小学奥数典型问题解析.
五年级奥数典型练习100例(详细解析)
五年级奥数典型练习100例(详细解析)1 五年级奥数(几何问题)及答案:直角三角形【答案解析】2 五年级奥数(几何问题)及答案:三角形面积右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.三角形面积答案:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD(见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD是三角形ABD与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG与三角形GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD 的面积,等于4×4÷2=83 五年级奥数(几何问题)及答案:阴影面积计算如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【答案解析】如下图,连接FC,△DBF、△BFG的面积相等,设为x平方厘米;△FGC、△DFC的面积相等,设为y平方厘米,那么△DEF的面积为y平方厘米比较②、①式,②式左边比①式左边多2x,②式右边比①式右边大0.5,有2x=0.5,即x=0.25,y=0.25.而阴影部分面积为y+ y= ×0.25= 平方厘米.4 五年级奥数(几何面积)及答案:梯形阴影面积图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【答案解析】设△ADF的面积为上,△BCF的面积为下,△ABF的面积为左,△DCF的面积为右.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE的面积为1.8,那么△AEF的面积为1.2,则EF:DF= :=1.2:3=0.4.△CEF与△CDF的面积比也为EF与DF的比,所以有=0.4× =0.4×(3+9)=4.8.即阴影部分面积为4.8.5 五年级奥数(行程问题)及答案:外出时间某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【答案解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.6 五年级奥数(行程问题)及答案:发车间隔某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【答案解析】设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.7 五年级奥数(约数与倍数)及答案:最大公约数A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少?【答案解析】由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以 .对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以 .对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=25508 五年级奥数(包含与排除)及答案:读故事书甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【答案解析】只考虑甲乙两人情况,有甲、乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.9 五年级奥数(包含与排除)及答案:剪绳子有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?【答案解析】只需先计算剪了多少刀,再加上1即为剪成的段数.从一端开始,将绳上距离这个端点整数厘米数的点编号,并将距离长度作为编号.10 五年级奥数(整除问题)及答案:除数各数位数字是0、1或2,且能被除数25整除的最小自然数是多少?【答案解析】225=25×9,所以要求分别能被25和9整除,要能被25整除,所以最后两位就是00。
50道奥数题及答案解析
50道奥数题及答案解析以下是50道奥数题及答案解析。
希望对你有帮助。
1. 小明有三只球,他把其中一只球放进一个盒子里。
请问,小明有多少种放置球的方式?答案解析:小明可以把球放在第一只、第二只或者第三只盒子中,所以有3种放置方式。
2. 如果A和B是两个正整数,且A的平方减去B的平方等于15,问A和B的值分别是多少?答案解析:设A>B,由(A+B)(A-B)=15得出,只有3和5满足要求,所以A=4,B=1。
3. 一个矩形的宽度是20厘米,周长是70厘米。
请问这个矩形的长度是多少?答案解析:设矩形的长度为L,则2(L+20)=70,解得L=15厘米。
4. 甲、乙两位学生正在一起排队,甲比乙在队伍中靠前4人,甲在队伍中的位置是第7位,问乙在队伍中的位置是第几位?答案解析:甲比乙靠前4人,所以乙在队伍中的位置是第7+4=11位。
5. 有一个三位数恰好能被5和7整除,且每一位上的数字都不相同,问这个三位数是多少?答案解析:我们知道这个三位数必须是5和7的倍数,即35的倍数。
35的倍数中,只有105满足题目要求,所以答案是105。
6. 一个年龄为x岁的人,这个人的年龄2倍之后再加2岁得到的结果是44,那么这个人现在多少岁?答案解析:设这个人的年龄为x岁,则2x+2=44,解得x=21岁。
7. 在一个等差数列中,它的首项是4,公差是3,第10项是多少?答案解析:第n项的公式为a(n) = a(1) + (n-1)d,代入a(1)=4,d=3,n=10得到a(10) = 4 + (10-1)3 = 4 + 27 = 31。
