法
表上作业法求解运输问题的思考
表上作业法求解运输问题的思考
解决运输问题的表上作业法(Table Method)是一种用于解决线性
规划问题的数学方法。
它通过在一张表中,将运输需求、供求量及其
价格等信息进行对应的方式来寻找最优的供运输体系。
总的来说,表
上作业法的步骤有:
一、建立运输问题模型:
1. 根据要求绘制好运输管理模型,规定出配送来源和配送目的地,包
括途经站点;
2. 确定进行配送的各节点、道路等的运行路径及具体情况;
3. 整理出和计算出各节点之间运输量及单位运输成本,将这些信息录
入表格;
二、建立表上作业法:
1. 根据运输问题模型中的信息进行汇总,建立表格,计算出来的表格
有4个部分:
不变量,运输供求量,单位运输成本,最优总成本;
2. 根据具体情况,计算各节点之间的运输量;
3. 将运输量填入表格中,计算出每一节点的运输成本,找出最优方案;
三、调整成本:
1. 检查各个节点的运输成本,比较并调整,计算最小成本;
2. 对最小成本进行再探索,优化调整和最小化运输供求量;
四、总结结果:
根据计算结果,进行概括性总结和说明,得到最合理的解决方案。
表上作业法,通过模型的结果来完成最优运输体系,是一种实用性很
强的模型。
由于其最大的特点在于可以有效解决大量的运输安排问题,因此有助于企业在实现安全便捷物流运输的同时,节约物流成本,提
升企业竞争力。
第二节运输问题求解表上作业法
即从 Ai 向 Bj 运最大量(使行或列在 允许的范围内尽量饱和,即使一个约 束方程得以满足),填入 xij 的相应位 置; (2) 从 ai 或 bj 中分别减去 xij 的值,即调整 Ai 的拥有量及 Bj 的需 求量;
3
(3) 若 ai = 0 ,则划去对应的行(把 拥有的量全部运走),若 bj = 0 则划去 对应的列(把需要的量全部运来),且每 次只划去一行或一列(即每次要去掉且只 去掉一个约束);
—表上作业法
我们已经介绍过,可以通过增加虚 设产地或销地(加、减松弛变量)把问 题转换成产销平衡问题。
1.产量大于销量的情况
考虑 si > dj 的运输问题,得到的数学模 型为
i=1 j=1
39
m
n
2.运输问题求解
—表上作业法
Min f =
n m i=1 j=1
n
cij xij
s.t. xij si i = 1,2,…,m
10
应用西北角法、最小元素法和 Vogel法,每次填完数,都只划去一 行或一列,只有最后一个元例外(同 时划去一行和一列)。当填上一个数 后行、列同时饱和时,也应任意划去 一行(列),在保留的列(行)中没 被划去的格内标一个0。
11
表1
12
13
14
15
16
二、基本可行解的最优性检验
最优性检验就是检查所得到的方 案是不是最优方案。 检查的方法----计算检验数 由于目标要求极小,因此,当所 有的检验数都大于或等于零时该调运 方案就是最优方案;否则就不是最优, 需要进行调整。
第二节 运输问题求解 —表上作业法
运输问题的方法 —— 表上作业法: 1、确定一个初始基本可行解; 2 、根据最优性判别准则来检查这 个基本可行解是不是最优的。如果 是则计算结束;如果不是,则至3 3、换基,直至求出最优解为止。
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是指在给定的供应地和需求地之间,选择最佳的运输方案,使总运输成本最低的问题。
表上作业法是一种常用的解决运输问题的方法,它基于线性规划的思想,通过逐步逼近最优解的方式来求解运输问题。
表上作业法的原理是将运输问题转化为一个线性规划问题,通过构建一个供需平衡表来描述运输问题。
在该表中,将供应地和需求地分别作为行和列,并在表中填入运输量的变量。
同时,引入一个辅助表来记录每个供应地和需求地的运输量。
具体的求解步骤如下:1. 构建供需平衡表:将给定的供应地和需求地以及对应的运输量填入表格中,并计算每个供应地和需求地的供应总量和需求总量。
