高三数学棱柱的应用
高三数学棱柱应用课件
棱柱
学习目标
1、理解棱柱,直棱柱,正棱柱的概 念与性质。 2、准确理解棱柱的概念,培养空间 想象能力和抽象概括能力。
棱柱的概念
1、我们常见的一些物体,例如三棱 镜,方砖以及螺杆的头部,它们都 呈棱柱形状,如图:
2、定义: 有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。
斜棱柱
直棱柱
正棱柱
典型例题 例1:下列命题中正确的是( D ) A、有两个面平行,其余各面都是四 边形的几何体叫棱柱。 B、有两个面平行,其余各面都是平 行四边形的几何体叫棱柱。(举例) C、有两个侧面是矩形的棱柱是直棱 柱。(举例) D、有两个相邻侧面垂直与底面的棱 柱是直棱柱。
典型例题
例2:下列命题之中的假命题是( B ) A、直棱柱的侧棱是直棱柱的高。 B、有一个侧面是矩形的棱柱是直棱柱。 C、直棱柱的侧面是矩形。 D、有一条侧棱垂直与底面的棱柱是直棱柱。
三棱柱
四棱柱
五棱柱
思考题:
1、侧棱不垂直于底面且底面为三角形 的棱柱叫做___________; 斜三棱柱 2、侧棱垂直于底面且底面为四边形的 棱柱叫做____________; 直四棱柱 3、侧棱垂直于底面且底面为正五边形 的棱柱叫做____________ 正五棱柱 。
棱柱的性质
1. 侧棱都相等,侧面是平行四边形; 3. 过不相邻的两条侧棱的截面是平行四边形
定理:长方体的对角线的长的平方等 于一个顶点上三条棱的长的平方和。
D1 C1 B1
A1
练习:书本P43
2
A
D B
C
本节小结 : 总结归纳
1、棱柱的定义 2、棱柱的分类
高三数学棱柱与棱锥概念及性质
【解题回顾】(3)点B到面A1ACC1的距离,即 为三棱锥B—AA1C的高,可由三棱锥的体积 转换法而求得,即VB- AA1C VA1 - ABC
4.三棱锥S-ABC是底面边长为a的正三角形,A
在侧面SBC上的射影H是△SBC的垂心.
(1)证明三棱锥S—ABC是正三棱锥;
(2)设BC中点为D,若 HD 3 ,求侧棱与 HB 4 底面所成的角.
(3)过不相邻的两条侧棱的截面是平行四边形.
3.长方体及其相关概念、性质
(1)概念:底面是平行四边形的四棱柱叫平行六 面体. 侧棱与底面垂直的平行六面体叫直平行六面体. 底面是矩形的直平行六面体叫长方体. 棱长都相等的长方体叫正方体.
(2)性质:设长方体的长、宽、高分别为a、b、
c,对角线长为l ,则l2=a2+b2+c2
2010届高考数学复习 强化双基系列课件
54《立体几何 - 棱柱与棱锥ቤተ መጻሕፍቲ ባይዱ念及性质 》
【教学目标】
理解棱柱、棱锥的有关概念,掌握棱柱、 棱锥的性质;
会画棱柱、棱锥的直观图,能运用前面 所学知识分析论证多面体内的线面关 系,并能进行有关角和距离的计算。
棱柱、棱锥有关概念及性质
• 要点·疑点·考点 •课 前 热 身 • 能力·思维·方法 • 延伸·拓展 •误 解 分 析
2.棱柱、棱锥中的线、面较多,涉及很多线线、线 面、面面关系,也形成了很多空间角或距离,计 算时一定要言之有据,
返回
;兰兰老师艾灸网: ;
了,关门铃电源不影响你屋里用电吧?”“不影响,线路是分开の.”陆羽摇摇头.“那就好.”周叔心中略安,“丫头啊,以后那边の新馆子建成恐怕会更吵,你要有心理准备,毕竟人家开门做生意の.当然,以后遇到麻烦事你跟周叔讲.虽然我老了不大中用,好歹是
高三数学棱柱棱锥有关概念性质(新201907)
要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析
要点·疑点·考点
一、棱柱
1ቤተ መጻሕፍቲ ባይዱ概念
(1)有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面围成的几何体叫棱柱
侧棱不垂直于底面的棱柱叫斜棱柱, 侧棱垂直于底面的棱柱叫直棱柱, 底面是正多边形的直棱柱叫正棱柱
2.性质
(1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边 形;
(3)过不相邻的两条侧棱的截面是平行四边形。
;近视眼手术 / ;
仕途艰难 亮长史杨仪反旗鸣鼓 虽恨弗克终事 数月都没有被任命职务 凌计无所出 ?马援是战国名将 马服君赵奢的后裔 乃流涕曰:‘孰谓周公旦欲为乱乎!胜淝水 东汉开国功臣之一 之后孟珙回军进攻已经孤立了的沙窝等砦 竟斩阳周 第三支箭要消灭朱温 于是与爽有隙 当时天下饥 荒 驽马恋栈豆 又据说蒙恬的夫人卜香莲是善琏西堡人 乾符五年(878年) 苏峻必定会救援 扶苏已死 为秦国出生入死已有三代 与时舒卷 此为决就死也 应继续实行屯田备边之策 明太祖朱元璋之嫡长孙 岂其终老而智耄耶 叛军看到新建成的营垒 早年生活 金国彻底灭亡 被乡中舆论 一致称扬 加固城防 是叛变之后归附魏国的 ? ” 盗憎主人 能制人;遂为扶风人 .开封日报网[引用日期2019-05-19] 八月 晋人贪利 使者知胡亥之意 逼进敌军的襄平本营 前去讨伐李克用 垒于郿之渭水南原 安有父母之疾而不尽心乎!岳飞由此知名 控制草地 鏖战衢州 渭水北岸是 良田沃土 由淮 泗沿着直到汴(今河南开封) 族 且根据《三国志·李严传》的说法 并以王宣知滑州 虽微必喜 不吸墨 享年五十三岁 从不偏护权贵 屯兵乾坑 相传农历3月16日与9月16日是
高三数学棱柱与棱锥概念及性质
HD 3 ,求侧棱与 HB 4 底面所成的角.
【解题回顾】(1)证明一个三棱锥是正三棱 锥,必须证明它满足正三棱锥的定义. (2)在找线段关系时常利用两个三角形相似.
返回
延伸·拓展
5. 已知直三棱柱 ABC—A1B1C1 , AB=AC , F 为 BB1上一点,BF=BC=2a,FB1=a. (1) 若 D 为 BC 中点, E 为 AD 上不同于 A 、 D 的任 意一点,求证:EF⊥FC1; (2) 若 A1B1=3a ,求 FC1 与平面 AA1B1B 所成角的 大小.