8. 一个数字的百位、十位和个位分别是1、2和3。
把这个数字的百位和个位互换,得到的新数字是多少?答案解析:将百位和个位互换得到新数字是321。
9. 两个数之和是8,它们的差是4,这两个数分别是多少?答案解析:设这两个数分别为x和y,则x+y=8,x-y=4。
解以上方程组,得到x=6,y=2。
五年级奥数典型题
五年级奥数典型题一、和差问题。
1. 甲、乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?- 解析:- 我们可以先求出两班人数的和与差,和是98人,差是6人。
- 根据和差问题的基本公式:大数=(和 + 差)÷2,小数=(和 - 差)÷2。
- 甲班人数是大数,甲班人数=(98 + 6)÷2 = 52(人)。
- 乙班人数是小数,乙班人数=(98 - 6)÷2 = 46(人)。
二、和倍问题。
2. 果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。
求梨树、桃树和苹果树各有多少棵?- 解析:- 设苹果树的棵数为1份,那么梨树的棵数就是3份,桃树的棵数就是4份,三种树的总份数就是1+3 + 4=8份。
- 因为三种树共有1200棵,所以1份(苹果树的棵数)为1200÷8 = 150棵。
- 梨树的棵数为150×3 = 450棵。
- 桃树的棵数为150×4 = 600棵。
三、差倍问题。
3. 有两根铁丝,第一根长18米,第二根长10米,两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,两根铁丝各用去多少米?- 解析:- 两根铁丝的长度差是18 - 10 = 8米,这个差是不变的。
- 用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,那么这个长度差就是第二根剩下长度的3 - 1=2倍。
- 所以第二根剩下的长度为8÷2 = 4米。
- 第二根原来长10米,所以用去了10 - 4 = 6米,因为两根铁丝用去的长度相同,所以两根铁丝各用去6米。
四、年龄问题。
4. 爸爸今年43岁,儿子今年11岁。
几年后爸爸的年龄是儿子的3倍?- 解析:- 父子的年龄差是43 - 11 = 32岁,这个年龄差是不变的。
- 当爸爸的年龄是儿子的3倍时,年龄差就是儿子年龄的3 - 1 = 2倍。
小学奥数50道经典题目及解析
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱: 32×10=320(元)答:一张桌子320元,一把椅子32元。
2. 现有3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
小学生奥数题目及解析
小学生奥数题目及解析一、题目1、小明去买糖果,买 5 颗糖果还剩下 3 元钱,买 7 颗糖果还差 1元钱,请问每颗糖果多少钱?小明一开始带了多少钱?2、鸡兔同笼,笼子里一共有 35 个头,94 只脚,请问鸡和兔各有多少只?3、一条长 100 米的道路,在道路一侧从头到尾每隔 5 米种一棵树,一共要种多少棵树?4、有一堆苹果,平均分给 5 个小朋友多 2 个,平均分给 6 个小朋友少 1 个,这堆苹果最少有多少个?二、解析1、对于第一个题目,我们可以通过设未知数来解决。
设每颗糖果的价格为 x 元,小明一开始带的钱为 y 元。
根据题目中的条件,可以列出以下两个方程:5x + 3 = y (买 5 颗糖果还剩下 3 元钱)7x 1 = y (买 7 颗糖果还差 1 元钱)将两个方程联立,得到:5x + 3 = 7x 13 + 1 = 7x 5x4 = 2xx = 2把 x = 2 代入 5x + 3 = y 中,可得:5×2 + 3 = 13(元)所以,每颗糖果 2 元,小明一开始带了 13 元。
这种题目主要考查了学生对未知数的运用和方程的理解,通过找出题目中的等量关系,列出方程,进而求解。
2、对于鸡兔同笼的问题,我们可以使用假设法来解题。
假设笼子里全是鸡,那么一共有脚 35×2 = 70 只。
但实际有 94 只脚,多出来的脚是因为把兔当成鸡来算,每只兔少算了4 2 =2 只脚。
所以兔的数量为:(94 70)÷ 2 = 12(只)鸡的数量为:35 12 = 23(只)这种题目能锻炼学生的逻辑思维和推理能力,让学生学会从不同的角度思考问题。
3、这道题是植树问题。
100 米的道路,每隔 5 米种一棵树,那么100÷5 = 20 个间隔。
但是因为从头到尾都要种树,所以树的数量比间隔数多 1,即 20 +1 = 21 棵。
这类题目需要学生理解间隔和物体数量之间的关系,培养学生的空间想象能力。
三年级数学奥数应用题100道及答案解析
三年级数学奥数应用题100道及答案解析1. 商店里有15 盒铅笔,每盒8 支,卖出了30 支,还剩多少支?答案:15×8 - 30 = 90(支)解析:先算出商店里原有的铅笔总数为15×8 = 120 支,卖出30 支后,用总数减去卖出的数量得到剩余数量。
2. 果园里有苹果树80 棵,梨树的棵数是苹果树的3 倍,梨树有多少棵?答案:80×3 = 240(棵)解析:梨树的棵数是苹果树的 3 倍,用苹果树的数量乘以3 即可得到梨树的数量。
3. 小明有45 张邮票,小红的邮票数比小明的2 倍多10 张,小红有多少张邮票?答案:45×2 + 10 = 100(张)解析:先算出小明邮票数的 2 倍为45×2 = 90 张,再多10 张,就是小红的邮票数。
4. 学校买来20 个篮球,买来的足球比篮球多5 个,买来足球多少个?答案:20 + 5 = 25(个)解析:足球数量比篮球多5 个,用篮球的数量加上5 得到足球的数量。
5. 一辆汽车每小时行驶80 千米,3 小时行驶多少千米?答案:80×3 = 240(千米)解析:根据路程= 速度×时间,可得3 小时行驶的路程为80×3 = 240 千米。