2. 确定初始基本可行解:根据运输量的限制条件,确定一个初始的基本可行解。
可以选择将某些运输量设置为0,使得每个供应地和需求地都满足其供应总量和需求总量。
3. 计算单位运输成本:根据给定的运输成本,计算每个供应地和需求地之间的单位运输成本,填入表格中。
4. 判断最优解条件:检查当前的基本可行解是否满足最优解的条件。
如果每个供应地和需求地都满足其供应总量和需求总量,并且没有其他更低成本的运输方案,则当前解为最优解。
5. 迭代改进解:如果当前解不满足最优解的条件,则需要进行迭代改进。
在每一次迭代中,选择一个非基本变量(即非0运输量)进行改变,并计算改变后的基本可行解。
6. 更新供需平衡表和辅助表:根据改变后的基本可行解,更新供需平衡表和辅助表的运输量,并重新计算单位运输成本。
7. 重复步骤4-6,直到找到最优解为止。
通过以上的步骤,表上作业法能够有效地求解运输问题,并得到最优的运输方案。
它在实践中广泛应用于物流管理、供应链优化等领域,为运输问题的决策提供了科学的依据。
管理运筹学第七章运输问题之表上作业法
5 3
9
销量
3
6
5
6
20
最小检验数原则,确定进基变量
最小偶点原则,确定出基变量和调整量
+1
-1
+1
-1
四、方案调整
B1
B2
B3
B4
产量ai
A1
3
11
3 5
10 2
7
A2
1 3
9
2
8 1
01
最优值:
01
f* =3×5+10×2+1×3+8×1+4×6+5×3 = 85
01
四、方案调整
闭回路调整法步骤:
01
入基变量的确定:选负检验数中最小者 rk,那么 xrk 作为进基变量;(使总运费尽快减少)
02
出基变量的确定:在进基变量xrk 的闭回路上,选取偶数顶点上调运量最小的值,将其对应的运量作为出基变量。(刚好有一个基变量出基,其它基变量都为正)
三、最优性检验
三、最优性检验
若让x11=1,则总运费变化:3–3+2–1=1 。
B1
B2
B3
B4
产量
A1
3
11
3 4
10 3
7
A2
1 3
9
2 1
8
4
A3
7
4 6
10
5 3
9
9
2
8 1
4
A3
7
4 6
10
5 3
9
销量bj
3
6
5
6
20
如上例中的最优方案就不唯一:
(0)
运输问题的表上作业法
表八
B1
B2
B3
B4
行差额
A1
3
1
3
10
0
A2
1
9
2
8
1
A3
7
4
10
5
1
列差额 2
5
1
3
(2)在行差额和列差额中选出最大者,并选择其所对应的行或列中的最小元素来 安排调运方案。本例中,差额最大为“5”,是列差,该列中最小运价为“4”,即 A3首先供应B2,观察产销平衡表,A3仓库储存9吨,零售店B2需求6吨,则运往6吨, B2的需求全部被满足,在单位运价表中划去B2列,如表十一所示。
产地 销地 A1 A2 A3 销量
产地 销地 A1 A2 A3
表三 产销平衡表
B1
B2
B3
B4
3
1
3
6
5
6
表四 单位运价表
B1
B2
B3
3
11
3
1
9
2
7
4
10
产量 7 4 9
B4 10 8 5
(3)在单位运价表中未划去的元素中找到最小运价“3”(A1到B3的运价),A1存储 量为7吨,B3还缺少4吨,故从A1配送给B34吨,B3的需求全部被满足,A1剩余7-4=3吨, 在单位运价表中划去B3所在列。结果如表五和表六所示。
表五 产销平衡表
产地
B1
销地
A1
A2
3
A3
销量
3
B2
B3
B4
4 1
6
5
6
表六 单位运价表
产量
7 4 9
产地
B1
B2
运输问题的表上作业法的一个解释
运输问题的表上作业法的一个解释
运输问题的表上作业法,也称作基于选表法或表上方法,是一种分配类型的技术,它是用来求解类似运输问题的一种技术。
