小学数学奥林匹克辅导及练习容斥原理含答案
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案44容斥原理(二)
年级四年级学科奥数版本通用版课程标题容斥原理(二)如果被计数的事物有A、B、C三类,那么,A类、B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是A类又是C 类的元素个数-既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
用符号表示为:A B C A B C A B B C A C A B C=++---+。
例1有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。
第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。
只有两次达到优秀的有多少人?分析与解:“每人至少有一次达到优秀”说明没有三次都没达到优秀的人。
要求只有两次达到优秀的人数,就是求重叠两次的部分(图中阴影部分)。
只有两次达到优秀的有10+13+15-25-1×2=11(人)。
例2某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人。
其中手中有红、黄、蓝三种小旗的有6人,而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?分析与解:如图,用A圆表示手中有红旗的,B圆表示手中有黄旗的,C圆表示手中有蓝旗的。
如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的,只有黄、蓝两种小旗的,只有红、蓝两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了两次,也应减去,那么,全班人数为:()()6250342618943++-++-⨯=(人)。
例3某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。
这部分学生达到优秀的项目、人数如下表:求这个班的学生人数。
分析与解:图中三个圆圈分别表示短跑、游泳和篮球达到优秀的学生人数。
小学四年级奥数第35讲 容斥原理(含答案分析)
第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。
Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
小学奥数教程:容斥原理之数论问题_全国通用(含答案)
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.7-7-4 容斥原理之数论问题在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个? A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43例题精讲【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n 与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。
小学数学奥林匹克辅导及练习包含与排除(一)(含答案)-
包含与排除(一) 包含与排除问题也叫容斥原理。
“容”是容纳、包含的意思,“斥”是排斥、排除的意思,从题目名称上看,比较抽象,下面我们结合具体实例来说明这种问题的思考方法。
【典型例题】例1:如下图,桌面上放着两个正方形,求盖住桌面的面积。
(单位:厘米) 分析与解:这是一个组合图形,是由两个正方形组成的,中间重合部分是一个长方形,要想求出盖住桌面的面积,可以有三种不同方法:方法一:75256422+-⨯=(平方厘米)方法二:72556422-⨯+=(平方厘米)方法三:52576422-⨯+=(平方厘米)答:盖住桌面的面积是64平方厘米。
例2:四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?分析与解:根据题意可画图如下此类问题画集合图比画线段图更直观,更形象一些。
方法一:37 + 26—21 = 42(人)方法二:37—21 + 26 = 42(人)方法三:37 +(26—21)= 42(人)以上三种方法是紧密联系的,都是要从中减去重叠部分,可以从其中一部分中减去,再与另一部分合并,也可以从两部分之和中减去重叠部分。
三种方法比较,你喜欢哪一种解法呢?我们根据以上两个例题可以得出这样的数量关系:第一部分 + 第二部分 — 重叠部分 = 两部分之和例3:四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人? 分析与解:根据“第一部分 + 第二部分 — 重叠部分 = 两部分之和”可以求出两科都得“优”的人数。
15 + 17—24 = 8(人)另外,从下图中我们还能得出两种不同方法方法二:17—(24—15)= 8(人)15—(24—17)= 8(人)答:两科都得优的有8人。
例4:图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
三年级奥数题及参考答案-容斥原理问题
三年级奥数题及参考答案-容斥原理问题
编者导语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。
这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。
为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:容斥原理问题,可以帮助到你们,助您快速通往高分之路!!
容斥原理
三年级科技活动组共有 63人。
在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人。
每个同学都至少完成了一项活动。
问:同时完成这两项活动的同学有多少人?