6. 三年级有3 个班,每班45 人,一共有多少人?答案:3×45 = 135(人)解析:用班级数乘以每班的人数,得到总人数。
7. 一本书有120 页,小明每天看15 页,看了4 天,还剩多少页?答案:120 - 15×4 = 60(页)解析:先算出小明4 天看的页数为15×4 = 60 页,再用总页数减去已看的页数得到剩余页数。
8. 养殖场有鸡180 只,鸭的只数是鸡的2 倍少30 只,鸭有多少只?答案:180×2 - 30 = 330(只)解析:先算出鸡只数的 2 倍为180×2 = 360 只,再减去30 只得到鸭的数量。
小学数学50道经典奥数题及解析
小学数学50道经典奥数题及解析1. 小明的妈妈给他买了一些贴纸,其中3/4是花纹贴纸,剩下的是字母贴纸。
如果小明得到了60个字母贴纸,那么他一共收到了多少个贴纸?解析:假设小明一共收到了x个贴纸,则有3/4x是花纹贴纸,剩下的x - 3/4x = 1/4x 是字母贴纸。
根据题目可得:1/4x = 60。
解方程可得:x = 240。
所以小明一共收到了240个贴纸。
2. 某个数的三分之一加上四分之一等于40,这个数是多少?解析:设这个数为x,根据题目可得:1/3x + 1/4x = 40。
化简方程可得:7/12x = 40。
解方程可得:x = 40 * 12 / 7 = 68.57。
所以这个数约等于68.57。
3. 甲、乙、丙三个人合作种地,甲每天种地的1/5,乙每天种地的1/4,丙每天种地的1/3。
如果三个人连续工作8天,他们一共种了多少地?解析:甲、乙、丙三个人每天种地的比例为1/5:1/4:1/3。
将分母相同化简后相加可得:12/60 + 15/60 + 20/60 = 47/60。
所以三个人连续工作8天一共种了(47/60) * 8 = 6.27 地。
4. 一个两位数,各位数字的和是9,除以6的余数是3。
这个两位数是多少?解析:设这个两位数为10a + b,其中a为十位上的数字,b为个位上的数字。
根据题目可得:a + b = 9,并且(10a + b) % 6 = 3。
列举10的倍数加上3的倍数得到的数,最终找到满足条件的两位数为33。
所以这个两位数是33。
5. 甲、乙、丙三个人一起喝了一桶水,甲喝了其中的1/4,乙喝了剩下的1/3,丙喝了剩下的1/2。
如果桶中还有1升水,那么这桶水一共有多少升?解析:设桶中水的总体积为x,根据题意可得:(3/4) * (2/3) * (1/2) * x = 1。
化简方程可得:x = 4/3。
所以这桶水一共有(4/3 + 1) = 7/3升,约等于2.33升。
小学奥数典型问题解析.
小学奥数典型问题解析一、盈亏问题解答盈亏问题的关键在于找出两次分配中,由于每次分配的数量的改变和剩余数变化的情况之间的关系,然后运用盈亏问题的基本数量关系求出答案。
盈亏问题的基本数量关系有:(盈+亏)÷两次分配的差数(大盈-小盈)÷两次分配的差数例1:若干名同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位。
问有多少名同学多少条船分析:两种乘船情况,在面对同样多人数的时候,出现了多5人,少4人两种情形,差了5+4=9人。
由于一条船4人,另一种情况一条船5人,相对应的两条船差5-4=1人。
几条船最终相差9人,为什么呢9÷1=9条船,共有4×9+5=41名同学。
;例2:若干同学去划船,他们租了一些船,若每船4人则多5人,若一条船上做6人,其余每船5人则船上有3个空位。
问有多少名同学多少条船分析:将第二个情况转化为每船5人则船上有2个空位,两种乘船情况,在面对同样多人数的时候,出现了多5人,少2人两种情形,差了5+2=7人。
由于一条船4人,另一种情况一条船5人,相对应的两条船差5-4=1人。
几条船最终相差7人,为什么呢7÷1=7条船,共有4×7+5=33名同学。
例3:有一堆螺丝和螺母,若1个螺丝配2个螺母,则多10个螺母;若1个螺丝配3个螺母,则少6螺母。
问:螺丝、螺母各有多少个分析:由“1个螺丝配2个螺母,则多10个螺母”或知螺母是螺丝的2倍多10个;由“1个螺丝配3个螺母,则少6螺母”,可知螺母是螺丝的3倍少6个。
螺丝有:(10+6)÷(3-2)=16个螺母有:16×2+10=42个】A,B两车同时从甲、乙两站相对开出,第一次距乙站78.4千米处相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后,立即沿原路返回,途中两车在距甲站53.2千米相遇,这次相遇点相距多少千米分析:两车同时从两地相向而行,第一次相遇两车共行了一个全程,在距乙站78.4千米处相遇,也就是B车行了千米,说明每行一个全程B车就行千米,第二次相遇两车共行了三个全程,B车共行了(*3)千米,减去千就是全程的距离。
小学六年级奥数应用题100道及答案解析完整版
小学六年级奥数应用题100道及答案解析完整版1. 有一堆苹果,第一次吃了总数的20%,第二次吃了余下的25%,还剩下120 个,这堆苹果原来有多少个?答案:200 个解析:设这堆苹果原来有x 个。
第一次吃了0.2x 个,剩下0.8x 个。
第二次吃了0.25×0.8x = 0.2x 个,所以0.8x - 0.2x = 120,解得x = 200 。
2. 一项工程,甲单独做10 天完成,乙单独做15 天完成,两人合作多少天完成?答案:6 天解析:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要1÷(1/6) = 6 天。
3. 一个长方体的棱长总和是80 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少?答案:384 立方厘米解析:长方体的棱长总和= 4×(长+ 宽+ 高),所以长+ 宽+ 高= 20 厘米。
长= 20×5/(5 + 3 + 2) = 10 厘米,宽= 20×3/(5 + 3 + 2) = 6 厘米,高= 20×2/(5 + 3 + 2) = 4 厘米,体积= 10×6×4 = 384 立方厘米。
4. 学校图书馆有科技书和文艺书共630 本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,买进了多少本科技书?答案:90 本解析:原来有科技书630×20% = 126 本,设买进x 本科技书,则(126 + x) / (630 + x) = 30%,解得x = 90 。
5. 甲乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇,各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇,A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,甲乙合走一个全程,甲走了60 千米。
小学数学三年级奥数应用题100道及答案解析
小学数学三年级奥数应用题100道及答案解析1. 商店里有15 盒铅笔,每盒8 支,卖出了30 支,还剩多少支?答案:15×8 - 30 = 90(支)解析:先算出商店里铅笔的总数为15×8 = 120 支,卖出30 支后,剩余120 - 30 = 90 支。
2. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达。
若要4 小时到达,则每小时需要多行多少千米?答案:60×5÷4 - 60 = 15(千米)解析:甲地到乙地的距离为60×5 = 300 千米,若4 小时到达,速度应为300÷4 = 75 千米/小时,所以每小时要多行75 - 60 = 15 千米。
3. 学校买来80 本科技书,分给六年级35 本,剩下的分给其它5 个年级,平均每个年级分到多少本?答案:(80 - 35)÷5 = 9(本)解析:先算出剩下的书为80 - 35 = 45 本,再平均分给 5 个年级,每个年级分到45÷5 = 9 本。
4. 有48 个同学参加合唱队,平均分成8 组,每组有多少人?答案:48÷8 = 6(人)解析:总人数除以组数即为每组的人数。
5. 果园里有苹果树120 棵,梨树的棵数是苹果树的2 倍,桃树比梨树多30 棵,桃树有多少棵?答案:120×2 + 30 = 270(棵)解析:梨树的棵数为120×2 = 240 棵,桃树比梨树多30 棵,所以桃树有240 + 30 = 270 棵。
6. 小明买了3 本笔记本,用去12 元。
小云也买了同样的6 本笔记本,小云用了多少钱?答案:12÷3×6 = 24(元)解析:先算出一本笔记本的价格为12÷3 = 4 元,小云买6 本需要4×6 = 24 元。
7. 三年级同学做操,如果每排站20 人,正好站18 排,如果每排站9 人,可以站多少排?答案:20×18÷9 = 40(排)解析:先算出总人数为20×18 = 360 人,再除以每排站9 人,得到可以站360÷9 = 40 排。
小学六年级奥数题100道及答案解析(完整版)
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
小学五年级奥数题例题分析
小学五年级奥数题例题分析小学五年级奥数题例题分析【第一篇:猎狗要几步才能追上兔子】一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?答案与解析:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。
所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
【第二篇:能够分成多少小三角形】在三角形ABC内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?答案与解析:整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成(360×100+180)÷180=201个小三角形.【第三篇:需要操作电脑多少次】向电脑输入汉字,每个页面最多可输入1677个五号字。
现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。
每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作多少次?答案与解析:根据题意,每次操作的结果字数都是前一次的2倍,2的10次方是1024,那么再复制粘贴一次就可超过1677,即需要11次。
【第四篇:这个结果的商是多少】1234567891011121314…20082009除以9,商的个位数字是多少?答案与解析首先看这个多位数是否能为9整除,如果不能,它除以9的.余数为多少。
由于任意连续的9个自然数的和能被9整除,所以它们的各位数字之和能被9整除,那么把这9个数连起来写,所得到的数也能被9整除。
由于2009÷9=223…2,所以1234567891011121314…20082009这个数除以9的余数等于20082009(或者12)除以9的余数,为 3.那么1234567891011121314…20082009除以9的商,等于这个数减去3后除以9的商,即1234567891011121314…20082006除以9的商,那么很容易判断商的个位数字为4。
小学四年级数学奥数应用题100道及答案解析
小学四年级数学奥数应用题100道及答案解析1. 学校买来5 箱铅笔,每箱有20 盒,每盒有8 支铅笔,一共买来多少支铅笔?答案:5×20×8 = 800(支)解析:先计算每箱铅笔的数量20×8 = 160 支,再计算5 箱铅笔的总数5×160 = 800 支。
2. 一辆汽车4 小时行驶了280 千米,照这样的速度,7 小时能行驶多少千米?答案:280÷4×7 = 490(千米)解析:先算出汽车每小时行驶的速度280÷4 = 70 千米/小时,再乘以7 小时得到7 小时行驶的路程70×7 = 490 千米。
3. 果园里有苹果树360 棵,梨树的棵数比苹果树少80 棵,果园里一共有多少棵树?答案:360 - 80 + 360 = 640(棵)解析:先算出梨树的数量360 - 80 = 280 棵,再加上苹果树的数量360 棵得到总数640 棵。
4. 一套运动服上衣85 元,裤子55 元,买15 套这样的运动服需要多少钱?答案:(85 + 55)×15 = 2100(元)解析:先算出一套运动服的价钱85 + 55 = 140 元,再乘以15 套得到总价140×15 = 2100 元。
5. 小明看一本240 页的故事书,已经看了80 页,剩下的要在5 天内看完,平均每天看多少页?答案:(240 - 80)÷5 = 32(页)解析:先算出剩下的页数240 - 80 = 160 页,再除以5 天得到每天看的页数160÷5 = 32 页。
6. 工厂要生产800 个零件,已经生产了300 个,剩下的要在10 天内完成,平均每天生产多少个?答案:(800 - 300)÷10 = 50(个)解析:先算出还需要生产的零件数量800 - 300 = 500 个,再除以10 天得到每天需要生产的数量500÷10 = 50 个。
小学奥数7大例题与解析
小学奥数7大例题与解析生活中的许多事都蕴含着数学思想,我们先看一个猜数游戏。
甲心中想一个32以内的数,乙只许问“比某数大吗?”甲只回答“是”或“不”,那么乙最多5次必可猜中。
比如甲想的是23,下面是5次提问与回答:(1)“比16大吗?”,“是”;(2)“比24大吗?”,“不”;(3)“比20大吗?”,“是”;(4)“比22大吗?”,“是”;(5)“比23大吗?”,“不”。
于是乙猜中甲想的23。
这里乙用的是对分法。
32的一半是16,第1次问话后,乙知道甲想的数在17~32之间;17~32中间的数是24,第二次问话后,乙知道甲想的数在17~24之间。
依此类推,因为32=25,经5次对分,必猜中。
对分法适用于一次试验仅有两种不同结果的情形。
例1.有1000箱外形完全相同的产品,其中999箱重量相同,有1箱次品重量较轻。
现有一个称(一次可称量500箱),怎样才能尽快找出这箱次品?分析与解:因为称量一次只有两种结果:等于规定重量或轻于规定重量,所以可用对分法。
先取500箱称,若等于规定重量,则次品在另500箱中;若轻于规定重量,则次品在这500箱中。
然后对有次品的500箱再对分,取其中的250箱称……因为1000<1024=210,所以经过10次称必可查出次品。
能用一台天平尽快地将这粒假珍珠挑出来?法。
先将81粒珍珠三等分,在天平两边各放27粒珍珠,天平下还有27粒。
若两边一样重,则假珍珠在天平下的27粒中;若左边重,则假珍珠在天平右边的27粒中;若右边重,则假珍珠在天平左边的27粒中。
然后再将有假珍珠的一堆三等份,继续上面的做法。
因为81=34,所以只需要称4次就可将假珍珠挑出来。
我们再看看“空瓶换酒问题”。
例3、某商店出售啤酒,规定每5个空啤酒瓶能换1瓶啤酒。
张叔叔家买了80瓶啤酒,喝完后再按规定用空啤酒瓶去换啤酒,那么他们家前后共能喝到多少瓶啤酒?喝掉80瓶啤酒,用80个空瓶换回16瓶啤酒;喝掉16瓶啤酒,用16个空瓶换回3瓶啤酒余1个空瓶;喝掉3瓶啤酒,连上次余下的1个空瓶还剩4个空瓶。
小学五年级奥数应用题100道及答案解析
小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。
同时点燃后,平均每分钟都烧掉2 厘米。
多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。
则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。
56 - 2x = 3×(36 - 2x),解得x = 13 。
2. 鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。
40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。
4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。
5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。
答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。
x + x + 4 + x + 8 = 105 ,解得x = 31 。
6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。
几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。
小学奥数题目解析
小学奥数题目解析小学奥数是指面向小学生的数学竞赛,旨在培养他们的逻辑思维、数学能力和解决问题的能力。
在这篇文章中,我们将对一些小学奥数题目进行解析,让读者更好地理解题目背后的求解思路。
1. 问题一:有一包糖果,小明拿走其中的1/2,小红拿走其中的1/3,最后还剩下6颗糖果。
那么原始的糖果共有多少颗?解析:假设原始的糖果共有x颗。
根据题意可得方程:x - x/2 - x/3= 6。
化简方程得:6x = 36,解得:x = 6。
所以原始的糖果共有6颗。
2. 问题二:某数的38%等于342,那么这个数是多少?解析:假设这个数为x,根据题意可得方程:0.38x = 342。
转化为等式:x = 342 / 0.38,解得:x ≈ 900。
3. 问题三:小明和小红一起种了一片田地,小明的种子比小红的多1/4,若小明种了60颗种子,那么小红种了多少颗?解析:根据题意可知,小明种子数为60颗。
设小红种子数为x,则有方程:x = 60 - 60/4。
化简方程得:x = 60 - 15,解得:x = 45。
所以小红种了45颗种子。
4. 问题四:一个三位数297,将其个位与十位交换后得到的数比原数小198,求原数。
解析:将三位数297表示为100a+10b+c,根据题意可得方程:100c + 10b + a - (100a + 10c + b) = 198。
化简方程得:99c - 99a = 198,整理得:c - a = 2。
由于c和a都是一位数,所以c-a的取值只能为2。
因此,c取7,a取5,所以原数为557。
5. 问题五:一辆汽车以每小时60公里的速度行驶,行驶4小时后,汽车剩余油量的1/4。
若要行驶8小时,则需要多少油量?解析:假设汽车一开始油量为x升,根据题意可得方程:4 * 60 = (1 - 1/4) * x。
化简方程得:240 = (3/4) * x,解得:x = 320,所以汽车需要320升的油量。
小学奥数(典型例题口诀及解析)
小学数学中的典型例题口诀及解析一、倍数问题(和差倍问题)(一)和差问题已知两数的和与差,求这两个数各是多少的应用题。
1、线段图:2、数量关系式:①先求大数大数=(和+差)÷2小数=和-大数②先求小数小数=(和-差)÷2大数=和-大数【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
典型例题:1.已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)÷2=6,小数=(10-2)÷2=4。
2.两筐梨子共有120个,如果从第一筐中拿出10个放入第二筐中,那么两筐的梨子的个数相等,问两筐原来各有多少梨?【解析】从第一个筐拿10个放第二个筐,个数相等,说明第一个筐比第二个筐多20个梨,故第一个筐梨数为(120+20)÷2=70(个),第二个筐梨数为(120-20)÷2=50(个).(二)和倍问题已知两个数的和与这两个数的倍数关系,求这两个数各是多少的应用题。
1、线段图2、数量关系式:两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和—小数=大数(几倍数)典型例题:1.学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?【解析】:二、三年级所得图书本数的和360本相当于二年级的(1+2)倍,则二年级所得图书本数的360÷(1+2)=120本,三年级为120×2=240本。
2.书架上有文艺书和科技书共15本,文艺书的本数比科技书的2倍多3本,文艺书和科技书各有多少本?【解析】科技书为(15-3)÷(2+1)=4(本)文艺书为15—4=11(本)(三)差倍问题典型例题:1.某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变为公鸡只数的4倍,则养鸡场原来一共养了___________只鸡。
小学80道奥数题(附答案)全解
小学80道奥数题(附答案)全解作为有效提高学生数学思维能力和解题能力的一种训练方式,奥林匹克数学题一直备受关注。
今天,我们将为大家带来一份精选的小学80道奥数题,并附上详细的解答,帮助大家更好地理解和应用这些数学知识。
以下是全部题目及其解析:1. 小明有20只球,其中篮球和足球各占一半,那么有多少只篮球?解析:因为20只球中篮球和足球各占一半,所以篮球数等于足球数,设篮球数为x,则篮球数加上足球数等于20,即x + x = 20,解得x = 10。
所以小明有10只篮球。
2. 甲、乙两人参加长跑比赛,比赛开始时,乙领先甲150米,经过5分钟,甲超过了乙的位置,假设甲、乙的速度不变,求甲、乙两人每分钟的速度差。
解析:设甲的速度为x,乙的速度为y,则5分钟内甲走了5x的距离,乙走了5y的距离,因为甲超过了乙的位置,所以5x = 5y + 150,即x = y + 30。
所以甲、乙两人每分钟的速度差为x - y = (y + 30) - y =30米。
3. 一根绳子长120cm,小明欲将其分成4段,使第一段比第二段短3cm,第二段比第三段短3cm,第三段比第四段短3cm,请问每段的长度分别为多少?解析:设第一段的长度为x,则第二段的长度为x + 3,第三段的长度为x + 3 + 3,第四段的长度为x + 3 + 3 + 3。
根据题意,这四段的长度之和等于120cm,即x + (x + 3) + (x + 3 + 3) + (x + 3 + 3 + 3) = 120,解得x = 27。
所以第一段的长度为27cm,第二段的长度为30cm,第三段的长度为33cm,第四段的长度为36cm。
4. 一个两位数,十位数比个位数多9,如果将这个两位数的十位数和个位数对调,得到的数比原数大27,求这个两位数。
解析:设这个两位数的十位数为x,个位数为y,则根据题意得到方程组:10x + y = 10y + x + 9,10y + x + 27 = 10x + y。
小学数学奥数入门100题及答案解析(完整版)
小学数学奥数入门100题及答案解析(完整版)1. 小红有8 个苹果,小明的苹果数是小红的2 倍,小明有()个苹果。
A. 16B. 10C. 18D. 14答案:A解析:小红有8 个苹果,小明的是小红的2 倍,小明有8×2 = 16 个苹果。
2. 一个数减去15 等于30,这个数是()A. 15B. 30C. 45D. 25答案:C解析:这个数= 30 + 15 = 453. 20 以内的质数有()个。
A. 7B. 8C. 9D. 10答案:B解析:20 以内的质数有2、3、5、7、11、13、17、19,共8 个。
4. 有一堆苹果,平均分给5 个小朋友,还剩2 个,这堆苹果至少有()个。
A. 7B. 12C. 17D. 22答案:A解析:平均分给5 个小朋友,每人1 个还剩2 个,至少有5 + 2 = 7 个。
5. 计算3 + 5 + 7 + 9 + 11 的结果是()A. 35B. 30C. 25D. 45答案:A解析:3 + 5 + 7 + 9 + 11 = 356. 一个两位数,十位上是7,个位上是5,这个数是()A. 57B. 75C. 70D. 50答案:B解析:十位是7 表示7 个十,个位是5 表示5 个一,这个数是75。
7. 下面能围成三角形的三条边是()A. 2cm、3cm、5cmB. 3cm、3cm、6cmC. 3cm、4cm、5cmD. 2cm、2cm、6cm答案:C解析:三角形任意两边之和大于第三边,只有C 选项 3 + 4 > 5 。
8. 小明早上7 时30 分起床,8 时20 分出发去上学,小明起床到出发经过了()分钟。
A. 50B. 40C. 30D. 60答案:A解析:8 时20 分- 7 时30 分= 50 分钟9. 被减数是50,减数是28,差是()A. 22B. 32C. 18D. 78答案:A解析:50 - 28 = 2210. 一个数加上6 ,再减去6 ,结果是10 ,这个数是()A. 10B. 6C. 16D. 4答案:C解析:设这个数为x ,则x + 6 - 6 = 10 ,解得x = 10 + 6 - 6 = 1011. 最大的一位数与最小的两位数的和是()A. 19B. 10C. 90D. 11答案:A解析:最大的一位数是9,最小的两位数是10,和是19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数典型问题解析.-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN小学奥数典型问题解析一、盈亏问题解答盈亏问题的关键在于找出两次分配中,由于每次分配的数量的改变和剩余数变化的情况之间的关系,然后运用盈亏问题的基本数量关系求出答案。
盈亏问题的基本数量关系有:(盈+亏)÷两次分配的差数(大盈-小盈)÷两次分配的差数例1:若干名同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位。
问有多少名同学多少条船分析:两种乘船情况,在面对同样多人数的时候,出现了多5人,少4人两种情形,差了5+4=9人。
由于一条船4人,另一种情况一条船5人,相对应的两条船差5-4=1人。
几条船最终相差9人,为什么呢?9÷1=9条船,共有4×9+5=41名同学。
例2:若干同学去划船,他们租了一些船,若每船4人则多5人,若一条船上做6人,其余每船5人则船上有3个空位。
问有多少名同学多少条船分析:将第二个情况转化为每船5人则船上有2个空位,两种乘船情况,在面对同样多人数的时候,出现了多5人,少2人两种情形,差了5+2=7人。
由于一条船4人,另一种情况一条船5人,相对应的两条船差5-4=1人。
几条船最终相差7人,为什么呢?7÷1=7条船,共有4×7+5=33名同学。
例3:有一堆螺丝和螺母,若1个螺丝配2个螺母,则多10个螺母;若1个螺丝配3个螺母,则少6螺母。
问:螺丝、螺母各有多少个?分析:由“1个螺丝配2个螺母,则多10个螺母”或知螺母是螺丝的2倍多10个;由“1个螺丝配3个螺母,则少6螺母”,可知螺母是螺丝的3倍少6个。
螺丝有:(10+6)÷(3-2)=16个螺母有:16×2+10=42个A,B两车同时从甲、乙两站相对开出,第一次距乙站78.4千米处相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后,立即沿原路返回,途中两车在距甲站53.2千米相遇,这次相遇点相距多少千米?分析:两车同时从两地相向而行,第一次相遇两车共行了一个全程,在距乙站78.4千米处相遇,也就是B车行了78.4千米,说明每行一个全程B车就行78.4千米,第二次相遇两车共行了三个全程,B车共行了(78.4*3)千米,减去53.2千就是全程的距离。
全程再减去78.4和53.2就是两次相遇点相距的距离。
算式: 78.4*3-53.2-78.4-53.2=78.4*2-53.2*2练习:1、学校组织旅游,乘车时发现如果每辆车做25人,还有12人没有座位,如果每辆车做28人,还空下9个座位。
请问共有多少辆车多少人2、(12+9)÷(28-25)=7(辆)7×25+12=187(人)3、小红家买来一蓝橘子分给全家人.如果其中二人每人分3个,其余每人分2个,则多出4个;如果其中一人分6个,其余每人分4个,则又缺12个,小红家买来多少个橘子共有多少人4、(3-2)×2+4+12-(6-4)=1616÷(4-2)=8人2×3+2×6+4=22个5、淼淼从家到学校,先用每分钟50米的速度走2分钟后,感到如果这样走下去,他上课就要迟到8分钟。
后来他改用每分钟60米的速度前进,结果早到5分钟。
淼淼家到学校的距离是多少?(50×8+60×5)÷(60-50)=70分50×(70+8+2)=4000米二、年龄问题年龄问题的特点是:随着时间的变化,两个有的年龄之差永远不变,但原来二人年龄的倍数和今后二年龄的倍数却发生了变化。
例1:父亲今年46岁,儿子今年14岁,当父亲的年龄是儿子的9倍时,父子的年龄和是多少岁?分析:当父亲的年龄是儿子的9倍时,父亲与儿子的年龄差还是46-14=32岁,父亲的年龄比儿子多9-1=8倍,其中的一倍是儿子当时的年龄,是32÷(9-1)=4岁,父亲是4×9=36岁。
父子年龄和是4+36=40岁。
例2:今年祖父的年龄是小明年龄的6倍,几年后祖父的年龄将是小明年龄的5倍。
又过了几年,祖父的年龄将是小明年龄的4倍。
问:小明今年多少岁?分析:祖父和小明的年龄差是永远不变的,这个差是6-1=5,5-1=4,4-1=3的倍数,而[5,4,3]=60(按常规祖父的年龄只能比小明大60岁),今年祖父比小明多6-1=5倍,可求出小强今年的年龄是60÷(6-1)=12岁。
例3:学生问老师多少岁,老师说:“当我像你这么大时你刚1岁,当你像我这么大时我已经40岁了。
”你知道老师多少岁吗?分析:老师学生1岁通过观察线段图可先求出教师与学生年龄差,进而求出老师的年龄(40-1)÷3×2+1=27岁。
练习二1、爸爸今年44岁,小强今年12岁,多少年前爸爸年龄是小强年龄的9倍?(44-12)÷(9-1)=4岁12-4=8年2、姐姐6年后的年龄与妹妹4年前的年龄和是29岁,妹妹现在的年龄是两人年龄差的4倍。
姐姐今年多少岁?(29-6+4)÷(5+4)=3岁妹妹:4×3=12岁姐姐:5×3=15岁3、小亮比小明大2岁,小刚比小军大1岁,小军年龄最小。
5年前四人年龄和是8岁,5年后四人年龄和是47岁,今年这四个小朋友各有多少岁?8+(5+5)×4=48岁年龄和相差48-47=1岁,说明有一人10年间长了9岁小军今年是4岁小刚今年4+1=5岁小亮今年是(27-9+2)÷2=10岁小明今年是10-2=8岁三、鸡免问题学会运用假设法解题例1:鸡免同笼,共100个头,280只脚。
问:鸡、免各有多少只?分析:假设这100只全是免,每只免有4只脚,应该有4×100=400只脚,实际只有280只脚,相差了400-280=120只脚。
相差的原因是每只鸡多算了2只脚,相差的总脚数120里含有多少个2,就是多少只鸡按免算了。
从而求出鸡的只数120÷2=60只,免有100-60=40只。
例2:蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有以上三种小虫16只,共有110条腿和14对翅膀,问:每种小虫各有几只?分析:从腿入手,蜘蛛有8条腿,而蜻蜓和蝉都有6条腿,我们可以把6条腿的小虫看作一种,这样就容易了。
如果批16只小虫都看用6条腿,那么应该有16×6=96条腿,而与实际的110条腿,相差了110-96=14条,相差的原因是批蜘蛛的8条腿当用6条来算的,这样就少算了2条腿,少多少个2就是蜘蛛的只数14÷(8-6)=7只,这样蜻蜓和蝉共有16-7=9只,再用假设法求出蜻蜓和蝉的只数。
蝉有(9×2-14)÷(2-1)=4只,蜘蛛有9-4=5只。
例3:某次数学竞赛共有12题,评分标准是:每做对一道题得10分,每做错一道或不做题扣2分。
明明参加这次竞赛,得了84分。
问:明明做对了几道题?分析:如果12题全部答对了,应该得分为12×10=120分,而明明实际得了84分,损失了120-84=36分,由做错一道或不做题扣2分,可得如果有一题不答或答错,将损失10+2=12分,明明答错或不答的题数为36÷12=3道,答对了12-3=9道。
练习三:1、2角和5角的硬币共100枚,价值35元,二种硬币各有多少枚?(350-2×100)÷(5-2)=50枚……5角100-50=50枚……2角2、1角、2角和5角的硬币共100枚,价值20元,如果其中2角硬币的价值比1角硬币的价值多13角,那么三种硬币各有多少枚?解:设1分的有a枚,2分的有b枚(5-1)a+(5-2)b=5×100-2002b-a=13解方程得a=51,b=325分的有100-32-51=17。
3、一个运输队包运1998套玻璃具。
运输合同规定:每套运费以1.6计算,每损坏一套不仅不得运费,还要从总费中扣除赔偿费18元。
结果运输队实际得到运费3059.6元,那么,在运输过程中共损坏了多少套茶具?(1.6×1998-3059.6)÷(18+1.6)=7套四、平均数问题【例1】暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米【例2】【例3】分析:因为平均每天所游的距离提高 498-495=3米,需要多游778-670=108米,所以暑假一共有108÷3=36天,如果平均每天游500米,则要在最后一天游(500-498)×36+778=850米。
【例4】某次数学竞赛原定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多分。
分析:解法一:根据题意可知:前六人平均分=前十人平均分+3,这说明在计算前十人平均分时,前六人共多出3×6=18(分),来弥补后四人的分数。
因此后四人的平均分比前十人平均分少18÷4=4.5分,也就是:后四人平均分=前十人平均分一4.5。
当后四人调整为二等奖,这样二等奖共有20+4=24(人),平均每人提高了1分,也就由调整进来的四人来供给,每人平均供给24÷4=6(分),因此,四人平均分=(原来二等奖平均分)+6,与前面式比较,原来一等奖平均分比原来二等奖平均分多4.5+6=10.5(分)。
解法二:图上横向的线表示人数,竖向的线表示分数,红线表示原来的的一等奖和二等奖,蓝线表示调整后的一等奖和二等奖,虽然一、二等奖的人数和平均分发生变化,但一、二等奖的总分没有变,也就是说图上红线的两个长方形的面积之和等于蓝线的两个长方形的面积之和,我们观察图可以发现两块黄色小长方形的面积等于蓝色长方形的面积(10-4)×3+20×1=38,蓝色长方形的长是4,宽就是38÷4=9.5,原一等奖比二等奖的平均分高9.5+1=10.5分。
练习四:1.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。
49×7÷(51+49)=3.43分81+7-3.43=84.57分2.某次数学竞赛原定一等奖10人,二等奖20人,现在将二等奖中前4人调整为一等奖,这样得二等奖的学生的平均分下降了1分,得一等奖的学生的平均分下降了2分,那么原来一等奖平均分比二等奖平均分多分。