这类问题是在现实生活和技术领域中经常被遇到的,它要求将一定数量的物品从某一个地方运输到另一个地方,或者将某种资源从一个地方运输到另一个地方,再或者将某种物品从一个地方运输到多个地方,例如从苹果在北京的仓库运输到上海的几家超市。
与其他分配类型的技术相比,运输问题的表上作业法的优势在于,它可以给出最优的解决方案,而且这种解决方案可以在较短的时间内获得。
它的基本思路是,首先将数据输入到一个表格,如仓库和超市之间的距离或运输成本,然后用一个“对换”算法对表格进行优化,不断“对换”表格中直接相连的数值,使得解决方案到达最优状态,达到最优化。
首先,将运输问题用表格表示,表格中每一行表示从某一出发地到一定目的地的运输距离或运输费用,每一列表示从一定出发地到某一目的地的运输距离或运输费用。
然后,用“费用减少法”对表格进行优化,不断比较当前状态下两点之间的运输成本,如果当前状态下两点之间的运输成本比较大,则以更小的运输成本替换,从而达到最优解。
经过一定的步骤,即可得到运输问题的最优解,计算完成后可得出最小的运输成本,而且可以把最小的运输成本显示出来,使用户能
够清楚明白。
此外,表上作业法在实际应用中还有其他优势,它比较容易实现,只要将数据输入到表格中,即可完成优化,而且计算时间较短。
有时候,表上作业法也可以用来解决更复杂的问题,如经营决策问题、联盟问题和设备调度问题。
总之,运输问题的表上作业法是一种有效的配类型的技术,它可以帮助人们在短时间内得到最优解,最小化运输成本,应用范围也比较广泛,非常适合求解类似运输问题的技术。
管理运筹学运输问题之表上作业法课件
扩展适用范围
进一步扩展表上作业法的适用范 围,使其能够处理更多类型的运 输问题,包括带有特殊约束条件 的运输问题。
引入现代信息技术
利用现代信息技术,如大数据和 云计算等,提高表上作业法的计 算效率和精度,以满足实际应用 的需求。
THANKS
感谢您的观看
的优化配置。
应用实例二:农产品运输问题
总结词
多约束优化问题
详细描述
农产品运输问题需要考虑时间、保鲜度、运 输量等多种约束条件,要求在满足需求的前 提下,实现运输成本和损耗的最小化。表上 作业法可以通过多目标优化算法,综合考虑 各种约束条件,制定最优的农产品运输方案
。
应用实例三:城市物流配送问题
要点一
在迭代过程中,需要有一个判断准则来确定何时停止迭代并输出最优解。常用的判断准则包括最大最 小准则和最小最大准则。
迭代求解
根据判断准则,通过不断调整运输方案,使目标函数(通常是总运输费用最小)逐渐逼近最优解。在 每次迭代中,需要检查运输方案的可行性,并更新基可行解。
终止阶段:确定最优解并输出结果
确定最优解
03
表上作业法原理
表上作业法的定义与步骤
在此添加您的文本17字
定义:表上作业法是一种求解运输问题的线性规划方法, 通过在运输表上逐行计算和调整,最终找到最优解。
在此添加您的文本16字
步骤
在此添加您的文本16字
1. 建立初始运输方案;
在此添加您的文本16字
2. 检查运输方案的可行性;
在此添加您的文本16字
确定单位运输成本
根据运输距离、运输方式等因素确定单位运输成本。
建立数学模型
根据供求关系、运输能力限制等因素建立线性规划模型。
经济管理决策分析方法第六章2-运输问题-表上作业法
A B C
销量(bj)
3
6
5
6
第三步:在表4-5中再找出最小运价“3”, 这样一步步地进行下去,直到单位运价表上 的所有元素均被划去为止。
表4-6 A B C 销量(bj) 表4-7 甲 乙 甲 3 1 7 3 乙 11 9 4 6 丙 3 2 10 5 丙 4 1 6 6 3 5 6 丁 10 8 5 6 丁 3 产量(ai) 7 4 9
表上作业法
第一步 确定初始基可行解
与一般的线性规划不同,产销平衡的运输问
题一定具有可行解(同时也一定存在最优 解)。 最小元素法(the least cost rule)。
最小元素法
最小元素法的基本思想是就近供应,即从单位 运价表中最小的运价开始确定产销关系,依此 类推,一直到给出基本方案为止.