解:因42+34=76,76>63,所以必有人同时完成了这两项活动。
由于每个同学都至少完成了一项活动,根据包含排除法知,42+34-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)=63。
由减法运算法则知,完成两项活动的人数为
76-63=13(人)。
2021-2022学年五年级上册奥数培训专题——容斥原理(附答案)
2021-2022学年五年级上册奥数培训专题——容斥原理姓名:___________班级:___________考号:___________一、解答题1.一个班有小学生55人,订阅小学生数学报的有12人,订阅少年报的有9人,两种报纸都订的有5人,(1)订阅报纸的总人数是多少?(2)两种报纸都不订的有多少人?2.一个旅行社有36人,其中会英语的有24人,会法语的有18人,这两种语言都不会的有4人,这两种语言都会的有多少人?3.求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?4.艺术节那天,学校画廊里展出了每个年级学生的图画作品,其中有23幅不是五年级的,有21幅不是六年级的,五六年级参展的共有8幅,其他年级参展的有多少幅?5.将边长为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上,已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少?6.二(2)班有50人,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?7.某艺术中心有62名学生,其中会弹钢琴的有11名,会吹长笛的有56名,两样都不会的有4名。
两样都会的有多少名?8.某校选出50名学生参加作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖,两项比赛都没获奖的有多少人?9.四(1)班有40个学生,其中25人参加数学小组,23人参加航模小组,有19个人两个小组都参加了,那么有多少人两个小组都没参加?10.在一次数学测验中,所有同学都答了第1、2题,其中答对第一题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都打错。
问参加这次测验的有多少人?11.一个俱乐部里,会下中国象棋的有69人,会下国际象棋的有52人,两种都不会下的有12人,都会下的有30人这个俱乐部里有多少人?12.某班上体育课,全班排成4列(每列人数相等),从前往后数小芳第6个,从后往前数在第7个,这个班共有多少人?13.在1到200之间的全部自然数中,既不是8的倍数也不是5的倍数的数有几个?14.科技节那天,学校的科技室例展出了每个年级学生的作品,其中有114件不是一年级的,有96件不是二年级的,一二年级参展的作品共32件,其他年级参展的作品有多少件?试题答案1.16人;39人【分析】可将这55人分成4类,即只订阅小学生数学报,只订阅少年报,两种报纸都订阅,两种报纸都没有订阅,分别求出每一类的人数,再求出题目所求。
小学奥数趣味学习《容斥问题》典型例题及解答
小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长 _____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案43容斥原理(一)
年级四年级学科奥数版本通用版课程标题容斥原理(一)在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
有重叠的计数问题,即包含与排除问题。
研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图(韦恩图),解决简单的两类或三类被计数事物之间的重叠问题时采用韦恩图会更加便捷、直接。
下面我们就用文氏图推导两个对象的容斥原理公式。
容斥原理一:如果被计数的事物有A、B两类,那么,A、B两类元素个数和=既是A 类又是B类的元素个数+A类或B类元素个数。
写成公式形式即:A+B=A∪B+A∩B(其中符号“”读作“并”,相当于“和”或者“或”的意思;符号“”读作“交”,相当于“且”的意思)。
包含与排除原理告诉我们,要计算两个集合A B、的并集A B的元素的个数,可分以下两步进行:第一步:分别计算集合A B、、的元素个数,然后加起来,即先求A B+(意思是把A B 各自的所有元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B=(意思是“排除”了重复计算的元素个数)。
例1一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了。
已知做完语文作业的有37人;做完数学作业的有42人。
这些人中语文、数学作业都完成的有多少人?分析与解:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79(人),多于全班人数。
这是因为在统计做完语文作业的人数时语文、数学作业都完成的人数算了一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以这个班语文、数学作业都完成的有:79-48=31(人)。
四年级下奥数试题——第六讲包容与排斥(含答案)沪教版
精讲精练四年级思维数学 第六讲包容与排斥原理思维目标:根据题意,合理解决重叠部分的问题即包容与排斥原理。
数学目标:看谁算的巧思维: 两个图形分别用A 、B 表示,重叠部分用AB 表示,盖住的面积用N 表示,那么: N=A+B -AB ; AB= A+B -N ;A= N -B+AB ;B= N -A+AB 数学:先观察式子中的数字,然后进行合理巧算。
【例1】一个长为8厘米、宽为6厘米的长方形与一个边长为4厘米的正方形(如右图),放在桌子上。
它们盖住桌面的面积有多少平方厘米?金钥匙:A 面积:8×6=48(平方厘米)B 面积:4×4=16(平方厘米) AB 面积:3×3=9(平方厘米) N=A+B -AB = 48+16-9 =64-9=55(平方厘米)答:它们盖住桌面的面积有55平方厘米. 试金石:1、 四⑴班的每位学生都至少喜欢体育或文艺活动中的一种。
其中喜欢体育活动的有41人,喜欢文艺活动的有38人,两种活动都喜欢的有25人。
这个班共有学生多少人?学习目标 知识梳理AB2、某班从图书馆借来一批图书分给班上50位同学。
有30人各借到一本自然科学类书籍,有25人各借到一本文艺类书籍,既借了一本自然科学类书籍又借了一本文艺类书籍的学生有几人?【例2】某班40名学生在一次期中考试中每人至少有一门得优秀,语文得优秀的有14人,数学得优秀的有34人。
只有一门得优秀的各有多少人?金钥匙:根据题意,我们可以知道有些同学两门功课都得了优秀,在语文学科被算了一次,在数学学科也被算了一次,把两门学科得优秀的总人数去掉班级人数,多出的就是两门都得优秀的人数。
这样就能得出结果:34+14-40 数学一门:34-8=26(人)=48-40 语文一门:14-8=6(人)=8(人)答:数学一门得优秀的有26人,语文6人。
试金石:1、一次老师给全班同学做两道“动脑筋”的数学题,结果全班每人至少做对一题。
小学奥数总复习第七讲《容斥原理》练习
1、先包含——A +B 重叠部分A ∩B 计算了2次,多加了1次;2、再排除——A +B -A ∩B小学奥数总复习第七讲《容斥原理》练习容斥原理1:两量重叠问题计算公式:A ∪B=A +B-A ∩B说明:A ∪B 读作:“A 并B ”,表示A 、B 情况的总和。
A ∩B 读作:“A 交B ”,表示A 、B 的公共部分。
容斥原理2:三量重叠问题计算公式: A ∪B ∪C= A +B +C -A ∩B -B ∩C -A ∩C -A ∩B ∩C说明:A ∪B ∪读作:“A 并B 并C ”,表示A 、B 、C 情况的总和。
A ∩B ∩C 读作:“A 交B 交C ”,表示A 、B 、C 的公共部分。
1、有两块一样长的木板,各长130厘米,中间钉在一起后成了一块长木板,中间钉在一起的重叠部分时10厘米,长木板的长度是多少?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重叠部分长11厘米。
这两块木板各长多少厘米?3、老师出了两道数学题,在40人中,做对第一题的有31人,做对第二题的有28人,每人至少做对一道,两道题都做对的有几人?4、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种,已知参加赛跑的有36人,参加跳绳的有38人。
问两项比赛都参加的有几人?5、某班共有42人,参加美术小组的有11人,参加陶艺小组的有15人,有6人两个小组都参加。
这个班既没参加美术小组也没参加陶艺小组的有多少人?6、三(2)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸,三(1)班有学生多少人?7、校运动会上,四个年级共有118人参加跑步比赛。
其中一、二年级共有70人参加,一、三年级共有65人参加,二、三年级共有59人参加。
问:四年级有多少学生参加跑步比赛?8、某校三年级共有三个班级128名学生,一班和二班共有89人,二班和三班共有87人。
三年级各班有多少名学生?A ∩C A ∩B ∩C B ∩C A ∩B 图中小圆表示A 的个数,中圆表示B 的个数,大圆表示C 的个数 1、先包含——A +B +C 重叠部分A ∩B 、 B ∩C 、 A ∩C 重叠了2次, A ∩B ∩C 重叠了3次。
(精品)小学奥数7-7-5 容斥原理之最值问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
六年级下册奥数试题容斥原理(一)全国通用(含答案)
第9讲容斥原理(一)森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有80种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有60种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类140种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是139种。
”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
例如:请看下图,在长为30厘米,宽为20厘米的长方形铁板上钻了一个半径为5厘米的圆孔,请问:阴影部分的面积是多少平方厘米?这个图形是一个不规则图形,如果我们直接计算很难,由上图容易看出阴影面积加圆面积恰好等于长方形面积,而长方形面积与圆的面积都很好计算,因而有:阴影面积=20×30-5×5×π=600-25π(平方厘米)。
由此我们得到排除法:两个分量之和等于总量,当计算一个分量时,可用总量减去另一个分量。
即若A+B=C,则A=C-B。
请看下面的例题。
例1 一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。
已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人?分析:两项比赛都参加的学生人数,就是参加跑步人数、参加跳高人数重复的部分,排除掉重复部分,所得的就是全体参赛人数,也就是全班学生人数。
六年级奥林匹克数学十七 容斥原理(二)
十七、容斥原理(二)1.某校有500名学生报名参加学科竞赛,数学竞赛参加者共312名,作文竞赛参加者共353名,其中这两科都参加的有292名,那么这两科都没有参加的人数为 人.2.某门诊部统计某一天挂号的病人,内科150人,外科92人,其中内、外两科都求诊的18人,这一天共来了 个病人.3.两个正方形的纸片盖在桌面上,位置与尺寸如图所示,则它们盖住(平方厘米).4.不超过30的正整数中,是3的倍数或4的倍数的数有 个.5.在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人.那么甲班共有 人.6.在桌面上放置着三个两两重叠的圆纸片(如图),它们的面积都是100(cm 2)并知A 、B两圆重叠的面积是20(cm 2),A 、C 两圆重叠的面积为45(cm 2),B 、C 两圆重叠面积为31(cm 2),三个圆共同重叠的面积为15(cm 2),求盖住桌子的总面积是 平方厘米.7.在一次考试中,100分的有17人,语文得100分的有13人,两科都得100分的有7人,那么两科中至少有一科得100分的共有 人.全班45人中两科都不得100分的有 人.8.在1,2,3,…,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有 个.9.小于1000的自然数中,是完全平方数而不是完全立方数的数有 个.2 AB C10.某校有学生960人,其中有510人订阅“作文报”,有330人订阅“数学报”,有120人订阅“科学爱好者”,全校学生中有270人订阅两种报刊,有58人三种报刊都订,那么这学校中没有订阅任何报刊的有人.11.70名学生参加体育比赛,短跑得奖的31人,投掷得奖的36人,弹跳得奖的29人,短跑与投掷二项均得奖的12人,跑、跳、投三项均得奖的有5人,只得弹跳奖的有7人,只得投掷奖的有15人.求(1)只得短跑奖的人数;(2)得二项奖的总人数;(3)一项奖均未得的人数.12.64人订A、B、C三种杂志.订A种杂志的28人,订B种杂志的有41人,订C种杂志的有20人, 订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人,问三种杂志都订的有多少人?13.求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.14.夏日的一天,有10个同学去吃冷饮.向服务员交出需要冷饮的统计,数字如下,有6个人要可可;有5个人要咖啡;有5个人要果汁;有3个人既要可可又要果汁;有2个人要可可又要咖啡;有3个人要咖啡又要果汁;有1个人既要可可、咖啡又要了果汁.求证其中一定有一个人什么冷饮也没有要.十七、容斥原理(二)(答案)第[1]道题答案:127从图中可以看出:参加数学、作文竞赛的总人数为312+353-292=373(人)从而可知这两科都没有参加的人数为500-373=127(人).第[2]道题答案:224从图可以看出,来诊病人总数为150+92-18=224(人).内科150人外科92人18人第[3]道题答案:10.75把两个正方形面积加起来得22+32=13,但其中多算了一块阴影部分的面积,这部分面积为1.52=2.25(平方厘米),故两个正方形盖住的总面积是22+32-1.52=13-2.25=10.75(cm 2)第[4]道题答案:15不超过30的3的倍数有10330=⎥⎦⎤⎢⎣⎡(个),不超过30的4的倍数有7430=⎥⎦⎤⎢⎣⎡(个);不超过30的3⨯4=12的倍数有24330=⎥⎦⎤⎢⎣⎡⨯(个),因此不超过30的正整数中是3的倍数,或是4的倍数的数共有10+7-2=15(个).第[5]道题答案:41如图所示,易知总人数为(15+12-7)+21=41(人).第[6]道题答案:219由容斥原理知,盖住桌面的总面积为100+100+100-(20+45+31)+15=219(平方厘米).第[7]道题答案:23;22至少一科得100分的有17+13-7=23(人),两科都不得100分的有45-23=22(人).第[8]道题答案: 333 在1~1000的自然数中,2的倍数有50021000=⎥⎦⎤⎢⎣⎡(个),3的倍数有33331000=⎥⎦⎤⎢⎣⎡(个),2⨯3=6的倍数共有166321000=⎥⎦⎤⎢⎣⎡⨯(个),故是2或是3的倍数共有500+333-166=667(个),从而既不是2的倍数,又不是3的倍数的数共有1000-667=333(个).数学 语文 7 17 13第[9]道题答案:28小于1000的自然数中,是完全平方数的有12、22、…,312共31个.其中12=13,82=43,272=93.又是完全立方数,故符合条件的数有31-3=28(个)第[10]道题答案:121由容斥原理知,或订“作文报”或订“数学报”或订“科学爱好者”的总人数为510+330+120-270+58=748(人)故三种报刊都没有订的人数为960-748=212(人).第[11]道题答案:(1)如图,用矩形表示参赛的70个学生,而用三个圆表示分别在跑、跳、投中得奖的人.设x为只得短跑奖的人数,y为只在短跑和弹跳两项得奖的人数,z为只在弹跑与投掷两项得奖的人数,u为只在投掷和短跑两项得奖的人数.则有u=12-5=7(人),z=36-15-12=9(人),y=29-5-7=8(人),x=31-12-8=11(人).即只得短跑奖的有11人.(2)得二次奖的人数为y+z+u=8+9+7=24(人).(3)因至少得一次奖的人数为x+y+z+u+5+7+15=62(人),故一项奖均未得的人数为70-62=8(人).第[12]道题答案:设三种杂志均订的人数为x,则有28+41+20-10-12-12+x=64,解得x=9,即三种杂志都订的有9人.AxB C第[13]道题答案:在1~1994中,能被5整除的个数为39851994=⎥⎦⎤⎢⎣⎡;能被6整除的个数为33261994=⎥⎦⎤⎢⎣⎡;能被7整除的个数为28471994=⎥⎦⎤⎢⎣⎡;能被5⨯6=30整除的个数为66301994=⎥⎦⎤⎢⎣⎡;能被5⨯7=35整除的数为56351994=⎥⎦⎤⎢⎣⎡;能被6⨯7=42整除的个数为47421994=⎥⎦⎤⎢⎣⎡;能被5⨯6⨯7=210整除的个数为92101994=⎥⎦⎤⎢⎣⎡. 根据容斥原理,1~1994中或能被5,或能被6,或能被7整除的数的个数为:(398+332+284)-(66+54+47)+9=854,从而不能被5整除,也不能被6或7整除的自然数的个数为1994-854=1140(个).第[14]道题答案:要了冷饮的总人数为6+5+5-3-2-3+1=9(人),但总人数为10人,故一定有一个人什么冷饮也没有要.。
四年级奥数题第35讲容斥原理
第 35 讲 容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理 , 也叫容斥原理。
即当两 个计数部分有重复包含时 , 为了不重复计数 , 应从它们的和中排除重复部分。
容斥原理:对 n 个事物, 如果采用不同的分类标准 , 按性质 a 分类与性质 b 分类(如图) , 那么具有性质 a 或性质 b 的事物的个数 =N a + N b -N ab 。
例 1:一个班有 48 人, 班主任在班会上问:“谁做完语文作业?请举手!”有 37 人举手。
又问: “谁做完数学作业?请举手!”有 42 人举手。
最后问:“谁 语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成 的人数。
练习一1、五年级有 122 名学生参加语文、数学考试 , 每人至少有一门功课取得优秀成 绩。
其中语文成绩优秀的有 65人,数学优秀的有 87 人。
语文、数学都优秀的有 多少人?2、四年级一班有 54 人 , 订阅《小学生优秀作文》和《数学大世界》两种读物的 有 13人, 订《小学生优秀作文》的有 45人, 每人至少订一种读物 ,订《数学大世 界》的有多少人?精讲精练:例2:某班有36 个同学在一项测试中, 答对第一题的有25 人, 答对第二题的有23 人, 两题都答对的有15 人。
问多少个同学两题都答得不对?练习二1、五(1)班有40 个学生, 其中25 人参加数学小组,23 人参加科技小组, 有19 人两个小组都参加了。
那么, 有多少人两个小组都没有参加?2、一个班有55 名学生, 订阅《小学生数学报》的有32 人, 订阅《中国少年报》的有29人, 两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人, 参加语文竞赛的有28人, 参加数学竞赛的有27人, 如果两科都没有参加的有25人, 那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人, 会法语的有18人, 两样都不会的有4 人。
小学四年级奥数第35讲 容斥原理后附答案
第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。
Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容斥原理(二)
【例题分析】
例1. 有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。
第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。
只有两次达到优秀的有多少人
分析与解:“每人至少有一次达到优秀”说明没有三次都没达到优秀的。
要求只有两次达到优秀的人数,就是求重叠两层的部分(图中阴影部分)。
101315251211
++--⨯=(人)
答:只有两次达到优秀的有11人。
例2. 在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。
问:共有几个小朋友去了冷饮店
分析与解:根据题意画图。
方法一:664310111110++-+-+-++=()()()(人) 方法二:664311210++---⨯=(人) 答:共有10个小朋友去了冷饮店。
例3. 有28人参加田径运动会,每人至少参加两项比赛。
已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。
问:只参加跑和投掷两项的有多少人
分析与解:“每人至少参加两项比赛”说明没有不参加的,也没有参加一项比赛的,我们可以在下图中参加一项的区域用0表示。
281783--=(人)
答:只参加跑和投掷两项的有3人。
例4. 某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。
老师告诉同学既参加数学小组又参加语文小组的有3人,既参加
数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。
分析与解:根据已知条件画出图。
三圆盖住的总体为49人,假设既参加数学又参加英语的有x 人,既参加语文又参加英语的有y 人,可以列出这样的方程:3020103149++---+=x y 整理后得:x y +=9
由于x 、y 均为质数,因而这两个质数中必有一个偶质数2,另一个质数为7。
答:既参加英语又参加数学小组的为2人或7人。
例5. 某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。
问这个班最多多少人最少多少人
分析与解:根据题意画图。
设三科都得满分者为x
全班人数=++---++2020207893x 整理后:全班人数=39+x
39+x 表示全班人数,当x 取最大值时,全班人数就最多,当x 取最小值时,全班人数就最少。
x 是数学、语文、英语三科都得满分的同学,因而x 中的人数一定不超过两科得满分的人数,即x x ≤≤78,且x ≤9,由此我们得到x ≤7。
另一方面x 最小可能是0,即没有三科都得满分的。
当x 取最大值7时,全班有()39746+=人,当x 取最小值0时,全班有()390+=39人。
答:这个班最多有46人,最少有39人。
【模拟试题】(答题时间:30分钟)
1. 六年级共有96人,两种刊物每人至少订其中一种,有23的人订《少年报》,有1
2
的人订《数学报》,两种刊物都订的有多少人
2. 小明和小龙两家合住一套房子,门厅、厨房和厕所为公用,在登记住房面积时,两家登记表如
他们住的一套房子共有多少平方米
3. 某班45名同学参加体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远都得优者7人,跳高、百米得优者6人,跳高、跳远均得优者8人,跳高得优者22人,全班只有1名同学各项都没达优秀,求三项都是优秀的人数。
4. 某班四年级时,五年级时和六年级时分别评出10名三好学生,又知四、五年级连续三好生4人,五、六年级连续三好生3人,四年级、六年级两年评上三好生的有5人,四、五、六三年没评
过三好生的有20人,问这个班最多有多少名同学,最少有多少名同学
【试题答案】
1. 六年级共有96人,两种刊物每人至少订其中一种,有23的人订《少年报》,有1
2
的人订《数学报》,两种刊物都订的有多少人
9623961
2
961696231
2
116⨯
+⨯-=⨯+-=()()()
人或人
答:两种刊物都订的有16人。
2. 小明和小龙两家合住一套房子,门厅、厨房和厕所为公用,在登记住房面积时,两家登记表如
他们住的一套房子共有多少平方米
38441284582014128458+---=++++=()
()
平方米或平方米
答:这套房子共有58平方米。
3. 某班45名同学参加体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远都得优者7人,跳高、百米得优者6人,跳高、跳远均得优者8人,跳高得优者22人,全班只有1名同学各项都没达优秀,求三项都是优秀的人数。
4514420182276839-=++---=()
()
人人
44395-=()人
4. 某班四年级时,五年级时和六年级时分别评出10名三好学生,又知四、五年级连续三好生4人,五、六年级连续三好生3人,四年级、六年级两年评上三好生的有5人,四、五、六三年没评过三好生的有20人,问这个班最多有多少名同学,最少有多少名同学 设三年连续三好生人数为x 人 全班人数=⨯---++10354320x ……
全班人数=+38x
x 最大是3,最小是0
所以这个班最多有()38341+=名同学,最少有()380+=38名同学。