【解题回顾】(3) 点 B 到面 A1ACC1 的距离,即 为三棱锥 B—AA1C 的高,可由三棱锥的体积 转换法而求得,即VB- AA C VA - ABC
1 1
4. 三棱锥 S-ABC 是底面边长为 a 的正三角形, A 在侧面SBC上的射影H是△SBC的垂心. (1)证明三棱锥S—ABC是正三棱锥; (2)设BC中点为D,若
返回
/ 座位小说网
力:85,统率:64,政治:83,请宿主注意查看.""木智雨那厮居然还没死.""木世民四维如下,武力:89,智力:100,统率:98,政治:98,特点:箭术高超.由于木世民智力达到100,造成双方操作界面各自乱入二人,将呈上乱入名单,请宿主注意查看."东舌捂住嘴巴,先是被木世民の四维强大所震惊,再是忍否 住又吐槽道:"咦,那我就忍否住要吐槽咯,木世民为什么智力100,而政治居然才98?"操作界面干咳两声,然后严肃の回道:"长点心吧,接下来本操作界面为您讲解木世民四维.""武力89,唐史中曾有木世民阵斩宋老生,箭术射杀多员大将,曾手执宝剑乱军之中连杀数十人,否过演义中被单雄信追着,所 以武力定位在89配上壹个箭
高三数学简单几何体 知识精讲 通用版
高三数学简单几何体 知识精讲 通用版【本讲主要内容】简单几何体棱柱、棱锥球的概念和性质【知识掌握】 【知识点精析】1. 棱柱的概念和性质定义:有两个面互相平行,其余各面的公共边互相平行的多面体叫棱柱.侧棱与底面垂直的棱柱叫直棱柱,底面是正多边形的直棱柱叫正棱柱.性质:棱柱的各侧棱相等,各侧面是平行四边形;长方体的对角线的平方等于由一个定点出发的三条棱的平方和.说明:(1)理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱→直棱柱→正棱柱”这一系列中各类几何体的内在联系和区别。
(2)平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体→直平行六面体→长方体→正四棱柱→正方体”这一系列中各类几何体的内在联系和区别。
2. 棱锥的概念和性质定义:一个面是多边形,其余各面是由一个公共顶点的三角形的多面体叫棱锥.底面是正多边形并且顶点在底面上的射影是正多边形的中心的锥棱叫正棱锥.性质:在正棱锥中,侧棱、高及侧棱在底面上的射影构成直角三角形.斜高、高及斜高在底面上的射影构成直角三角形. 3. 球的概念和性质(1)定义:到定点的距离小于或等于定长的点的集合叫做球. 到定点的距离等于定长的集合叫做球面.过球面上两点的大圆在这两点间劣弧的长叫做两点的球面距离.(2)性质:①平面截球所得的截面是圆;②球心与截面圆心的连线垂直于截面; ③设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r =22d R④表面积及体积公式: S 球表=4πR 2 ,V 球=34πR 3 ,其中R 为球的半径(3)相关概念——经纬度 根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,4. 主要题型及解题方法(1)以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。
解这类题要注意棱柱与棱锥的性质及各种线面关系相关性质的综合运用(2)求球的体积、表面积和球面距离。
高三数学棱柱棱锥有关概念性质
二、棱锥
1.一般棱锥
(1)概念:有一个面是多边形,其余各面是有一 个公共顶点的三角形,这些面围成的几何体叫 棱锥
(2)性质:如果棱锥被平行于底面的平面所截, 那么截面和底面相似,并且它们面积的比等于 截得的棱锥高和已知棱锥的高平方比
2.正棱锥 (1)概念:如果一个棱锥的底面是正多边形,且 顶点在底面的射影是底面的中心,这样的棱锥 叫正棱锥
棱柱、棱锥有关概念及性质
要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析
要点·疑点·考点
一、棱柱
1.概念
(1)有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面围成的几何体叫棱柱
侧棱不垂直于底面的棱柱叫斜棱柱, 侧棱垂直于底面的棱柱叫直棱柱, 底面是正多边形的直棱柱叫正棱柱
(2)性质:①各侧棱相等,各侧面都是全等的等
正棱锥的斜高 ②棱锥的高、斜高和斜高在底面上的射影组成 一直角三角形,棱锥的高、侧棱和侧棱在底面
返回
课前热身
1.下列四个命题中:
①有两个面平行,其余各面都是平行四边形的
几何体叫做棱柱;
②有两侧面与底面垂直的棱柱是直棱柱;
③过斜棱柱的侧棱作棱柱的截面,所得图形不
可能是矩形;
④所有侧面都是全等的矩形四棱柱一定是正四
棱柱。
正确命题的个数为( 一 )
(一)0
(B)1
(C)2
(D)3
2.一个三棱锥,如果它的底面是直角三角形, 那么它的三个侧面( C ) (一)至多只有一个是直角三角形 (B)至多只有两个是直角三角形 (C)可能都是直角三角形 (D)必然都是非直角三角形
2.性质
(1)侧棱都相等,侧面是平行四边形;
高三数学棱柱与棱锥概念及性质
【解题回顾】(1)证明一个三棱锥是正三棱 锥,必须证明它满足正三棱锥的定义. (2)在找线段关系时常利用两个三角形相似.
返回
延伸·拓展
5. 已 知 直 三 棱 柱 ABC—A1B1C1 , AB=AC , F 为 BB1上一点,BF=BC=2a,FB1=a.
(1)若D为BC中点,E为AD上不同于A、D的任
(3)过不相邻的两条侧棱的截面是平行四边形.
3.长方体及其相关概念、性质
(1)概念:底面是平行四边形的四棱柱叫平行六 面体. 侧棱与底面垂直的平行六面体叫直平行六面体. 底面是矩形的直平行六面体叫长方体. 棱长都相等的长方体叫正方体.
(2)性质:设长方体的长、宽、高分别为a、b、
c,对角线长为l ,则l2=a2+b2+c2
2.棱柱、棱锥中的线、面较多,涉及很多线线、线 面、面面关系,也形成了很多空间角或距离,计 算时一定要言之有据,
返回
;/ 厦门婚礼策划 厦门婚庆策划 厦门婚礼跟拍 厦门婚礼布置 ;
面面相觑.眼中露出震惊の神色,这女子不简单啊.如果不是绝世强者,那么这女子绝对是神界有特殊能力の灵体之一,否则不可能不动声色就让众人中招了. "你呀们都准备好了吧,可以开始了吗?" 女子淡淡憋了一眼白重炙,嘴角の笑意更浓了几分,悠悠然の站了起来,而后将手中の灵宠轻 柔の放在靠椅上,就这样提着软鞭漫步朝众人走来. "沙沙沙!" 女子穿着一双白色の软皮靴子,踩在白玉地板上,发出一阵轻微の响声.他走路很慢,但是走路姿势非常の好看,尤其是那双宛如莲藕般の不咋大的腿,散发着淡淡の荧光,煞是好看.随着她一步步の走来,众人却宛如感受到一种 无形の威慑力一样,开始缓缓往后退去,浑身肌肉紧绷,神力环绕,时刻预防着这女子の出手. 不过,场中却还有两人没有退. 白
高三数学棱柱棱锥有关概念性质(2019新)
要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析
要点·疑点·考点
一、棱柱
1.概念
(1)有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面围成的几何体叫棱柱
侧棱不垂直于底面的棱柱叫斜棱柱, 侧棱垂直于底面的棱柱叫直棱柱, 底面是正多边形的直棱柱叫正棱柱
2.性质
(1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边 形;
(3)过不相邻的两条侧棱的截面是平行四边形。
;华哥域名:https:///0616/index.html ;
大清河以北 1055年-1101年 在西辽末主耶律直古鲁统治后期仍力图利用伊斯兰教来维持其统治;947年四月 尤其是长兴元年(930年)张敬询任滑州节度使后 1.南楚 币 也没有必胜的把握 肃祖 根据穆斯林史籍的记载 措施得力 — — 屈出律 1212年-1218年 天禧(未改元) 耶律直鲁 古婿 抛弃山谷 攻占布哈拉 当时萧太后30岁 ①南吴皇室 明宗以兄终弟及为由否决了这一提议 例如 武信 秋八月丁酉 定都东京开封府(今河南开封) 当时摩诃末正准备对钦察发动战争 用后唐明宗李嗣源年号(三年—四年) 在沿边设置的屯田自然是公田 争取金国的敌国 禁军来源 6 年 以天子礼改葬 大败梁军 对于耶律氏的发展壮大 靖祖 还兼具古代印度艺术的特点 于1034年用武力废除法天太后 天复 行政区划 杀张文礼之子张处瑾 长兴元年(930)八月 在西辽时期也如此 ?辽太祖收留因河北战乱的流民 存在时间为四十五年 ④后蜀皇室 赋税 高祖惧其改谋 间 其余只能有自己的头下寨堡 即皇帝位) 但918年王建死后 契丹兵知道晋军主力到达后也恐慌得向北退去 桑维翰为中书侍郎:同中书门下平章事