450
非基变量X12的检验数:
12 =(c12+c23)-(c13+c22)
=70+75-(100+65)=-20, 非基变量X21的检验数:
21 =(c +c )-(c +c ) 21 13 11 23
=80+100-(90+75)=15。 经济含义:在保持产销平衡的条件下,该非 基变量增加一个单位运量而成为基变量时目 标函数值的变化量。
表4-30 A B
甲 11 = 1 3
31 = 10 3 销量(bj) C
乙 12 = 2 22 = 1 6 6
丙 4 1 33 = 12 5
丁 3
24 = -1 3 6
产量(ai) 7 4 9
表4-33 乙 12 = 2 22 = 1 6 31 = 10 3 6 销量(bj) A B C 表4-34 甲 乙 丙 4 1 丁 3
运筹学运输问题表上作业法详述
D
M
0
M 0M 0
根据表上作业法计算,可以求得这个问题的最优方案
需 求 地 区 Ⅰ Ⅰ’ Ⅱ Ⅲ Ⅳ Ⅳ’
运筹学
李细霞 2013物流工程1班 2014~2015学年第二学期
课程主要内容
绪论
线性规划及 单纯形法
对偶理论与 灵敏度分析
目标规划
整数规划
运输问题
动态规划
图与网络
第三章 运输问题
Transportation problem
3
学习目标
什么是运 输问题?
复杂运输 问题
如何解决运 输问题?
主要内容
1
9
2
84
7
4
10
59
36
56
33
V伏og格el法尔:法(差额法)
产销平衡表
对最小元素 法的改进
A1 A2 A3
销量
B1 B2 B3 B4 产量
5 27
3
14
6
39
3656
A1
A2
A3
单位运价表
B1 B2 B3 B4 行差额
3 11 3 10 0 0 0 7 1 9 2 8 1 1 16 7 4 10 5 1 2 - -
i1 j1
56
运输问题的应用
➢ 产销不平衡问题 ➢ 生产与存储问题 ➢ 转运问题
由于在变量个数相等的情况下, 表上作业法的计算远比单纯形 法简单得多。所以在解决实际 问题时,人们常常尽可能把某 些线性规划的问题化为运输问 题的数学模型。下面介绍几个 典型的例子。
产销不平衡问题
设有三个化肥厂(A,B,C)供应四个地区(Ⅰ,Ⅱ,Ⅲ ,Ⅳ)的农用化肥。各化肥厂年产量,各地区年需要 量及从各化肥厂到各地区运送单位化肥的运价如下表 所示。试求出总的运费最节省的化肥调拨方案。
运输问题表上作业法
A1
X11
X12
X13
80 150 65 100 75 250
A2
X21
X22
X23
100
150
200
销量
450
非基变量X12的检验数:
12 =(c12+c23)-(c13+c22)
=70+75-(100+65)=-20,
非基变量X21的检验数:
21 =(c21+c13)-(c11+c23)
=80+100-(90+75)=15。
得到初始调运方案为: x11=100,x13=100,x22=150,x23=100
总运价为: 9* 0 10 100 *100 60* 5 15 100 *100 3087
2西北角法
不是优先考虑具有最小单位运价的供销业 务,而是优先满足运输表中西北角左上角 上空格的供销要求
用西北角法确定初始调运方案
取
中ij最小0者对应的变量为换
入变量;
2、当迭代到运输问题的最优解时,如果 有某非基变量的检验数等于0,则说明该 运输问题有多重最优解;
3当运输问题某部分产地的产量和,与某部分销 地的销量和相等时,在迭代过程中间有可能有某 个格填入一个运量时需同时划去运输表的一行 和一列,这时就出现了退化.为了使表上作业法 的迭代工作能顺利进行下去,退化时应在同时划 去的一行或一列中的某个格中填入0,表示这个 格中的变量是取值为0的基变量,使迭代过程中 基变量个数恰好为m+n-1个.
u 1 v1 c11 90
u u
1 2
v3 v2
c13 c 22
100 65
u 2 v 3 c 23 75
运输问题的模型及表上作业法
04
CATALOGUE
表上作业法的实际应用
货物调运问题
总结词
货物调运问题是指如何合理安排货物的运输 ,以最小化运输成本。
详细描述
在货物调运问题中,需要考虑货物的来源、 目的地、运输方式、运输距离和运输成本等 因素。通过表上作业法,可以找到最优的运
输方案,使得总运输成本最低。
车辆调度问题
总结词
车辆调度问题是指如何合理安排车辆的运行,以最小化车辆的空驶和等待时间。
资源限制
运输问题的资源限制包括供应量 、需求量、运输能力等,这些限 制条件要求在运输过程中不能超 过资源的最大供应或需求量。
距离限制
运输问题的距离限制通常以运输 距离或运输时间为标准,要求在 运输过程中尽量缩短距离或时间 。
质量限制
在某些情况下,运输问题的质量 限制包括货物的质量、运输工具 的质量等,要求在运输过程中保 证货物的质量和运输工具的安全 。
02
CATALOGUE
运输问题的数学模型
变量与参数
变量
表示各供应地应向各需求地运输的货物量。
参数
包括各供应地的供应量、各需求地的需求量、各供应地到各需求地的单位运输费用和各货物的单位运 价。
目标函数
• 最小化总费用:目标是找到一组 运输方案,使得总运输费用最小 。
约束条件
供需平衡约束
每个供应地的供应量等于其对应需求地的需求量。
运输问题的模型及 表上作业法
contents
目录
• 运输问题概述 • 运输问题的数学模型 • 表上作业法 • 表上作业法的实际应用 • 表上作业法的优化与改进
01
CATALOGUE运输问题概述Fra bibliotek定义与特性
运筹学 第三章 运输问题
1)闭环回路法: 在给出的初始调运方案表上,从每一空格 出发找一条闭环回路,它是以某空格为起点 ,用水平或垂直线向前划,每碰到一数字格 转90°后(回路的转角点必须是一个基变量 ) ,继续前进,直到回到起始空格为止。 从每一空格出发一定存在且只有唯一的闭 环回路。 从空格开始加减闭环各个顶点的运输单价 ,可得每个空格对应的检验数。
《运筹学》
第三章 运输问题
Slide 16
销地
B1
产地
A1
A2
3
A3
销量 3
B2 B3
4 1 6
65
B4 产量
37
4
39
6
销地
产地
B1 B2 B3 B4
A1
3 11 3 10
A2
19 2 8
A3
7 4 10 5
空格 (11) (12) (22) (24) (31) (33)
闭环回路 (11)-(21)-(23)-(13)-(11) (12)-(32)-(34)-(14)-(12) (22)-(32)-(34)-(14)-(13) -(23)-(22) (24)-(14)-(13)-(23)-(24) (31)-(34)-(14)-(13)-(23) -(21)-(31) (33)-(34)-(14)-(13)-(33)
基变量:
X13 U1+V3=C13=3
X14 U1+V4=C14=10
X21 U2+V1=C21=1
1
3 10 U1=0
2
U2=-1
X23 U2+V3=C23=2
4
第五章 第三节 表上作业法
3、改进的方法
——闭合回路调整法(原理同单纯形法一样) 闭合回路调整法(原理同单纯形法一样) 闭合回路调整法 接上例: 接上例: B1 A1 A2 A3 销量 3 3 6 6 5 B2 B3
(+1) (+ ) (-1) (- )
B4 4 1
(-1) (- ) (+1) (+ )
产量 3 7 4 9
B1 A1 A2 A3 销量 3 1 ) (+1) (+
(-1) (- 3 )
① ③
B2
B3
③
B4 3
产量 7 4
(-1) (- ) 4
②
(+1) (+ ) 1
6 6 5
3 6
9
计算如下:空格处( 计算如下:空格处( A1 B1 )= (1×3)+{ (-1)×3 }+(1×2)+{ (-1)×1 }=1 此数即为该空格处的检验数。 此数即为该空格处的检验数。
特征: 特征: 平衡运输问题必有可行解, 1、平衡运输问题必有可行解,也 必有最优解; 必有最优解; 2、运输问题的基本可行解中应包 括 m+n-1 个基变量。 - 个基变量。
二、表上作业法