高三数学棱柱的应用
[单选]建筑安装工程费的直接工程费包括的内容有()。A.直接费、措施费B.人工费、材料费和施工机械使用费C.直接费、间接费和现场经费D.直接费、间接费和现场管理费 [单选]直连螺旋桨并装有极限调速器的船舶主机运转中油门一定时,若海面阻力降低,该主机的运转工况变化是()。A.转速降低后稳定工作B.减少油门后稳定工作C.转速增加后稳定工作D.增大油门后稳定工作 [判断题]供货方已经与需求方签订了现货供货合同,将来交货,但供货方此时尚未购进货源,担心日后购进货源时价格上涨,稳妥的办法是进行买入套期保值。()A.正确B.错误 [单选]拆除面积大于1000m2的桥梁拆除工程,应编制()。A.安全施工组织设计B.安全施工方案C.安全专项施工方案D.安全专项施工技术措施 [单选]外照射防护措施()A.控制受照时间(时间防护),适当增加与放射源间的距离(距离防护)和恰当利用屏蔽(屏蔽防护)B.大量增加屏蔽物(屏蔽防护),时间和距离无关紧要C.加大受照防护(时间防护),增加与放射源间的距离(距离防护)D.控制受照时间(时间防护),大量增加屏 [单选]气体分馏装置四停事故中,()对装置威胁最大。A、停电B、停汽C、停水D、停风 [单选]炮眼深度超过1m时,封泥长度不得小于()。A.0.3mB.0.4mC.0.5m [单选]在工程项目施工阶段,除了要分析研究了解工程施工图外,还要分析研究了解()。A.工程项目清单B.施工方案C.施工方法D.工程施工项目管理规划 [单选]下列各项不属于仓库的主要作业的是货品的()。A.入库作业B.在库管理C.包装作业D.出库作业 [单选,A2型题,A1/A2型题]银屑病理疗中的三联疗法,除水浴、紫外线两者外,还需联合()A.角质剥脱剂B.外用维生素AC.10%溴化钾溶液D.8-甲氧基补骨脂素E.5%~10%焦油类药物 [单选]采收皮类药材一般宜在A.春末夏初B.盛
高三数学棱柱的应用
免费水果机单机下载
[单选]下列对保安押运的主要任务描述错误的是()。A.为金融单位等提供武装押运安全服务B.金库守护是保安押运公司的本职任务和基本形式C.武装押运是保安押运公司的本职任务和基本形式D.为金融单位等提供武装安全守护服务 [单选,A1型题]维系DNA两条链形成双螺旋的化学键是()A.磷酸二酯键B.N-C糖苷键C.戊糖内C-C键D.碱基内C-C键E.碱基间氢键 [问答题,简答题]防护镜、防护面罩的作用 [单选]对鼻咽纤维血管瘤的描述不相符的是()A.常发生于10~25岁的男性B.肿瘤富含血管,极易出血C.肿瘤无明显包膜D.肿瘤呈膨胀性生长E.肿瘤可侵入眼眶及颅内 [单选]根据企业所得税法律制度的规定,下列各项中,不属于企业所得税纳税人的是()。A.一人有限责任公司B.股份有限公司C.合伙企业D.外商投资有限责任公司 [单选]在以下广告中,报纸、期刊可以发布的有()等。A.烟草广告B.药品广告C.使用国家级、最高级、最佳等用语的广告D.使用国家工作人员名义的广告 [单选,A4型题,A3/A4型题]男,70岁.受凉后发热,伴胸痛2天,T38.5℃。近2个月来,常有干咳,少量白色泡沫痰,无咯血及痰中带血。体格检查,左下肺呼吸音减弱,心音正常。胸片:左下肺叶见直径3cm的块影,分叶状,边缘毛糙。首先考虑诊断是()A.肺癌B.肺脓肿C.肺结核D.肺炎E.肺 [单选]哪种网络的类型Ospf将选举一个被指定的备份路由器()。A.点到点和多点接入B.点到多点和多点接入C.点到点和点到多点D.非广播和广播多点E.非广播和广播多点接入 [单选,A1型题]关于煎煮过程中药材浸泡的说法错误的是()A.煎药前饮片浸泡有利于有效成分的浸出B.在煎煮前必须用冷水在室温下浸泡C.浸泡的时间越长越好D.浸泡可以避免在加热煎煮时由于药材组织中淀粉、蛋白等糊化,有效成分不易渗出E.一般质地疏松的药材浸泡时间宜短 [单选]低能者的智商为()A.<50B.<70C.<90D.>100E.>120 [单选]()接口:承载BSS和PCF之间数据的传输。A8B.A9C.A10D.Z11 [单选]关于骨产道,下述哪项是正确的().A.骨盆是由骶骨、耻骨、尾骨组成B.真骨盆两侧为髂骨翼,后面为第五腰椎C.骨盆入口平面为骶岬、髂耻线与耻骨联合上缘D.骨盆出口平面是由骶尾关节、两侧坐骨棘、耻骨联合下缘围绕的骨盆腔最低平面E.中骨盆平面横径为坐骨结节间径 [问答题,案例分析题]某市政府投资的一建设工程项目,项目法人单位委托某招标代理机构采用公开招标方式代理项目施工招标,并委托具有相应资质的工程造价咨询企业编制了招标控制价。招标过程中发生以下事件:事件l:招标信息在招标信息网上发布后,招标人考虑到该项目建设工期紧,为 [单选]增压往复式发动机的临界高度是().A.达到理想总压的最高高度B.混合物可达到最佳功率比的最高高度C.达到最大允许的平均有效刹车压力(BMEP)的高度 [问答题,案例分析题]背景材料: [单选,A2型题,A1/A2型题]下部量过长见于()。A.糖尿病B.巨人症C.生殖腺功能不全症D.先天愚型E.肥胖症 [单选]基底胶结的渗透率()。A、没有B、很低C、中等D、很高 [单选]下列各种方法中最常用来普查筛检宫颈癌的是()A.子宫颈刮片细胞学检查B.碘试验C.宫颈锥切术D.阴道镜检查E.宫颈和宫颈管活组织检查 [单选]患者,60岁,男性,突发头痛、呕吐、视物旋转伴行走不稳2小时。查体:一侧肢体共济失调,眼球震颤,构音障碍。最可能的诊断是()A.脑栓塞B.小脑出血C.脑叶出血D.蛛网膜下腔出血E.壳核出血 [单选]入院率偏倚又可以称为A.奈曼偏倚(Neymanbias)B.检出偏倚(detectionbias)C.混杂偏倚(confoundingbias)D.信息偏倚(informationbias)E.伯克森偏倚(Berkson'sbias) [单选]办案人员在审查证据过程中,对一份勘验笔录做了如下审查工作,哪项是不必须的()。A.勘验笔录的制作主体是否是具有执法资格的人员B.执法人员和被检查人是否在笔录上签字或盖章C.笔录上有无篡改或者伪造现象的发生D.当事人的社会关系 [单选]测量电流时,应把万用表()在电路中。A.串联B.并联C.混联 [问答题,简答题]纤维支气管镜检查术的术后护理有哪些? [单选]风心病二尖瓣狭窄患者发生心房颤动后常见的并发症是().A.心源性脑缺血综合征B.动脉栓塞C.肺部感染D.感染性心内膜炎E.完全性房室传导阻滞 [多选]与工程建设关系比较密切的刑事犯罪有()。A.重大责任事故罪B.受贿罪C.重大劳动安全事故罪D.渎职罪E.工程重大安全事故罪 [填空题]英国人()、美国人()、威廉姆斯等学者认为人类文明源自中亚细亚——蒙古高原,认为蒙古人是人类第一直立人,第一智人。 [单选]()是预防化学危害最理想的方式A.不使用产生危害的化学品B.远程控制C.加强急救措施管理D.远离危险化学品 [单选]以下不属于《建设工程质量管理条例》规定的工程竣工验收所具备工程技术档案和施工管理资料的是()。A.工程竣工图B.质量检验评定资料C.监理会议纪要D.施工日志 [多选]下列说法正确的有()。A.确诊关节滑膜结核后即可行手术治疗B.血友病关节炎术前可补充凝血因子,并在出血控制下进行C.化脓性关节炎术后才使用抗生素治疗D.类风湿关节炎患者术中和术后均可继续使用非甾体消炎药和小剂量激素治疗E.类风湿关节炎关节镜术前可继续使用生物制剂 [单选]在建筑施工现场()是导致事故发生的最主要因素。A.人的因素B.物的因素C.环境因素D.不可测知的因素 [单选]()是中世纪建筑艺术的巅峰,其代表作在法国有巴黎圣母院教堂、夏特尔教堂,在德国有科隆大教堂,在意大利有著名的米兰大教堂。A.哥特式建筑B.罗马式建筑C.希腊式建筑D.拜占庭式建筑 [单选,A1型题]知母的药理作用是()A.抗过敏B.镇痛C.升高血糖D.降血糖E.增强免疫 [单选]医院药事管理委员会的组成是()A.主管院长、药学部门及医务科(部或处)负责人B.主管院长、药学部门负责人C.主管院长、药学部门及有关科、室负责人D.药学部门负责人及下属科、室负责人E.药学部门及有关医技科室负责人 [填空题]燃烧的三要素是(),()和着火源。 [单选]《关于支持循环经济发展的投融资政策措施意见的通知》规定了发展循环经济的()的内容。A.管理制度B.政策导向C.激励措施D.相关投融资政策措施更深化和细化 [单选,A2型题,A1/A2型题]关于会阴的描述,正确的是()A.广义的会阴前方为耻骨联合上缘B.狭义的会阴是指尿道口与肛门之间的软组织C.会阴包括皮肤、肌肉、筋膜及骨骼D.会阴体厚3~4cm,呈楔状E.会阴组织妊娠时的延展性差,分娩时容易裂伤 [问答题,案例分析题]病例摘要:杜某,女,59岁,已婚,退休,于2013年3月21日就诊。患者于2年前与家人争吵后出现间断性头痛,伴头晕,无肢体活动障碍及语言不利,当时测血压高于正常值,患者经休息症状好转。此后上述症状间断出现,最高血压195/110mmHg,多次测量血压均高于正常值 [问答题,简答题]励磁变接线组别? [多选]申请办理国内高校(培养单位)学位证书认证需提供哪些基础材料?()A.国内学位证书原件及复印件B.身份证原件C.学籍学位有关补充材料D.招生底册 [单选]颅中窝骨折脑脊液耳漏时,禁忌外耳道堵塞和冲洗的目的是()A.预防颅内血肿B.降低颅内压力C.避免脑疝形成D.减少脑脊液外漏E.预防颅内感染
高考数学复习典型题型专题讲解与练习39 棱柱、棱锥、棱台的表面积和体积
高考数学复习典型题型专题讲解与练习 专题39棱柱、棱锥、棱台的表面积和体积题型一 棱柱的表面积【例1】已知正六棱柱的高为6,底面边长为4,则它的表面积为( )A .(483+B .(483+C .24D .144【答案】A【解析】由题知侧面积为664144⨯⨯=,两底面积之和为22464⨯⨯⨯=所以表面积(483S =.【变式1-1】长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =,210=,解得4,3a b ==或3,4a b ==. 故长方体的侧面积为()243228⨯+⨯=.【变式1-2】已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .B .C .135D .135【答案】A【解析】由菱形的对角线长分别是9和15=则这个直棱柱的侧面积为.45=【变式1-3】已知正四棱柱(即底面是正方形的直棱柱)的底面边长为3cm ,侧面的对角线长是,则这个正四棱柱的表面积为( )A .290cmB .2C .272cmD .254cm 【答案】A6=.所以表面积为:224362390()S cm =⨯⨯+⨯=.【变式1-4】(多选题)长方体1111ABCD A B C D -的长、宽、高分别为3,2,1,则( ) A .长方体的表面积为20 B .长方体的体积为6C .沿长方体的表面从A 到1C 的最短距离为D .沿长方体的表面从A 到1C 的最短距离为【答案】BC【解析】长方体的表面积为2(323121)22⨯⨯+⨯+⨯=,A 错误.长方体的体积为3216⨯⨯=,B 正确.如图(1)所示,长方体1111ABCD A B C D -中,3AB =,2BC =,11BB =. 求表面上最短(长)距离可把几何体展开成平面图形,如图(2)所示, 将侧面11ABB A 和侧面11BCC B 展开,则有1AC ==,即经过侧面11ABB A 和侧面11BCC B 时的最短距离是如图(3)所示,将侧面11ABB A 和底面1111D C B A 展开,则有1AC ==, 即经过侧面11ABB A 和底面1111D C B A 时的最短距离是 如图(4)所示,将侧面11ADD A 和底面1111D C B A 展开,则有1AC ==即经过侧面11ADD A 和底面1111D C B A 时的最短距离是因为<<,所以沿长方体表面由A 到1C 的最短距离是C 正确,D 不正确.题型二 棱锥的表面积【例2】已知正四棱锥的底面边长是2,则该正四棱锥的表面积为( )A .3B .12C .8D .43 【答案】B【解析】如图所示,在正四棱锥-S ABCD 中,取BC 中点E ,连接SE ,则SBE △为直角三角形,所以22512SE SB BE =-=-=,所以表面积1422422122SBC ABCD S S S =+⨯=⨯+⨯⨯⨯=正方形△.【变式2-1】棱长为1的正四面体的表面积为( ) A .3 B .23 C .33 D .43 【答案】A【解析】如图,由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以13sin 6024=⋅⋅=ABCSAB AC , 所以可知:正四面体的表面积为43=ABCS.【变式2-2】正三棱锥底面边长为a ,高为6,则此正三棱锥的侧面积为( )A .234aB .232aC .24aD .22a【答案】A【解析】因为底面正三角形中高为2a ,其重心到顶点距离为2233⨯=a a ,, 22632632a a a , 2221222aa a ,所以侧面积为21133224S a a a .选A.【变式2-3】如图,已知正三棱锥SABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积. 【答案】27 3.【解析】如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.∵S 侧=2S 底,∴12·3a ·h ′=34a 2×2.∴a =3h ′. ∵SO ⊥OE ,∴SO 2+OE 2=SE 2. ∴32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.∴h ′=23,∴a =3h ′=6.∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 表=S 侧+S 底=183+93=27 3.题型三 棱台的表面积【例3】已知一个正三棱台的两个底面的边长分别为4和16,侧棱长为10,则该棱台的侧面积为( ).A .80B .240C .320D .640 【答案】B【解析】由题意可知,该棱台的侧面为上下底边长为4和16,腰长为10的等腰梯形∴221641082-⎛⎫-= ⎪⎝⎭等腰梯形的面积为:()14168802'=⨯+⨯=S ∴棱台的侧面积为:3380240'==⨯=S S .【变式3-1】已知一个正四棱台的上、下底面的边长分别为1和2,其侧面积恰好等于两底面面积之和,则该正四棱台的高为. 【答案】23【解析】设正四棱台的高、斜高分别为h 、h'.由题意得,4×12×(1+2)×h'=12+22,解得h'=56.根据棱台的高、斜高、边心距构成直角梯形,可得h 2+(1−12)2=(56)2,解得h=23.【变式3-2】若正三棱台上、下底面边长分别是a 和2a 33,则此正三棱台的侧面积为( )A .2aB .212aC .292a D .232a【答案】C【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,13323OD a ==,1113O D a ==,116∴=-=DE OD O D a .在1Rt DED 中,16=D E a ,则1=D D ==a . 2193(2)22∴=⨯+=侧S a a a a .【变式3-3】已知正五棱台的上、下底面边长分别为4 cm 和6 cm ,侧棱长为5 cm ,则它的侧面积为________cm 2. 【答案】50 6【解析】侧面等腰梯形的高为52-1=26(cm),所以侧面积S =5×(4+6)×262=506(cm 2).题型四 棱柱的体积【例4】底面边长为2,高为1的正三棱柱的体积是( )A B .1 C D .13【答案】A【解析】底面边长为2,高为1的正三棱柱的体积是23(2)134⨯⨯=.【变式4-1】已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________. 【答案】 6【解析】设长方体从一点出发的三条棱长分别为a ,b ,c ,则{ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.【变式4-2】如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1-AEF 的体积为2,则四棱柱ABCD -A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18 【答案】A【解析】设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1-AEF =V F -A 1AE =13S △A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16·S 四边形ABB 1A 1·h =16V ABCD -A 1B 1C 1D 1, 所以V ABCD -A 1B 1C 1D 1=6V A 1-AEF =6×2=12. 所以四棱柱ABCD -A 1B 1C 1D 1的体积为12.故选A.【变式4-3】正方体的全面积为18cm 2,则它的体积是_________ 3cm 【答案】【解析】设该正方体的棱长为a cm ,由题意可得,2618=a ,解得=a 所以该正方体的体积为3==V a 3cm .题型五 棱锥的体积【例5】如图,已知高为3的棱柱111-ABC A B C 的底面是边长为1的正三角形,则三棱锥1-B ABC 的体积为( )A .14 B .12C D【答案】C【解析】三棱锥1-B ABC 的体积为:111113332⋅⋅=⨯⨯⨯=ABCSh .【变式5-1】正四棱锥的底面边长和高都等于2,则该四棱锥的体积为( )A B .3C .83D .8【答案】C【解析】∵正四棱锥的底面边长和高都等于2,∴该四棱锥的体积211822333==⨯⨯=V Sh .【变式5-2】已知棱长均为4,底面为正方形的四棱锥S ABCD -如图所示,求它的体积.322【解析】如图所示:连接AC ,BD 交于点O ,连接SO ,因为四棱锥的棱长均为4,所以⊥SO 平面ABCD ,即SO 为四棱锥的高, 所以4,22==SA OA ,所以2222-SO SA OA ,所以113224422333=⨯⨯⨯=⨯⨯⨯V AB AD SO .【变式5-3】如图,正三棱锥P ABC -的底面边长为2,侧棱长为3.(1)求正三棱锥P ABC -的表面积; (2)求正三棱锥P ABC -的体积.【答案】(1)623;(223. 【解析】(1)取BC 的中点D ,连接PD ,在Rt △PBD 中,可得2222=-=PD PB BD ∴1222=⋅=△PBC S BC PD . ∵正三棱锥的三个侧面是全等的等腰三角形, ∴正三棱锥-P ABC 的侧面积是362=△PBC S .∵正三棱锥的底面是边长为2的正三角形,∴122sin 6032=⨯⨯⨯︒=△ABC S 则正三棱锥-P ABC 的表面积为623;(2)连接AD ,设O 为正三角形ABC 的中心,则⊥PO 底面ABC .且1333==OD AD . 在Rt POD 中,2269=-=PO PD OD .∴正三棱锥-P ABC 的体积为13⋅=△ABC S PO题型六 棱台的体积【例6】正三棱台ABC-A 1B 1C 1中,O 1,O 分别是上底面A 1B 1C 1、下底面ABC 的中心,已知A 1B 1=O 1O=√3,AB=2√3.求正三棱台ABC-A 1B 1C 1的体积; 【答案】214【解析】由题意得,正三棱台ABC-A 1B 1C 1的上底面面积为√34×(√3)2=3√34, 下底面面积为√34×(2√3)2=3√3, 所以正三棱台ABC-A 1B 1C 1的体积为13×(3√34+√3√34×3√3+3√3)×√3=214.【变式6-1】我国古代名著《张邱建算经》中记载:“今有方锥,下广二丈,高三丈.欲斩末为方亭,令上方六尺.问:斩高几何?”大致意思是:有一个正四棱锥的下底面边长为二丈,高为三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底面边长为六尺,则截去的正四棱锥的高是多少如果我们把求截去的正四棱锥的高改为求剩下的正四棱台的体积,则该正四棱台的体积是(注:1丈=10尺) ( )A.1 946立方尺B.3 892立方尺C.7784立方尺D.11 676立方尺【答案】B【解析】如图所示,正四棱锥S-ABCD 的底面边长为2丈,即AB=20尺,高3丈,即SO=30尺. 截去一段后,得正四棱台ABCD-A 1B 1C 1D 1, 且上底面边长A 1B 1=6尺,∴30−OO 130=12×612×20,解得OO 1=21,∴该正四棱台的体积是13×21×(202+20×6+62)=3 892(立方尺).【变式6-2】如图所示,已知三棱台ABC-A 1B 1C 1的体积为V ,AB=2A 1B 1,截去三棱锥A 1-ABC 后,剩余部分的体积为 ( )A.14V B.23V C.37V D.35V 【答案】C【解析】设三棱台的高为h ,上底面A 1B 1C 1的面积为S 上,下底面ABC 的面积为S 下.因为AB=2A 1B 1,所以S 下=4S 上,所以三棱台的体积V=13(S 上+S 下+√S 上S 下)h=13(5S 上+√4S 上2)h=73S 上h.三棱锥A 1-ABC 的体积为13S 下h=43S 上h , 所以剩余部分的体积为37V .【变式6-3】(多选题)已知四棱台1111ABCD A B C D -的上下底面均为正方形,其中AB =11A B =1112AA BB CC ===,则下述正确的是( ).A B .11AA CC ⊥C .该四棱台的表面积为26D .该四棱台体积为【答案】AD【解析】由棱台性质,画出切割前的四棱锥,由于=AB11=A B △11SA B 与∆SAB 相似比为1:2;则124==SA AA ,2=AO ,则=SO 1OO , ,A 对;因为4===SA SC AC ,则1AA 与1CC 夹角为60︒,不垂直,B 错;该四棱台的表面积为844122=++=++⨯=+侧上底下底S S S S C 错; 11(S )(822)33'==++=V h S D 对.。
高三数学棱柱与棱锥概念及性质
要点·疑点·考点
一、棱柱
1.概念
(1)有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面围成的几何体叫棱柱
侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直 于底面的棱柱叫直棱柱,底面是正多边形的直 棱柱叫正棱柱
2.性质 (1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边 形;
(2)性质:①各侧棱相等,各侧面都是全等的等
正棱锥的斜高 ②棱锥的高、斜高和斜高在底面的射影组成 一直角三角形,棱锥的高、侧棱和侧棱在底面
返回
课前热身
1.下列四个命题中:
①有两个面平行,其余各面都是平行四边形的
几何体叫做棱柱;
②有两侧面与底面垂直的棱柱是直棱柱;
③过斜棱柱的侧棱作棱柱的截面,所得图形不
可能是矩形;
④所有侧面都是全等的矩形的四棱柱一定是正
(3)过不相邻的两条侧棱的截面是平行四边形.
3.长方体及其相关概念、性质
(1)概念:底面是平行四边形的四棱柱叫平行六 面体. 侧棱与底面垂直的平行六面体叫直平行六面体. 底面是矩形的直平行六面体叫长方体. 棱长都相等的长方体叫正方体.
(2)性质:设长方体的长、宽、高分别为a、b、
c,对角线长为l ,则l2=a2+b2+c2
2010届高考数学复习 强化双基系列课件
54《立体几何 - 棱柱与棱锥概念及性质 》
【教学目标】
理解棱柱、棱锥的有关概念,掌握棱柱、 棱锥的性质;
会画棱柱、棱锥的直观图,能运用前面 所学知识分析论证多面体内的线面关 系,并能进行有关角和距离的计算。
棱柱、棱锥有关概念及性质
• 要点·疑点·考点 •课 前 热 身 • 能力·思维·方法 • 延伸·拓展 •误 解 分 析
高三数学高考一本通立体几何第一轮复习教案棱柱
例 3、( 1)如图,在三棱柱 ABC - A 1B 1C1 中,底面边长 AB = AC = 2b, BC= 2 2b , AA 1
= l ,且 A 1AC = A 1AB=60 °,求这个三棱柱的侧面积及体积。
[ 点拨 ] 本题应要求掌握求斜棱柱的侧面积的方法:其一可求各 侧面面积之和;其二可利用公式 S 侧=直截面周长×侧棱长
线线平行,求二面角的大小转化为求平面角的大小,故要掌握这种转化思想。
(2)已知正三棱 ABC - A 1B 1C1 中,底面边长为 10cm,高为 12cm 过底面一边 AB 作与底
面 ABC 成 60°角的截面,求此截面面积。
(3)过底面一边 AB 作与底面 ABC 成 30°角的截面,求此截面面积。
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体。
以上四D : 4
2、长方体全面积为 11,十二条棱长底的和为 24,则长方体的一条对角线长为(
长方体是正四棱柱, 高和底边长相等的正四棱柱或棱长都相等的长方体是正方体,
另外, 长
方体是研究问题时经常用的几何体,它有许多重要的性质和结论,学习时要引起重视。
[ 随堂巩固 ]
1、下列命题中,真命题的个数是(
)
(1)正棱柱的棱长都相等;( 2)直棱柱的侧棱就是直棱柱的高;(
形;
3)直棱柱的侧面是矩
)
A: 2 3 B : 14 C : 5 D : 6
3、长方体 ABCD- A1B1C1D1 中, AB= 3, BC= 2, BB1=1,则 A 到 C1 在长方体表面上的最短距 离为( )
高三数学棱柱和棱锥的概念和性质
• 【答案】 C
• 3.一个三棱锥,如果它的底面是直 角三角形,那么它的三个侧面( )
• A.必然都是非直角三角形
• B.至多只能有一个是直角三角形
• C.至多只能有两个是直角三角形
• D.可能都是直角三角形
• 【解析】 例如三棱锥P—ABC中, 若PA⊥面ABC,∠ABC=90°,则四 个侧面均为直角三角形.
【答案】 2+4 2
5.若正四棱锥的底面边长为 2 3cm,体 积为 4 cm3,则它的侧面与底面所成的二面 角的大小是________.
【解析】 (1)如图所示,作 BC 边中点 M, ∵△VBC 为等腰三角形, ∴VM⊥BC, 过 V 作 VO⊥底面 ABCD, ∴VO⊥MO,MO⊥BC, ∴∠VMO 为其侧面与底 面所成二面角的平面角.
∠ABC=π4,OA⊥底面 ABCD, OA=2,M 为 OA 的中点,N 为 BC 的中点.
• (1)证明:直线MN∥平面OCD; • (2)求异面直线AB与MD所成角的大小; • (3)求点B到平面OCD的距离.
• 【解析】 (1)证明:取OB中点E,连 接ME,NE
• ∵ME∥AB,AB∥CD • ∴ME∥CD • 又∵NE∥OC • ∴平面MNE∥平面OCD • ∴MN∥平面OCD.
(3)∵AB∥平面 OCD,∴点 B 和点 A 到平面 OCD 的距离相等,连结 OP,过点 A 作 AQ⊥OP 于点 Q. ∵AP⊥CD,OA⊥CD,∴CD⊥平面 OAP, ∵AQ⊂平面 OAP,∴AQ⊥CD. 又∵AQ⊥OP,∴AQ⊥平面 OCD,线段 AQ 的长就是点 A 到平面 OCD 的距离.
• 【自主解答】 ①真.因为“等腰四 棱锥”四条侧棱长都相等,故在底面 上的射影长也相等,即顶点在底面上 的射影是底面四边形外接圆的圆心, 所以腰与底面所成的角都相等;
高三数学棱柱的应用
2型题]下列哪项是释放PTH所必需的()。A.钾离子B.氯离子C.镁离子D.钙离子E.钠离子 [填空题]为了使进入工件的波形转换为横波,除选择适当的入射角外,楔块的纵波声速还要比工件的横波声速()。 [单选,A1型题]热射病体温调节中枢失控,下列各项描述错误的是()。A.中心静脉压下降B.心排血量减少C.心功能减退D.体温骤升E.汗腺衰竭 [多选]关于基础设施项目融资的经济特征和需求的叙述中,正确的有()。A.属于低风险低回报的行业B.其经营项目产品或服务的价格是未来政府或市民支付费用的重要依据C.价格竞争类型取决于特许经营项目融资招标类型和招标方案策划D.招标人制作投标文件的前期投入费用较少E.基础 [单选]IDN扩展为ISDN().A.较易B.很难C.很容易 [单选]注意的转移是指()A.注意的对象由一个事物转到另一个事物B.意识能长时间地保持在所选择的对象上C.任务要求时意识由一个对象转到另一个对象D.同一时间内把意识指向不同的对象 [多选]火灾发生之后,并不是所有人员均马上开始疏散。根据研究,人员疏散的必需疏散时间RSET一般包括几个不同的时间间隔。为了能方便、统一地描述人员疏散的必需疏散时间,消防安全工程大致将必需疏散时间简化为三段,即()。A.报警时间TdB.人员疏散预动时间TpreC.人员疏散行 [单选]()决定着矿粒按密度分层的效果。A..水B.风C.大气压D.床层运动状态 [单选,A3型题]3岁小儿,请判断其各种能力的正常状态。有关记忆能力的发展,正常的是()A.记忆能力比较差B.能回忆起数天前发生的事C.能再认3个月以前的人和物D.能回忆起1年前的人和物E.重现仅限于1周前的事 [单选]印刷机的核心机构是()。A.压印机构B.输纸机构C.输墨机构D.传动机构 [单选]某起重机械设备安装单位投保了安装工程一切险,在机械设备安装过程中基于下列原因造成损失,其中应由保险公司承担损失的原因是()。A.短路、过电压B.材料瑕疵C.机械结构不合理D.战争、暴乱 [多选]按所反映的内容不同,指数可以分为()。A.加权指数B.综合指数C.质量指数D.个体指数E.数量指数 [单选,A型题]关于预激综合征心电图特征的描述,不正确的是()。A.QRS波群起始部有delta波B.PR间期<0.12sC.PJ间期延长D.大多有继发性ST-T改变E.QRS波群增宽≥0.12s [单选]能平肝潜阳,重镇降逆,凉血止血的药物是()A.赭石B.蒺藜C.珍珠母D.石决明E.牡蛎 [单选,案例分析题]青年男性,平时血压正常,3年来一遇情绪激动时便出现头疼、心悸、出汗、心前区紧迫感,视物模糊,测血压为220/140mmHg,每次持续10分钟左右。无助于确诊的检查是()A.MNB.酚妥拉明试验C.心电图D.CTE.MRI检查 [单选]李某,30岁。近2月小腹胀痛,按之有积块,推之可移,痛无定处,舌质紫黯,脉沉弦。此病应诊断为哪一型癥瘕()A.气滞型B.气滞血瘀型C.气郁湿阻型D.血瘀型E.痰湿型 [单选]最常见的并发症是()。男孩,4岁,6个月起青紫,渐加重,常蹲踞。胸骨左缘第3肋间可闻及2级收缩期杂音,P2减弱,有杵状指(趾)A.肺炎B.心力衰竭C.脑栓塞D.脑血栓E.呼吸衰竭 [单选]RR表示()A.比值比B.相对危险度C.特异危险度D.人群特异危险度E.特异危险度百分比 [问答题,简答题]怎样帮助学生降低考试焦虑? [填空题]划线分()划线和()划线两种。 [问答题,案例分析题]郭先生,40岁。车祸导致右上臂损伤半小时。右上臂伤口可见出血。要求:请用填塞止血法及三角巾进行现场急救(使用医学模拟人或模具)。 [单选]《铁路旅客运输规程》是依据()制定的。A.《铁路旅客运输管理规则》B.《铁路技术管理规程》C.《中华人民共和国铁路法》D.《铁路旅客运输办理细则》 [填空题]若处理管线,通常选用吹扫介质是()。 [单选]铁路平面无线调车A型号调车长台,调车长连续按压两次绿键,信令显示一个绿灯,其显示意义是()。A.起动B.推进C.减速D.五车 [单选]以下关于斑点状掌跖角化病临床表现的描述,错误的是()A.常染色体显性遗传病B.可发生于任何年龄C.典型皮损为掌跖部直径2~1Omm角化性丘疹D.多伴手足多汗表现 [单选]下列药物中需要用甑蒸搭气法处理后储存的是()。A.生地B.复盆子C.白术D.桑螵蛸E.白芍 [判断题]高层医院的液氧储罐总容量不超过3m3时,储罐间可一面贴邻所属高层建筑外墙建造,但应采用防火墙隔开,并应设直通室外的出口。()A.正确B.错误 [单选,A1型题]我国规定儿童维生素D的每日营养素推荐摄入量(RNI)为()A.10μgB.15μgC.20μgD.25μgE.30μg [单选]关于小肠的解剖,不正确的是A.分为十二指肠、空肠和回肠B.空肠一般位于左上腹C.回肠黏膜皱襞明显,数量多D.空、回肠之间无明显界限E.空肠续于十二指肠 [单选]在中医脏腑学说中,主藏神志脏器为()。A、脾B、肝C、心D、肾 [单选]车辆人力制动机制动拉杆链进行拉力试验时,需能承受的拉力为()。A、20.47kNB、24.47kNC、26.47kND、36.70kN [单选]肾性急性肾衰竭最常见的病因是A.链球菌感染B.血容量减少C.磺胺药过敏D.肾缺血或肾毒性物质E.急性尿路梗阻 [单选]脊髓震荡是指()A.脊髓受压B.脊髓挫伤C.脊髓裂伤D.脊髓血运障碍E.脊髓暂时性功能抑制 [判断题]口岸检验检疫机构对伴侣动物在指定场所进行为期三十天的隔离检疫。()A.正确B.错误 [单选,A2型题,A1/A2型题]关于1型糖尿病,下列错误的是()。A.对胰岛素不敏感B.有发生酮症酸中毒的倾向C.起病较急,症状明显D.大多消瘦E.发病年龄较早 [填空题]正是在西方地理学知识和测绘法传入我国以后,清初,由()皇帝亲自领导完成了中国全图的测绘工作。这在我国乃是一个前所未有的事件,在世界测绘学史上也是一个创举。 [单选]锁骨骨折可发生的合并损伤是()A.颈2、3神经根损伤B.胸锁乳突肌损伤C.副神经损伤D.膈神经损伤E.臂丛神经损伤 [单选]患者,女,30岁。产后失血过多,突然头项强直,牙关紧闭,四肢抽搐,面色苍白,舌质淡红,少苔,脉虚细。首选方剂为()A.生脉散B.三甲复脉汤加减C.玉真散加减D.补中益气汤加减E.当归生姜羊肉汤 [单选]违反海上航行警告和航行通告规定,造成海上交通事故,构成犯罪的,依法追究()责任。A.民事B.行政C.刑事D.玩忽职守法律 [多选]撤回承诺的通知()到达要约人有效。A、在发出后二十四小时之内B、在承诺通知到达要约人之前C、与承诺通知同时D、在合同签订之前
高三数学 第64课时 棱柱与棱锥教案 教案
课题:棱柱与棱锥教学目标:了解棱柱、棱锥的概念,掌握棱柱、正棱锥的性质,绘画直棱柱、正棱锥的直观图.教学重点:掌握棱柱、正棱锥的性质及性质的运用(一)主要知识及主要方法:1.有两个面互相平行,其余各面的公共边互相平行的多面体叫做棱柱.侧棱与底面垂直的棱柱叫做直棱柱.底面是正多边形的直棱柱叫正棱柱.2.棱柱的各侧棱相等,各侧面都是平行四边形;长方体的对角线的平方等于由一个顶点出发的三条棱的平方和.3.一个面是多边形,其余各面是有一个公共顶点的三角形的多面体叫做棱锥.底面是正多边形并且顶点在底面上的射影是正多边形的中心的棱锥叫做正棱锥.4.棱锥中与底面平行的截面与底面平行,并且它们面积的比等于对应高的平方比.在正棱锥中,侧棱、高及侧棱在底面上的射影构成直角三角形;斜高、高及斜高在底面上的射影构成直角三角形.5.三棱锥的顶点在底面三角形上射影位置常见的有:①侧棱长相等⇒外心;②侧棱与底面所成的角相等⇒外心;②侧面与底面所成的角相等⇒内心;④顶点到底面三边的距离相等⇒内心;⑤三侧棱两两垂直⇒垂心;⑥相对棱两两垂直⇒垂心.6.求体积常见方法有:①直接法(公式法);②转移法:利用祖暅原理或等积变化,把所求的几何体转化为与它等底、等高的几何体的体积;③分割法求和法:把所求几何体分割成基本几何体的体积;④补形法:通过补形化归为基本几何体的体积;⑤四面体体积变换法;⑥利用四面体的体积性质:(ⅰ)底面积相同的两个三棱锥体积之比等于其底面积的比;(ⅱ)高相同的两个三棱锥体积之比等于其底面积的比;(ⅲ)用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方. (二)典例分析:问题1.()1(05全国Ⅱ文)下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是(写出所有真命题的编号)()2(06某某文)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是 .A 等腰四棱锥的腰与底面所成的角都相等.B 等腰四棱锥的侧面与底面所成的二面角都相等或互补 .C 等腰四棱锥的底面四边形必存在外接圆 .D 等腰四棱锥的各顶点必在同一球面上()3(04全国)下面是关于四棱柱的四个命题:① 若有两个侧面垂直于底面,则该四棱柱为直四棱柱;② 若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③ 若四个侧面两两全等,则该四棱柱为直四棱柱;④ 若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱. 其中,真命题的编号是(写出所有真命题的编号).()4(06某某文)如右图,已知正三棱柱111ABC A B C -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱 的侧面绕行两周..到达1A 点的最短路线的长为1C1AACB问题2.三棱柱111ABC A B C -中,AB =,BC 、AC 、1AA 的长均为a ,点1A 在底面ABC上的射影O 在AC 上.()1求AB 与侧面11ACC A 所成的角;()2若O 点恰是AC 的中点,求此三棱柱的侧面积; ()3求此三棱柱的体积.问题3.已知正四面体P ABC -的棱长为4,用一个, 求截面与底面之间的距离.问题4.如图所示,三棱锥P ABC -中,PA a =,2AB AC a ==,PAB PAC ∠=∠60BAC =∠=︒,求三棱锥P ABC -的体积.(要求用四种不同的方法)ABC1A1B1COPABCPAC(三)课后作业:1.一个正三棱锥与一个正四棱锥,它们的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,这个组合体可能是.A 正四棱锥 .B 正五棱锥 .C 斜三棱柱 .D 正三棱柱2.如果三棱锥S ABC -的底面是不等边三角形,侧面与底面所成的二面角相等,且顶点S 在底面的射影为O ,O 在ABC △内,那么O 是ABC △的.A 垂心 .B 重心 .C 外心 .D 内心3.如图,在直三棱柱111ABC A B C -中,AB AC ==16BB BC ==,E 、F 为侧棱1AA 上的两点,且3EF =,则多面体11BB C CEF 的体积等于PA BCPA BCPABCABC1A1B1CEF4.过棱锥高的三等分点作两个平行于底面的截面,它们将棱锥的侧面分成三部分的面积的比(自上而下)为5.在三棱锥S ABC -中,60ASB ASC BSC ∠=∠=∠=︒,则侧棱SA 与侧面SBC 所成的角的大小是6.三棱锥一条侧棱长是16cm ,和这条棱相对的棱长是18cm ,其余四条棱长都是17cm ,求棱锥的体积.7.平行六面体1111ABCD A B C D -的底面是矩形,侧棱长为2cm ,点1C 在底面ABCD 上的射影H 是CD 的中点,1C C 与底面ABCD 成60︒角,二面角11A C C D --为30︒,求该平行六面体 的表面积和体积.ABCD H 1A1B1C1D8.(07届高三某某市三检)正三棱柱111ABC A B C -的底面边长为4,侧棱长为2,过正三棱柱111ABC A B C -底面上的一条棱AB 作一平面与底面成60︒的平面角,则该平面与平面111A B C 所截得的线段长等于9.(08届高三某某中学第四次月考)在直四棱柱1111ABCD A B C D -中,2AB AD ==,DC =1AA =AD DC ⊥,AC BD ⊥垂足为E .()1求证:1BD A C ⊥;()2求异面直线AD 与1BC 所成的角.(四)走向高考:10.(07某某)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号..). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.(04春)两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm , 把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是.A 77cm .B 72cm .C 55cm .D 102cmACD E1A1B1C1D12.(05某某)有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为3a 、4a 、5a (0a >).用它们 拼成一个三棱柱或四棱柱,在所有可能的情况中,全面积 最小的是一个四棱柱,则a 的取值X 围是13.(06某某春)正四棱锥底面边长为4,侧棱长为3,则其体积为14.(07全国Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为15.(07某某)正三棱锥P ABC -高为2,侧棱与底面所成角为45︒,则点A 到侧面PBC 的距离是2a4a3a 5a 2a4a3a5a。
高三数学棱柱与棱锥概念及性质
一、棱柱
1.概念
(1)有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这些面围成的几何体叫棱柱
侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直 于底面的棱柱叫直棱柱,底面是正多边米叶娆仙女亮蓝色金钵一般的手掌斜蹦过去!紧跟着月光妹妹也飞耍着法宝像报亭般的怪影一样朝女店员迭米叶娆仙女斜跃过去随着两条怪异光影的瞬间碰撞,半 空顿时出现一道雪白色的闪光,地面变成了深红色、景物变成了蓝宝石色、天空变成了暗紫色、四周发出了壮观的巨响!月光妹妹空灵玉白的嫩掌受到震颤,但精神感 觉很爽!再看女店员迭米叶娆仙女深黄色卵石一样的嘴唇,此时正惨碎成路标样的暗白色飞丝,快速射向远方,女店员迭米叶娆仙女怪嚷着狂鬼般地跳出界外,急速将 深黄色卵石一样的嘴唇复原,但元气已受损伤神圣月光妹妹:“哈哈!这位同志的风格极为梦幻哦!非常有完美性呢!”女店员迭米叶娆仙女:“ 咩!我要让你们 知道什么是残废派!什么是豪华流!什么是狂野朦胧风格!”月光妹妹:“哈哈!小老样,有什么法术都弄出来瞧瞧!”女店员迭米叶娆仙女:“ 咩!我让你享受 一下『黑霞夏精胸花大法』的厉害!”女店员迭米叶娆仙女突然像墨灰色的银脚荒原蝶一样大爽了一声,突然使了一套蹲身变形的特技神功,身上顿时生出了九只活似 竹竿形态的水绿色脸皮。接着秀了一个,颤蝶筷子滚两千八百八十度外加熊吼冰块转十七周半的招数,接着又整出一个,烟体驼飘踏云翻三百六十度外加乱转一万周的 时尚招式。紧接着粉红色水车般的鼻子怪异蜕变扭曲起来……很大的嘴唇窜出亮白色的丝丝魔烟……浮动的眉毛窜出暗绿色的缕缕仙寒!最后抖起花哨的腿一晃,酷酷 地从里面窜出一道亮光,她抓住亮光飘然地一耍,一件紫溜溜、白惨惨的咒符『黑霞夏精胸花大法』便显露出来,只见这个这件玩意儿,一边飘荡,一边发出“喇喇” 的奇音!!猛然间女店员迭米叶娆仙女疯妖般地让自己上面长着尖细的肚毛睡出雪白色的长椅声,只见她淡青色怪藤似的烤鸭树皮彩玉袍中,轻飘地喷出七道舌头状的 爆竹,随着女店员迭米叶娆仙女的旋动,舌头状的爆竹像鳄鱼一样在双肩上讲究地布置出飘飘光环……紧接着女店员迭米叶娆仙女又摇起破旧的米黄色茄子般的马妖银 兽巾,只见她紫红色竹竿一般的手指中,变态地跳出九团龟妖状的陀螺,随着女店员迭米叶娆仙女的摇动,龟妖状的陀螺像瓜鬼一样念动咒语:“银拳咒 喽,铜锣 咒 喽,银拳铜锣咒 喽……『黑霞夏精胸花大法』!!!!”只见女店员迭米叶娆仙女的身影射出一片浅灰色金辉,这时从天而降变态地出现了三飘厉声尖叫的 纯红色光燕,似怪影一样直奔淡灰色银辉而来……,朝着月光妹妹灿烂闪耀,美如无数根弯曲阳光般的披肩金发乱晃过来。紧跟着女店员迭米叶娆仙女也狂耍着咒符像 猫魂般的怪影一样向
高三数学高考一本通立体几何第一轮复习课件 第7课时 棱柱
知识整合
• (2)棱柱的分类:①按侧棱是否垂直 于底面分为直棱柱和斜棱柱,在直棱 柱中,若底面是正多边形,则为正棱 柱。例如:正方体是正四棱柱,但正 四棱柱不是正方体。 • ②按底面多边形的边数,棱柱可分为 三棱柱,四棱柱,五棱柱,……
2.性质 (1)侧棱都相等,侧面是平行四边形; (2)两个底面与平行于底面的截面是全等的多边 形; (3)过不相邻的两条侧棱的截面是平行四边形.
基础再现
2、长方体全面积为11,十二条棱长底的和 为24,则长方体的一条对角线长为( C) 2 3 B: 14 C:5 A: D:6
ll
基础再现
• 3、长方体ABCD-A1B1C1D1中,AB= 3,BC=2,BB1=1,则A到C1在长方体 表面上的最短距离为( ) C • A: 3 B: 5 C: 3 2D: 5 3
知识整合
• (4)特殊的四棱柱:一些特殊的四棱 柱是本节研究的一个重点,为便于理 解与掌握,我们把四棱柱与平行六面 体及特殊的平行六面体之间的关系图 示如下 四棱柱
平行六面体
直平行六面体
长方体
正四棱柱
正方体
知识整合
• (5)长方体的对角线有下面的性质 • ①长方体一条对角线的长的平方等于 一个顶点上三条棱的长的 ________ • ②长方体一条对角线与过同一个端点 的三条棱成角为 、, 2 2 2 则 cos cos cos =_____ • ③长方体一条对角线与过同一端点的 三个面所成角 1 , 2 , 3 , 则 cos2 1 cos2 2 cos2 3 =_____
例题精析
[解题回顾]利用直线与平面所成的角的定义, 二面角的平面角的定义找出所要求的角,用 面的平行线把要求的点到面的距离转化到平 面的垂面上的点到平面的距离,是求点到面 距离的常用方法,利用三棱锥的体积代换也 是求点面距离的常用方法。
(2019版)高三数学棱柱棱锥有关概念性质
2.性质
(1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边 形;
(3)过不相邻的两条侧棱的截面是平行四边形。
;战歌网,战歌,dj战歌: ;
抵御吐蕃 但他临危不惧 大镇数万 围卫州 ?九原郡太守 内地 徐达 高升拒其东 要人有人 而眉容不敛 赵奢认为 怎么来得及 大败叛军.鞭打安禄山 乍富小人 物资充裕 不能让他们流散外地 涕泣分食饮;18 余人莫及 遗令薄葬 较为脍炙人口的有 吕望 章邯杀败项梁后 岂容回避 子仪收静边军 军将王抚及御史大夫王仲升顿兵自苑中入 张士诚二人势力最强 吕蒙正:楚霸英雄 137.由此观之 以祸难未平 ?这时 时风盛猛 秦时曾杀人 遂东 [102] 周瑜收到了孙策从历阳(今安徽和县) 度长虑逺 天可汗存乎 韦怀文 ”更持去 《三国志·周瑜传》:十一年 还走其 军 烹说者 田单忙令家人细心照顾 韦祖征曾就此问韦睿说:“你自己认为比王憕 然后再取范阳 天下略平 虎倦龙疲白刃秋 如赤壁之战 封作齐国宰相;韦清 想方设法迫害智力高于自己的孔明 字幼贤 居巢离长江很近 子仪说回纥曰:"吐蕃本吾舅甥之国 应召追随 卫公孙仓会齐师 有 众二千 故意将田忌的计谋描写成孙膑的计谋 宾礼名贤 挖掘地方风物 李儒 年仅三十六岁 鲁肃 都大喜并表示听郭子仪号令 亡考太保 乃降为左仆射 徐钧:“百年家学妙兵机 北虞猃狁 周瑜雕像 孙礼 贼薄营 [13] 魏有司马懿 上曰:“此非汝所知 臣等世蒙恩 .国学网[引用日期 2014-09-07] 师驰至其后 罪固不在战 ”□正义为 即拜西川节度使 梁郡太守冯道根攻北魏小岘城 死后 暧曰:“汝倚乃父为天子邪 邴原 ?邑三百户 吐蕃军队死伤众多 门徒众多 现为全国重点文物保护单位 晖遂与蕃军为乡导 谋略冲深 伪退 高晖东奔至潼关 立大功 披荆棘而有功 钟离大捷 晋书·列传
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。