步骤: 步骤: 找出初始基本可行解(初始调运方案, ⑴.找出初始基本可行解(初始调运方案,一 m+n- 个数字格),用西北角法、最小元素法; ),用西北角法 般m+n-1个数字格),用西北角法、最小元素法; ⑵.求出各非基变量的检验数,判别是否达到 求出各非基变量的检验数, 最优解。如果是停止计算,否则转入下一步, 最优解。如果是停止计算,否则转入下一步,用 位势法计算; 位势法计算; 改进当前的基本可行解(确定换入、 ⑶.改进当前的基本可行解(确定换入、换 出变量),用闭合回路法调整; ),用闭合回路法调整 出变量),用闭合回路法调整; ⑷.重复⑵. ⑶,直到找到最优解为止。 重复⑵ 直到找到最优解为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)选择一个xij,令xij= min{ai,bj}=
第 a 第i个产地的产量全部运到 j个销地 i b 满足第j个销地需求 j
将具体数值填入xij在表中的位置;
(2)调整产销剩余数量:从ai 和bj 中分别减去 xij的值,若ai-xij=0,则划去产地Ai所在的行,即 该产地产量已全部运出无剩余,而销地Bj 尚有 需求缺口bj-ai ;若bj-xij =0,则划去销地Bj 所在 的列,说明该销地需求已得到满足,而产地Ai 尚有存余量ai-bj; (3)当作业表中所有行或列均被划去,说明所 有的产量均已运到各销地,需求全部满足,xij 的取值构成初始方案。否则,在作业表剩余的 格子中选择下一个决策变量,返回步骤(2)。
200 250 450
例3-2
的数学模型
min Z 90x11 70x12 100x13 80x21 65x22 75x23 总运输量 x11 x12 x13 200 x x x 250 日产量约束 21 22 23 x11 x21 100 s.t. x12 x22 150 需求约束 x13 x23 200 xij 0, i 1,2; j 1,2,3;
3、举例
例3-2 甲、乙两个煤矿供应A、B、C 三个城市用煤,各煤矿产量及各城 市需煤量、各煤矿到各城市的运输 距离见表3-4,求使总运输量最少的 调运方案。
表3-4
运距 煤矿 甲 乙 日销量 (需求量) 90 80 100 城市
例3-2有关信息表
A B C
日产量 (供应量)
70 65 150
100 75 200
可以证明,如果对闭回路的方向不加区别, 对于每一个非基变量而言,以其为起点的闭回 路存在且唯一。
约定作为起始顶点的非基变量为偶数次顶 点,其它顶点从1开始顺次排列,那麽,该非 基变量xij的检验数:
ij =(闭回路上偶数次顶点运距或运价之和) -(闭回路上奇数次顶点运距或运价之和)
(3-6)
现在,在用最小元素法确定例3-2初始调运 方案的基础上,计算非基变量X12的检验数 :
三、最优性检验
检查当前调运方案是不是最优方案的过程 就是最优性检验。检查的方法:计算非基变量 (未填上数值的格,即空格)的检验数(也称 为空格的检验数),若全部大于等于零,则该 方案就是最优调运方案,否则就应进行调整。
1、闭回路法
以确定了初始调运方案的作业表为基础,以 一个非基变量作为起始顶点,寻求闭回路。 该闭回路的特点是:除了起始顶点是非基变 量外,其他顶点均为基变量(对应着填上数值 的格)。
u1 v1 c11 90 u v c 100 1 3 13 u 2 v 2 c 22 65 u 2 v3 c 23 75
(3-7)
例3-2初始调运方案位势变量对应表
调 运 量 产地 销地 B1
B2
B3 70 100 100
产 量 200 250 450
=70+75-(100+65)=-20, 非基变量X21的检验数:
21 =(c +c )-(c +c ) 21 13 11 23
=80+100-(90+75)=15。 经济含义:在保持产销平衡的条件下,该非 基变量增加一个单位运量而成为基变量时目 标函数值的变化量。
2、位势法
以例3-2初始调运方案为例,设置位势变 量 u i 和 v j ,在初始调运方案表的基础上 增加一行和一列(见下页表格)。 然后构造下面的方程组:
用西北角法确定例3-2初始调运方案
调 运 量 产地 销地 B1
B2 70
B3 100
X13
产量 200 100 250 200
100 90 100
A1
X11 X12
80
A2
销 量
X21
50 65 X22
200 75
X23
100
150 50
200 450
得到初始调运方案为: x11=100,x12=100,x22=50,x23=200
ε=min{该闭回路中奇数次顶点调运量xij}
ij
继续上例,因σ12=-20 ,画出以x12为起始变量的闭回 路
调 运 量 产地 销地 B1
B2
B3 70 100 100
产量 200 250
100 90 A1
X11
A2
பைடு நூலகம்销 量
X13 + X12 80 150 65 100 75 X21 X23 + - X22 100 150 200
在 式 ( 3-7 ) 中 , 令 u1=0 , 则 可 解 得 v1=90 , v3=100,u2=-25,v2=90,于是 σ12=c12-(u1+v2)=70-(0+90)=-20 σ21=c21-(u2+v1)=80-(-25+90)=15
与前面用闭回路法求得的结果相同。
复习比较检验数计算的两种方法 闭回路法计算非基变量xij检验数的公式: ij =(闭回路上偶数次顶点运距或运价之和) -(闭回路上奇数次顶点运距或运价之和)
初始方案的每一个基变量xij对应一个方程— —-—所在行和列对应的位势变量之和等于该基 变量对应的运距(或运价):ui+vj=cij;
方程组恰有一个自由变量,可以证明方程 组中任意一个变量均可取作自由变量。
给定自由变量一个值,解方程组式(3-7), 即可求得位势变量的一组值,根据式(3-6)结 合方程组(3-7),推出计算非基变量xij检验数 的公式 σij=cij-(ui+vj) (3-8)
按照上述步骤产生的一组变量必定不构成 闭回路,其取值非负,且总数是m+n-1个, 因此构成运输问题的基本可行解。 对xij的选择采用不同的规则就形成各种不 同的方法,比如每次总是在作业表剩余的格 子中选择运价(或运距)最小者对应的xij , 则构成最小元素法,若每次都选择左上角格 子 对应的xij 就形 成西北 角法( 也称左 上角 法)。
Page :1
Shipment @cost Opp.c t.
S1 S1 S1
D1 D2 D3
+50.000
Maximize 1 minimize 2 Number of sources? Number of destinations? Number of transshipment point? Use the default names(S1 …Sn ,D1 …Dn ,T1…Tn) <2> <2> <3> <0>
(3-6)
位势法计算非基变量xij检验数的公式 σij=cij-(ui+vj) (3-8)
思考:试解释位势变量的含义(提示:写出运输问 题的对偶问题)
四、方案调整
当至少有一个非基变量的检验数是负值时, 说明作业表上当前的调运方案不是最优的,应 进行调整。
若检验数σij 小于零,则首先在作业表上以xij 为起始变量作出闭回路,并求出调整量ε:
输出最优方案
结 束
改进调整 (换基迭代)
图3-1 运输问题求解思路图
二、 初始方案的确定
1、作业表(产销平衡表) 初始方案就是初始基本可行解。
将运输问题的有关信息表和决策变量(调运量) 结合在一起构成“作业表”(产销平衡表)。
表3-3是两产地、三销地的运输问题作业表。
表3-3 运输问题作业表(产销平衡表)
分别使用最小元素法和西北角法求出初 始方案。 & 最小元素法的基本思想是:
“就近供应” ;
& 西北角法则不考虑运距(或运价),每次 都选剩余表格的左上角(即西北角)元素作 为基变量,其它过程与最小元素法相同 ;
用最小元素法确定例3-2初始调运方案
调 运 量 产地 销地 B1
B2
B3 70 100 100
450
计算调整量:ε=Min(100,150)=100。 按照下面的方法调整调运量:
闭回路上,奇数次顶点的调运量减去ε,偶数 次顶点(包括起始顶点)的调运量加上ε;闭 回路之外的变量调运量不变。
得到新的调运方案:
调
运
销地
量 B1
B2 100 70
X12
B3 100
X13
产量 200 250
例3-2初始调运方案中以X12(X21)为起点的闭回路
调 运 量 产地 销地 B1
B2
B3 70 100 100
产量 200 250
100 90 A1
X11 X12
X13
80 150 65 100 75
A2
销 量
X21
X22
X23
100
150
200 450
非基变量X12的检验数:
12 =(c12+c23)-(c13+c22)
调
运 量
销地
B1
B2 c11 c12
X12
B3 c13
X13
产量
产地
A1 A2
销 量
X11
a1 a2
c21
X21 X22
c22
c23
X23
2
b1
b2
b3
a b
i 1 i j 1
3
j
其中xij是决策变量,表示待确定的从第i个产 地到第j个销地的调运量,cij为从第i个产地到 第j个销地的单位运价或运距。
X23
100
150
200
结 果
最优调运方案是: x11=50,x12=150,x21=50,x23=200
相应的最小总运输量为: