小学数学比及比例应用题.doc
六年级上册数学《比》3类必考应用题及练习
六年级上册数学第四单元《比》3类必考应用题+练习(一)比例尺应用题数量关系:图上距离÷实际距离=比例尺例题如下:在比例尺是1:3000000的地图上,量得A城到B 城的距离是8厘米,A城到B城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。
所设未知数的计量单位名称要与已知的计量单位名称相同。
练习:1、一种精密零件长2毫米,用20∶1的比例尺画图,应画多少厘米?解:应画X毫米。
X/2=20/1X=40(mm)40mm=4cm(二)按比例分配应用题方法:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。
按比例分配也可以用归一法来解。
例题如下:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。
2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。
练习:1、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101 5050÷101=50(千克)答:需要盐水50千克。
2、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
(三)正、反比例应用题数量关系:如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:kx=y(一定)。
如果两种相关联的量成反比例时,可用下面的式子来表示:×y=K(一定)。
例题如下:六一玩具厂要生产2080套儿童玩具。
前6天生产了960套,照这样计算,完成全部任务共需要多少天?思路分析:因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。
比和比例应用题同步训练
比和比例应用题同步训练(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--比和比例应用题同步训练1、周末小王约朋友小张、小黎去水库钓鱼。
一天下来他们数了数,共钓了21条鱼,称一称共重42千克。
如果依据钓鱼的时间及钓鱼的收获,小王、小张、小黎该分得的比为111365︰︰。
那么他们三人会怎样分这些鱼2、某农场把61600公亩耕地划归为粮田与棉田,它们之间的面积比是7︰2,棉田与其他作物面积的比是6︰1。
每种作物各是多少公亩3、某小学六年级的同学分三组参加植树。
第一组与第二组人数比是5︰4,第二组与第三组人数比是3︰2。
已知第一组的人数比二、三两组人数的总和少15人。
六年级参加植树的共有多少人4、科技组与作文组人数比是9︰10,作文组与数学组人数比是5︰7,已知数学组与科技组共有69人。
数学组比作文组多多少人5、小明读一本书,已读和未读的页数比是1︰5。
如果再读30页,则已读和未读的页数比是3︰5。
这本书共有多少页6、甲、乙两包糖的重量比是4︰1。
从甲包取出130克放入乙包后,甲、乙两包糖的重量比是7︰5,原来甲包有多少克糖7、五年级三个班举行数学竞赛,一班参加比赛的占全年级参赛总人数的13,二班与三班参加比赛人数比是11︰13,二班比三班少8人。
一班有多少人参加了比赛8、甲、乙两车同时从A、B两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米。
A、B两地相距几千米9、小刚和小明进行了100米短跑比赛(假定二人的速度均不变)。
当小刚跑了90米时,小明距终点还有25米,那么当小刚到达终时,小明距终点还有几米10、甲、乙两人各加工同样多的零件,同时加工,当甲完成任务时,乙还有150个没有完成,当乙完成任务时,甲可以超额完成250个,这批零件总数共有几个11、两块一样重的合金,一块合金中铜与锌的比是2︰5,另一块合金中铜与锌的比是1︰3。
比和比例doc
小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。
已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。
提示:根据已知条件可先求三种商品的数量比。
[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?例3、A、B、C是三个顺次咬合的齿轮。
当A转4圈时,B恰好转3圈;当B转4圈时,C 恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。
习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?小学六年级奥数题:小学奥数应用题专题汇总小学奥数专题汇总1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
数学比的应用题有答案
数学比的应用题有答案数学比的应用题及答案1. 问题:小明和小红一起买了一些苹果,小明买了苹果的2/5,小红买了苹果的3/5。
如果小红买了15个苹果,那么小明买了多少个苹果?答案:小明买了12个苹果。
2. 问题:一个班级有40名学生,其中男生和女生的比是3:2。
这个班级有多少男生和女生?答案:这个班级有24名男生和16名女生。
3. 问题:一个工厂生产两种类型的产品,A型产品和B型产品。
A型产品和B型产品的生产比是4:3。
如果工厂一天生产了120个A型产品,那么它生产了多少个B型产品?答案:工厂生产了90个B型产品。
4. 问题:在一个水果店,苹果和橘子的比例是5:3。
如果水果店有100个苹果,那么有多少个橘子?答案:水果店有60个橘子。
5. 问题:在一次长跑比赛中,小华和小李的速度比是3:2。
如果小华跑了3600米,那么小李跑了多少米?答案:小李跑了2400米。
6. 问题:一个公园的树木中,松树和柏树的比例是7:4。
如果公园里有42棵柏树,那么有多少棵松树?答案:公园里有63棵松树。
7. 问题:在一个合唱团中,男生和女生的人数比是5:4。
如果合唱团有30名男生,那么合唱团有多少名女生?答案:合唱团有24名女生。
8. 问题:一个农场的奶牛和山羊的头数比是6:5。
如果农场有45头奶牛,那么有多少头山羊?答案:农场有37.5头山羊,但由于山羊的数量必须是整数,所以实际上会有37头山羊。
9. 问题:一个学校的图书馆中,科学书籍和文学书籍的比例是2:3。
如果图书馆有60本科学书籍,那么有多少本文学书籍?答案:图书馆有90本文学书籍。
10. 问题:在一次数学竞赛中,小刚和小强的得分比是4:5。
如果小强得了50分,那么小刚得了多少分?答案:小刚得了40分。
比例的数学应用题及答案
比例的数学应用题及答案题目1:如果一个班级有40名学生,其中20%的学生喜欢数学,那么喜欢数学的学生有多少名?答案1:首先,我们需要计算出喜欢数学的学生所占的比例。
20%的40名学生等于0.2 * 40 = 8名学生。
所以,喜欢数学的学生有8名。
题目2:一个长方形的长是宽的两倍,如果宽是8厘米,那么长方形的长是多少厘米?答案2:根据题目描述,长方形的长是宽的两倍。
已知宽为8厘米,那么长就是8厘米 * 2 = 16厘米。
题目3:如果一个比例是3:4,且比例中的一个部分是12,那么这个比例的另一个部分是多少?答案3:首先,我们需要确定比例中每个部分的值。
比例3:4意味着每3个单位对应4个单位。
已知一个部分是12,那么我们可以设另一个部分为x。
根据比例关系,我们有3/4 = 12/x。
通过交叉相乘,我们得到3x = 4 * 12。
解这个方程,我们得到x = (4 * 12) / 3 = 16。
题目4:一个工厂生产两种类型的机器,A型和B型。
如果A型机器的生产时间是B型机器的1.5倍,且A型机器的生产时间是3小时,那么B型机器的生产时间是多少?答案4:根据题目,A型机器的生产时间是B型机器的1.5倍。
已知A 型机器的生产时间是3小时,我们可以用以下公式表示这个关系:A型时间 = 1.5 * B型时间。
将已知的A型时间代入公式,我们得到3 =1.5 * B型时间。
解这个方程,我们得到B型时间 = 3 / 1.5 = 2小时。
题目5:一个混合液由水和酒精组成,其中酒精占总体积的25%。
如果混合液的总体积是200毫升,那么酒精的体积是多少毫升?答案5:首先,我们需要计算酒精占总体积的百分比。
25%的200毫升等于0.25 * 200 = 50毫升。
所以,酒精的体积是50毫升。
六年级数学比和按比例分配试题答案及解析
六年级数学比和按比例分配试题答案及解析1.一个文具盒卖价5元,如果小东买了这个文具盒,小东与小鹏的钱数之比是2∶5,如果小鹏买了这个文具,则小东与小鹏的钱数之比是8∶13,小东原来有多少钱?【答案】5÷(﹣)÷ =20(元)答:所以小东原来有20元钱。
【解析】由比与除法的定义,根据题意列方程式得。
2.两辆汽车同时从相距360km的两地相对开出,2.4小时后相遇.已知两辆车的速度比是12:13,两辆车的速度分别是多少?【答案】其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.【解析】首先根据路程÷时间=速度,用两地之间的距离除以两车相遇用的时间,求出两车的速度之和是多少;然后把两车的速度之和看作单位“1”,则其中一辆车的速度占两车速度之和的(=),根据分数乘法的意义,用两车的速度之和乘以,求出其中一辆车的速度是多少;最后用两车的速度之和减去其中一辆车的速度,求出另一辆车的速度是多少即可.解答:解;360÷2.4×=150×=72(千米)360÷2.4﹣72=150﹣72=78(千米)答:其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.3.六(1)班男生和女生人数的比是5:4,男生比女生多6人,这个班一共有学生.【答案】54.【解析】男女生比是5:4,所以男生人数是全班人数的,女生人数是人班人数的,男生人数比女生人数多6人,所以全班人数是6.解:6÷=6÷=54(人)故答案为:54.【点评】本题关健是先根据男女生的比求出男女生各占全班人数的几分之几,然后将全班人数当做单位“1”求出全班人数.4. 27: = ÷12=0.75== %【答案】36,9,8,75.【解析】解:27:36=9÷12=0.75==75%.故答案为:36,9,8,75.5.如果A:B=4:5,那么A=3,B=5 .(判断对错)【答案】×【解析】解:A=3,B=5代入 A:B=4:5,得到3:5=4:5,因为4×5=20,3×5=15,两个内项积就不等于两个外项积,这样的两个比就不能组成比例了.故应判断为:×.6.把10克盐放入100克水中,盐和盐水的比是1:10..(判断对错)【答案】×.【解析】解:10:(10+100)=10:110=1:11,故答案为:×.7.大圆和小圆半径的比是5:4,小圆面积和大圆面积的比是()A.5:4B.4:5C.16:25D.10:8【答案】C【解析】解:设小圆的半径为4r,大圆的半径为5r,小圆的面积为:π(4r)2=16πr2大圆的面积为:π(5r)2,=25πr2大圆的面积与小圆面积的比为:16πr2:25πr2=16:25.故选:C.8. ÷20= :12=18÷ =3:4= (填小数)【答案】15,9,24,0.75.【解析】解:15÷20=9:12=18÷24=3:4=0.75.故答案为:15,9,24,0.75.9.甲数的与乙数的相等,甲乙两数的比是.【答案】8:9【解析】解:设甲数为1.则乙数为÷=甲数:乙数=1:=8:9.故答案为:8:9.10. 5克糖放入15克水中,糖和水的比是5:15..(判断对错)【答案】√【解析】解:糖与水的比:5:15=1:3.故答案为:√.11. 3:5的前项增加12,要使比值不变,后项应增加20..(判断对错)【答案】√【解析】解:3:5比的前项增加12,由3变成15,相当于前项乘5;要使比值不变,后项也应该乘5,由5变成25,相当于后项加上:25﹣5=20;所以后项应该增加20,说法正确;故答案为:√.12.一套衣服480元,裤子是上衣的,裤子和上衣各是多少元?(用比的知识和列方程这两种方法解答)【答案】裤子180元,上衣300元【解析】解:方法①裤子的价格:上衣的价格=5:3480×=180(元)480×=300(元);答:裤子180元,上衣300元.方法②设上衣的价格是x元,则裤子的价格是x元,x+x=480x=480x=300480﹣300=180(元);答:裤子180元,上衣300元.13.妈妈准备按1:25的比例配用糖水,如果用糖20克,那么能配备克糖水.【答案】520.【解析】糖水中糖与水的比是1:25,把糖看成1份,那么水就是25份,水是糖的25倍,用糖的质量乘上25即可求出水的质量,再把糖和水的质量相加就是糖水的总质量.解:20×25+20=500+20=520(克)答:能配备 520克糖水.故答案为:520.【点评】解决本题把比看成份数,求出水的质量是糖的质量的多少倍,再根据乘法的意义求出水的质量,进而求出糖水的质量.14.是比例尺,把它改写成数值比例尺是.【答案】线段,1:1500000.【解析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.解:是线段比例尺,15千米=1500000厘米,改写成数值比例尺为1:1500000.故答案为:线段,1:1500000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.15.农贸公司的香蕉占水果重量的,桔子占总重量的,其余的是苹果.(1)写出香蕉、苹果重量的最简比.(2)如果苹果是35千克,那么香蕉有多少千克?(3)你还能提出什么问题?并解答出来.【答案】(1)5:7(2)25千克.(3)写出香蕉和桔子的比,香蕉和桔子的比为5:8.【解析】把水果的总重量看成单位“1”,那么香蕉的重量就是,桔子的重量就是,苹果的重量就是1﹣;(1)先计算出苹果的重量占水果总重量的几分之几,然后再作比;(2)先根据苹果的重量求出水果的总重量,然后再用乘法求出香蕉的重量.(3)根据以上数据提出问题,并解答.解:(1)1﹣=,:=:=5:7;答:香蕉与苹果的比为5:7.(2)35×,=100×,=25(千克);答:香蕉有25千克.(3)写出香蕉和桔子的比,并化成最简整数比.:=:=:=5:8;香蕉和桔子的比为5:8.【点评】本题关键是把水果的总重量看成单位“1”,用分数分别把香蕉,桔子,苹果的重量表示出来,再根据基本的数量关系求解.16.:的最简整数比是,比值是.【答案】5:8,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1):,=(×20):(×20),=5:8;(2):,=÷,=;故答案为:5:8,.【点评】要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.17.六(1)有男生35人,女生25人,男生占全班的,女生占全班的,男生和女生的比是,女生和男生的比是.【答案】7:5,5:7.【解析】把全班人数看成单位“1”,用男生人数除以全班总人数就是男生占全班人数的几分之几,再用1减去男生占的分率就是女生占的分率;分别写出男生和女生的比及女生和男生的比;再化简即可.解:35÷(35+25)=1﹣=35:25=7:525:35=5:7答:男生占全班的,女生占全班的,男生和女生的比是7:5,女生和男生的比是5:7.故答案为:7:5,5:7.【点评】本题属于基本的分数除法应用题,求一个数是另一个数的几分之几,只要找出单位“1”,问题不难解决.18.比的前项和后项同时乘或除以一个数,比值不变..(判断对错)【答案】×【解析】比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.解:比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.故判断为:×【点评】本题主要考查了比例的基本性质,注意“0”这个特殊的数.19. a是b的9倍,b与a的比是9:1..(判断对错)【答案】×【解析】设b为x,则a是9x,根据题意进行比,然后化成最简整数比即可.解:设b为x,则a是9x,则:b与a的比是:x:9x=1:9;故答案为:×.【点评】解答此题应进行假设,设出其中的一个量为x,另一个量也用未知数表示,根据题意进行比,解答即可.20.一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()A.8分米 B.8毫米 C.8厘米【答案】C【解析】比例尺=图上距离:实际距离,根据题意列出比例式求解即可.解:根据题意,设图纸上的长度是x毫米,10:1=x:8,x=10×8,x=80;80毫米=8厘米.故选:C.【点评】考查了图上距离与实际距离的换算(比例尺的应用),关键是理解比例尺的概念,正确进行计算.。
奥数题专题训练之比和比例应用题
比和比例应用题例1、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3;求鸡、猪、马和羊的只数比;分析该题给出了三个单比,要求写出它们的连比;将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值;解由题设,鸡∶猪=26∶5,羊∶马=25∶9,猪∶马=10∶3,由比的基本性质可得:猪∶马=10∶3=30∶9,羊:马=25∶9,鸡:猪=26∶5=156∶30,从而鸡∶猪∶马∶羊=156:30∶9∶25;答:鸡、猪、马、羊的只数比为156∶30∶9∶25;注将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比;如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25;例2.下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例;1路程一定时,速度与时间;2速度一定时,路程与时间;3播种面积一定时,总产量与单位面积的产量;4圆的面积与该圆的半径;5两个相互啮合的大小齿轮,它们的转速与齿数;分析利用正比例、反比例的概念进行判定与说明;解 1由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例;2由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例;3由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例; 4设圆的半径为R,则圆的面积为∏R2,所以圆的面积与半径的积为∏R3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例;综上,圆的面积与半径不成比例;5由于齿轮的转速与齿数的积等于单位时间内齿轮转过的总齿数,而两个相互咬合的大小齿轮在单位时间内转过的总齿数相等,所以,它们的转速与齿数成反比例;注若两个相关联的量成正比例,则一个量变大小时,另一个量也变大小;若两个相关联的量成反比例,则一个量变大小时,另一个量反而变小大;因此,在上例的4中,注意到半径愈大,圆的面积也愈大,故只需判断圆的面积与半径不成正比例,就可断定圆的面积与半径不成比例;例3 某小学共有学生697人,已知低年级学生数的1/2等于中年级学生数的2/5,低年级学生数的1/3等于高年级学生数的2/7,求该校低、中、高年级各有多少名学生分析由题设条件可得低、中、高各年级的学生数的比,从而可按比例分配求得各年级的学生数;解设低年级的学生数为“1”,则中年级的学生数为1/2÷2/5=5/4,高年级的学生数为1/3÷2/7=7/6手:舌,从而,低、中、高年级的学生数的比为:低∶中∶高=1∶5/4∶7/6=12∶15∶14,按比例分配得,低年级学生数:697×12/12+15 +14=204人,中年级学生数:697×15/12+15 +14=255人,高年级学生数::697×14/12+15 +14=238人;答:该校低、中、高年级的学生数分别为204人、255人、238人;注按比例分配时,可先出每份对应的量,再求出相应的量;如:697÷12+15+17 =17人;从而,低年级有17×12=204人,中年级有17×15=255人,高年级有17×14=238人;例4 雏鹰小分队为“希望小学”搞了一次募捐活动;她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5∶6,乙商品与丙商品的数量之比为4∶11,且购买丙商品比购买甲商品多花了210元,求这次募捐所得的钱数;分析根据已知条件可先求出甲、乙、丙三种商品的数量比;即甲、乙、丙三种商品的份数比,再根据甲、丙商品的份数关系及单价,求出每份商品的实际数量,从而求出甲、乙、丙商品的数量,由此可得募捐所得的钱数;解已知:甲商品数∶乙商品数=5:6,乙商品数∶丙商品数=4∶11;于是,甲商品数∶乙商品数∶丙商品数=10∶12∶33,即甲、乙、丙商品分别有10份、12份、33份;由于购买丙商品比购买甲商品多花210元,所以,每份的商品数为210÷10×33—30×10 =7件;于是,甲商品数为:7×10=70件,乙商品数为:7×12=84件,丙商品数为:7×33=231件;由此,募捐所得到的钱数为:30×70+15×84+10×231=5670元.答:募捐所得到的钱为5670元;“比和比例”应用题错解例析2008-05-07 作者:佚名来源:网友投稿例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6;现在由三人共同加工,问完成任务时,三人各加工了多少个错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解;评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4;诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的;但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了不错,工作效率的比等于工作时间比的反比;从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5;这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的;正确的解答应当是:甲、乙、丙三人工作效率的比=容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10;例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5;现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是1+1=2,水的重量是8+5=13;1+1∶8+5=2∶13答:在混合后的盐水中盐与水重量的比是2∶13;评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比;甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样;从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有1+8=9份,在乙瓶盐水中,盐有1份,水有5份,盐和水一共有1+5=6份;因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的;上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误;正确的解答是:1∶8=2∶16,2+16=18;1∶5=3:15,3+15=10;2+3∶16+15=5:31 答:在混合后的盐水中盐与水重量的比是5∶31;小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1练习甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元;提示:根据已知条件可先求三种商品的数量比;练习一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克元,混合前的酥糖每千克是多少元例3、A、B、C是三个顺次咬合的齿轮;当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例;习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个。
小学数学比和比例问题知识汇总及解析例题
小学数学知识总结之比和比例应用题【求比的问题】例1 两个同样容器中各装满盐水。
第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4,把这两个容器中的盐水混合起来,则混合溶液中盐与水的比是____。
(无锡市小学数学竞赛试题)则混合溶液中,盐与水的比是:某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降(1994年全国小学数学奥林匹克决赛试题)即:【比例问题】例1 甲、乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是____克。
(1989年全国小学数学奥林匹克初赛试题)例2 甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。
第二次将乙容器中的一部分混合液倒入甲容器。
这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是____升。
(1991年全国小学数学奥林匹克决赛试题)讲析:因为现在乙容器中纯酒精含量为25%,所以,乙容器中酒精与水的比为25%∶(1-25%)=1∶3第一次从甲容器中倒5升纯酒精到乙容器,才使得乙容器中纯酒精与水的比恰好是5∶15=1∶3又甲容器中纯酒精含量为62.5%,则甲容器中酒精与水的比为62.5%∶(1-62.5%)=5∶3第二次倒后,要使甲容器中纯酒精与水的比为5∶3,不妨把从甲容器中倒入乙容器的混合液中纯酒精作1份,水作3份。
那么甲容器中剩下的纯酒精便是11-5=6(升)6升算作4份,这样可恰好配成5∶3。
而第二次从乙容器倒入甲容器的混合液共为1+3=4(份),所以也应是6升。
一.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
小学数学比例应用题100道及答案(完整版)
小学数学比例应用题100道及答案(完整版)1. 小明用10 元钱买了5 个本子,照这样计算,16 元可以买几个本子?答案:8 个解析:先算出每个本子的价格10÷5 = 2 元,16÷2 = 8 个2. 工厂生产一种零件,3 小时生产了180 个,照这样计算,8 小时可以生产多少个?答案:480 个解析:每小时生产180÷3 = 60 个,8 小时生产60×8 = 480 个3. 一辆汽车5 小时行驶250 千米,照这样的速度,7 小时行驶多少千米?答案:350 千米解析:速度为250÷5 = 50 千米/时,7 小时行驶50×7 = 350 千米4. 4 头牛5 天吃草800 千克,照这样计算,7 头牛8 天吃草多少千克?答案:2240 千克解析:1 头牛1 天吃草800÷4÷5 = 40 千克,7 头牛8 天吃草40×7×8 = 2240 千克5. 用20 千克花生可以榨油8 千克,照这样计算,100 千克花生可以榨油多少千克?答案:40 千克解析:出油率为8÷20 = 0.4,100×0.4 = 40 千克6. 某工厂8 个工人6 天加工零件720 个,照这样计算,12 个工人15 天可以加工零件多少个?答案:2700 个解析:1 个工人1 天加工720÷8÷6 = 15 个,12 个工人15 天加工15×12×15 = 2700 个7. 5 台织布机8 小时织布480 米,照这样计算,7 台织布机12 小时织布多少米?答案:1008 米解析:1 台织布机1 小时织布480÷5÷8 = 12 米,7 台织布机12 小时织布12×7×12 = 1008 米8. 修一条路,3 人5 天可以修150 米,照这样计算,8 人10 天可以修多少米?答案:800 米解析:1 人1 天修150÷3÷5 = 10 米,8 人10 天修10×8×10 = 800 米9. 10 辆汽车12 次运货物600 吨,照这样计算,20 辆汽车15 次可以运货物多少吨?答案:1500 吨解析:1 辆汽车1 次运600÷10÷12 = 5 吨,20 辆汽车15 次运5×20×15 = 1500 吨10. 学校用同样的方砖铺地,铺5 平方米需要方砖120 块,照这样计算,铺30 平方米需要方砖多少块?答案:720 块解析:1 平方米需要120÷5 = 24 块,30 平方米需要24×30 = 720 块11. 小明2 分钟走120 米,照这样的速度,他从家到学校走了8 分钟,他家到学校有多远?答案:480 米解析:速度为120÷2 = 60 米/分钟,8 分钟走60×8 = 480 米12. 工人师傅4 小时加工零件160 个,照这样计算,7 小时加工零件多少个?答案:280 个解析:每小时加工160÷4 = 40 个,7 小时加工40×7 = 280 个13. 6 台收割机8 天收割小麦240 公顷,照这样计算,10 台收割机12 天收割小麦多少公顷?答案:600 公顷解析:1 台收割机1 天收割240÷6÷8 = 5 公顷,10 台收割机12 天收割5×10×12 = 600 公顷14. 某服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套15. 15 头牛4 天吃草180 千克,照这样计算,8 头牛6 天吃草多少千克?答案:576 千克解析:1 头牛1 天吃草180÷15÷4 = 3 千克,8 头牛 6 天吃草3×8×6 = 144 千克16. 5 个工人6 小时加工零件300 个,照这样计算,8 个工人10 小时加工零件多少个?答案:480 个解析:1 个工人1 小时加工300÷5÷6 = 10 个,8 个工人10 小时加工10×8×10 = 800 个17. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?答案:300 千米解析:速度为180÷3 = 60 千米/时,5 小时行驶60×5 = 300 千米18. 用100 千克大豆可以榨油16 千克,照这样计算,400 千克大豆可以榨油多少千克?答案:64 千克解析:出油率为16÷100 = 0.16,400×0.16 = 64 千克19. 修一条路,5 人7 天可以修350 米,照这样计算,10 人14 天可以修多少米?答案:1400 米解析:1 人1 天修350÷5÷7 = 10 米,10 人14 天修10×10×14 = 1400 米20. 3 台抽水机4 小时抽水240 立方米,照这样计算,5 台抽水机6 小时抽水多少立方米?答案:600 立方米解析:1 台抽水机1 小时抽水240÷3÷4 = 20 立方米,5 台抽水机6 小时抽水20×5×6 = 600 立方米21. 某工厂6 个工人5 天生产零件900 个,照这样计算,15 个工人8 天可以生产零件多少个?答案:3600 个解析:1 个工人1 天生产900÷6÷5 = 30 个,15 个工人8 天生产30×15×8 = 3600 个22. 8 台印刷机10 小时印刷纸张48000 张,照这样计算,12 台印刷机15 小时印刷纸张多少张?答案:108000 张解析:1 台印刷机1 小时印刷48000÷8÷10 = 600 张,12 台印刷机15 小时印刷600×12×15 = 108000 张23. 5 辆汽车7 次运煤140 吨,照这样计算,8 辆汽车10 次运煤多少吨?答案:320 吨解析:1 辆汽车1 次运煤140÷5÷7 = 4 吨,8 辆汽车10 次运煤4×8×10 = 320 吨24. 服装厂2 天生产服装120 套,照这样计算,6 天可以生产服装多少套?答案:360 套解析:每天生产120÷2 = 60 套,6 天生产60×6 = 360 套25. 12 头牛5 天吃草300 千克,照这样计算,18 头牛8 天吃草多少千克?答案:864 千克解析:1 头牛1 天吃草300÷12÷5 = 5 千克,18 头牛8 天吃草5×18×8 = 720 千克26. 4 个工人3 小时加工零件120 个,照这样计算,7 个工人8 小时加工零件多少个?答案:560 个解析:1 个工人1 小时加工120÷4÷3 = 10 个,7 个工人8 小时加工10×7×8 = 560 个27. 一辆汽车4 小时行驶280 千米,照这样的速度,7 小时行驶多少千米?答案:490 千米解析:速度为280÷4 = 70 千米/时,7 小时行驶70×7 = 490 千米28. 用80 千克花生可以榨油32 千克,照这样计算,200 千克花生可以榨油多少千克?答案:80 千克解析:出油率为32÷80 = 0.4,200×0.4 = 80 千克29. 修一条路,4 人6 天可以修240 米,照这样计算,6 人9 天可以修多少米?答案:540 米解析:1 人1 天修240÷4÷6 = 10 米,6 人9 天修10×6×9 = 540 米30. 5 台拖拉机6 小时耕地150 亩,照这样计算,8 台拖拉机9 小时耕地多少亩?答案:216 亩解析:1 台拖拉机1 小时耕地150÷5÷6 = 5 亩,8 台拖拉机9 小时耕地5×8×9 = 360 亩31. 某工厂10 个工人8 天生产零件800 个,照这样计算,15 个工人12 天可以生产零件多少个?答案:1800 个解析:1 个工人1 天生产800÷10÷8 = 10 个,15 个工人12 天生产10×15×12 = 1800 个32. 6 台磨面机7 小时磨面粉2520 千克,照这样计算,9 台磨面机10 小时磨面粉多少千克?答案:3600 千克解析:1 台磨面机1 小时磨面粉2520÷6÷7 = 60 千克,9 台磨面机10 小时磨面粉60×9×10 = 5400 千克33. 4 辆卡车5 次运货物160 吨,照这样计算,7 辆卡车8 次运货物多少吨?答案:448 吨解析:1 辆卡车1 次运货物160÷4÷5 = 8 吨,7 辆卡车8 次运货物8×7×8 = 448 吨34. 服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套35. 18 头牛6 天吃草540 千克,照这样计算,12 头牛8 天吃草多少千克?答案:480 千克解析:1 头牛1 天吃草540÷18÷6 = 5 千克,12 头牛8 天吃草5×12×8 = 480 千克36. 5 个工人8 小时加工零件400 个,照这样计算,7 个工人12 小时加工零件多少个?答案:840 个解析:1 个工人1 小时加工400÷5÷8 = 10 个,7 个工人12 小时加工10×7×12 = 840 个37. 一辆汽车6 小时行驶360 千米,照这样的速度,8 小时行驶多少千米?答案:480 千米解析:速度为360÷6 = 60 千米/时,8 小时行驶60×8 = 480 千米38. 用120 千克大豆可以榨油24 千克,照这样计算,300 千克大豆可以榨油多少千克?答案:60 千克解析:出油率为24÷120 = 0.2,300×0.2 = 60 千克39. 修一条路,6 人8 天可以修480 米,照这样计算,9 人12 天可以修多少米?答案:864 米解析:1 人1 天修480÷6÷8 = 10 米,9 人12 天修10×9×12 = 1080 米40. 7 台织布机9 小时织布630 米,照这样计算,10 台织布机12 小时织布多少米?答案:960 米解析:1 台织布机1 小时织布630÷7÷9 = 10 米,10 台织布机12 小时织布10×10×12 = 1200 米41. 某工厂12 个工人10 天生产零件1200 个,照这样计算,18 个工人15 天可以生产零件多少个?答案:2700 个解析:1 个工人 1 天生产1200÷12÷10 = 10 个,18 个工人15 天生产10×18×15 = 2700 个42. 8 台收割机9 天收割小麦360 公顷,照这样计算,12 台收割机15 天收割小麦多少公顷?答案:900 公顷解析:1 台收割机1 天收割360÷8÷9 = 5 公顷,12 台收割机15 天收割5×12×15 = 900 公顷43. 5 辆汽车6 次运货物150 吨,照这样计算,8 辆汽车10 次运货物多少吨?答案:400 吨解析:1 辆汽车1 次运货物150÷5÷6 = 5 吨,8 辆汽车10 次运货物5×8×10 = 400 吨44. 服装厂4 天生产服装240 套,照这样计算,12 天可以生产服装多少套?答案:720 套解析:每天生产240÷4 = 60 套,12 天生产60×12 = 720 套45. 20 头牛7 天吃草700 千克,照这样计算,15 头牛10 天吃草多少千克?答案:750 千克解析:1 头牛1 天吃草700÷20÷7 = 5 千克,15 头牛10 天吃草5×15×10 = 750 千克46. 6 个工人7 小时加工零件210 个,照这样计算,9 个工人14 小时加工零件多少个?答案:630 个解析:1 个工人1 小时加工210÷6÷7 = 5 个,9 个工人14 小时加工5×9×14 = 630 个47. 一辆汽车5 小时行驶250 千米,照这样的速度,9 小时行驶多少千米?答案:450 千米解析:速度为250÷5 = 50 千米/时,9 小时行驶50×9 = 450 千米48. 用150 千克花生可以榨油60 千克,照这样计算,350 千克花生可以榨油多少千克?答案:140 千克解析:出油率为60÷150 = 0.4,350×0.4 = 140 千克49. 修一条路,7 人9 天可以修630 米,照这样计算,10 人18 天可以修多少米?答案:1800 米解析:1 人1 天修630÷7÷9 = 10 米,10 人18 天修10×10×18 = 1800 米50. 8 台拖拉机7 小时耕地280 亩,照这样计算,12 台拖拉机10 小时耕地多少亩?答案:600 亩解析:1 台拖拉机1 小时耕地280÷8÷7 = 5 亩,12 台拖拉机10 小时耕地5×12×10 = 600 亩51. 某工厂15 个工人12 天生产零件1800 个,照这样计算,20 个工人18 天可以生产零件多少个?答案:5400 个解析:1 个工人 1 天生产1800÷15÷12 = 10 个,20 个工人18 天生产10×20×18 = 3600 个52. 9 台印刷机11 小时印刷纸张49500 张,照这样计算,15 台印刷机16 小时印刷纸张多少张?答案:120000 张解析:1 台印刷机1 小时印刷49500÷9÷11 = 500 张,15 台印刷机16 小时印刷500×15×16 = 120000 张53. 7 辆汽车8 次运煤224 吨,照这样计算,10 辆汽车12 次运煤多少吨?答案:480 吨解析:1 辆汽车1 次运煤224÷7÷8 = 4 吨,10 辆汽车12 次运煤4×10×12 = 480 吨54. 服装厂5 天生产服装300 套,照这样计算,15 天可以生产服装多少套?答案:900 套解析:每天生产300÷5 = 60 套,15 天生产60×15 = 900 套55. 25 头牛8 天吃草1000 千克,照这样计算,18 头牛12 天吃草多少千克?答案:864 千克解析:1 头牛 1 天吃草1000÷25÷8 = 5 千克,18 头牛12 天吃草5×18×12 = 1080 千克56. 8 个工人9 小时加工零件360 个,照这样计算,12 个工人15 小时加工零件多少个?答案:900 个解析:1 个工人1 小时加工360÷8÷9 = 5 个,12 个工人15 小时加工5×12×15 = 900 个57. 一辆汽车7 小时行驶420 千米,照这样的速度,10 小时行驶多少千米?答案:600 千米解析:速度为420÷7 = 60 千米/时,10 小时行驶60×10 = 600 千米58. 用200 千克大豆可以榨油80 千克,照这样计算,450 千克大豆可以榨油多少千克?答案:180 千克解析:出油率为80÷200 = 0.4,450×0.4 = 180 千克59. 修一条路,9 人11 天可以修990 米,照这样计算,12 人20 天可以修多少米?答案:2400 米解析:1 人1 天修990÷9÷11 = 10 米,12 人20 天修10×12×20 = 2400 米60. 10 台收割机12 小时收割小麦600 公顷,照这样计算,15 台收割机18 小时收割小麦多少公顷?答案:1350 公顷解析:1 台收割机1 小时收割600÷10÷12 = 5 公顷,15 台收割机18 小时收割5×15×18 = 1350 公顷61. 某工厂18 个工人14 天生产零件2520 个,照这样计算,24 个工人21 天可以生产零件多少个?答案:6048 个解析:1 个工人 1 天生产2520÷18÷14 = 10 个,24 个工人21 天生产10×24×21 = 5040 个62. 11 台磨面机13 小时磨面粉5720 千克,照这样计算,16 台磨面机18 小时磨面粉多少千克?答案:11520 千克解析:1 台磨面机1 小时磨面粉5720÷11÷13 = 40 千克,16 台磨面机18 小时磨面粉40×16×18 = 11520 千克63. 9 辆卡车10 次运货物450 吨,照这样计算,12 辆卡车15 次运货物多少吨?答案:900 吨解析:1 辆卡车1 次运货物450÷9÷10 = 5 吨,12 辆卡车15 次运货物5×12×15 = 900 吨64. 服装厂6 天生产服装360 套,照这样计算,18 天可以生产服装多少套?答案:1080 套解析:每天生产360÷6 = 60 套,18 天生产60×18 = 1080 套65. 30 头牛10 天吃草1200 千克,照这样计算,24 头牛15 天吃草多少千克?答案:1440 千克解析:1 头牛1 天吃草1200÷30÷10 = 4 千克,24 头牛15 天吃草4×24×15 = 1440 千克66. 10 个工人12 小时加工零件600 个,照这样计算,15 个工人20 小时加工零件多少个?答案:1500 个解析:1 个工人1 小时加工600÷10÷12 = 5 个,15 个工人20 小时加工5×15×20 = 1500 个67. 一辆汽车8 小时行驶480 千米,照这样的速度,12 小时行驶多少千米?答案:720 千米解析:速度为480÷8 = 60 千米/时,12 小时行驶60×12 = 720 千米68. 用250 千克花生可以榨油100 千克,照这样计算,550 千克花生可以榨油多少千克?答案:220 千克解析:出油率为100÷250 = 0.4,550×0.4 = 220 千克69. 修一条路,11 人13 天可以修715 米,照这样计算,14 人22 天可以修多少米?答案:1638 米解析:1 人1 天修715÷11÷13 = 5 米,14 人22 天修5×14×22 = 1540 米70. 12 台拖拉机14 小时耕地504 亩,照这样计算,18 台拖拉机20 小时耕地多少亩?答案:1080 亩解析:1 台拖拉机1 小时耕地504÷12÷14 = 3 亩,18 台拖拉机20 小时耕地3×18×20 = 1080 亩71. 某工厂20 个工人16 天生产零件3200 个,照这样计算,25 个工人24 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产3200÷20÷16 = 10 个,25 个工人24 天生产10×25×24 = 6000 个72. 13 台印刷机15 小时印刷纸张78000 张,照这样计算,18 台印刷机20 小时印刷纸张多少张?答案:144000 张解析:1 台印刷机1 小时印刷78000÷13÷15 = 400 张,18 台印刷机20 小时印刷400×18×20 = 144000 张73. 11 辆汽车12 次运煤396 吨,照这样计算,15 辆汽车18 次运煤多少吨?答案:810 吨解析:1 辆汽车1 次运煤396÷11÷12 = 3 吨,15 辆汽车18 次运煤3×15×18 = 810 吨74. 服装厂7 天生产服装420 套,照这样计算,21 天可以生产服装多少套?答案:1260 套解析:每天生产420÷7 = 60 套,21 天生产60×21 = 1260 套75. 35 头牛12 天吃草1680 千克,照这样计算,28 头牛16 天吃草多少千克?答案:1792 千克解析:1 头牛1 天吃草1680÷35÷12 = 4 千克,28 头牛16 天吃草4×28×16 = 1792 千克76. 12 个工人14 小时加工零件720 个,照这样计算,18 个工人21 小时加工零件多少个?解析:1 个工人1 小时加工720÷12÷14 = 5 个,18 个工人21 小时加工5×18×21 = 1890 个77. 一辆汽车9 小时行驶540 千米,照这样的速度,15 小时行驶多少千米?答案:900 千米解析:速度为540÷9 = 60 千米/时,15 小时行驶60×15 = 900 千米78. 用300 千克大豆可以榨油120 千克,照这样计算,650 千克大豆可以榨油多少千克?答案:260 千克解析:出油率为120÷300 = 0.4,650×0.4 = 260 千克79. 修一条路,13 人15 天可以修780 米,照这样计算,16 人25 天可以修多少米?答案:1600 米解析:1 人1 天修780÷13÷15 = 4 米,16 人25 天修4×16×25 = 1600 米80. 14 台收割机16 小时收割小麦896 公顷,照这样计算,20 台收割机24 小时收割小麦多少公顷?答案:1536 公顷解析:1 台收割机1 小时收割896÷14÷16 = 4 公顷,20 台收割机24 小时收割4×20×24 = 1920 公顷81. 某工厂22 个工人18 天生产零件3960 个,照这样计算,28 个工人27 天可以生产零件多少个?答案:9072 个解析:1 个工人 1 天生产3960÷22÷18 = 10 个,28 个工人27 天生产10×28×27 = 7560 个82. 15 台磨面机17 小时磨面粉8500 千克,照这样计算,20 台磨面机25 小时磨面粉多少千克?答案:12500 千克解析:1 台磨面机1 小时磨面粉8500÷15÷17 = 100/3 千克,20 台磨面机25 小时磨面粉100/3×20×25 = 50000/3 千克≈16666.67 千克83. 13 辆卡车14 次运货物588 吨,照这样计算,18 辆卡车21 次运货物多少吨?答案:1134 吨解析:1 辆卡车1 次运货物588÷13÷14 = 3 吨,18 辆卡车21 次运货物3×18×21 = 1134 吨84. 服装厂8 天生产服装480 套,照这样计算,24 天可以生产服装多少套?答案:1440 套解析:每天生产480÷8 = 60 套,24 天生产60×24 = 1440 套85. 40 头牛15 天吃草1800 千克,照这样计算,32 头牛20 天吃草多少千克?解析:1 头牛1 天吃草1800÷40÷15 = 3 千克,32 头牛20 天吃草3×32×20 = 1920 千克86. 14 个工人16 小时加工零件896 个,照这样计算,20 个工人24 小时加工零件多少个?答案:1920 个解析:1 个工人1 小时加工896÷14÷16 = 4 个,20 个工人24 小时加工4×20×24 = 1920 个87. 一辆汽车10 小时行驶600 千米,照这样的速度,18 小时行驶多少千米?答案:1080 千米解析:速度为600÷10 = 60 千米/时,18 小时行驶60×18 = 1080 千米88. 用350 千克花生可以榨油140 千克,照这样计算,750 千克花生可以榨油多少千克?答案:300 千克解析:出油率为140÷350 = 0.4,750×0.4 = 300 千克89. 修一条路,15 人18 天可以修900 米,照这样计算,18 人30 天可以修多少米?答案:1800 米解析:1 人1 天修900÷15÷18 = 10 / 3 米,18 人30 天修10 / 3×18×30 = 1800 米90. 16 台拖拉机18 小时耕地864 亩,照这样计算,24 台拖拉机27 小时耕地多少亩?答案:1944 亩解析:1 台拖拉机1 小时耕地864÷16÷18 = 3 亩,24 台拖拉机27 小时耕地3×24×27 = 1944 亩91. 某工厂25 个工人20 天生产零件5000 个,照这样计算,30 个工人30 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产5000÷25÷20 = 10 个,30 个工人30 天生产10×30×30 = 9000 个92. 17 台印刷机19 小时印刷纸张96900 张,照这样计算,22 台印刷机25 小时印刷纸张多少张?答案:165000 张解析:1 台印刷机1 小时印刷96900÷17÷19 = 300 张,22 台印刷机25 小时印刷300×22×25 = 165000 张93. 15 辆汽车16 次运煤600 吨,照这样计算,20 辆汽车24 次运煤多少吨?答案:1200 吨解析:1 辆汽车 1 次运煤600÷15÷16 = 2.5 吨,20 辆汽车24 次运煤 2.5×20×24 = 1200 吨94. 服装厂9 天生产服装540 套,照这样计算,27 天可以生产服装多少套?答案:1620 套解析:每天生产540÷9 = 60 套,27 天生产60×27 = 1620 套95. 45 头牛18 天吃草2160 千克,照这样计算,36 头牛24 天吃草多少千克?答案:2592 千克解析:1 头牛1 天吃草2160÷45÷18 = 8 / 3 千克,36 头牛24 天吃草8 / 3×36×24 = 2592 千克96. 16 个工人18 小时加工零件960 个,照这样计算,24 个工人27 小时加工零件多少个?答案:2592 个解析:1 个工人1 小时加工960÷16÷18 = 10 / 3 个,24 个工人27 小时加工10 / 3×24×27 = 2160 个97. 一辆汽车11 小时行驶660 千米,照这样的速度,16 小时行驶多少千米?答案:960 千米解析:速度为660÷11 = 60 千米/时,16 小时行驶60×16 = 960 千米98. 用400 千克花生可以榨油160 千克,照这样计算,850 千克花生可以榨油多少千克?答案:340 千克解析:出油率为160÷400 = 0.4,850×0.4 = 340 千克99. 修一条路,17 人21 天可以修1020 米,照这样计算,20 人35 天可以修多少米?答案:2000 米解析:1 人1 天修1020÷17÷21 = 10 / 3 米,20 人35 天修10 / 3×20×35 = 2000 米100. 18 台收割机20 小时收割小麦960 公顷,照这样计算,27 台收割机30 小时收割小麦多少公顷?答案:2160 公顷解析:1 台收割机1 小时收割960÷18÷20 = 8 / 3 公顷,27 台收割机30 小时收割8 / 3×27×30 = 2160 公顷。
数的比例与比率练习题
数的比例与比率练习题
题目一:数的比例练习题
1. 小明用了9个木块建立了一个长方体模型,他发现它的底面积是27平方厘米。
那么这个模型的高是多少?
2. 小红每天要花30分钟做作业,其中数学作业占总时间的3/5。
那
么小红一天中花在数学作业上的时间是多久?
3. 小明观察到图书馆里中文书和英文书的比例是3:5,如果中文书
有45本,那么图书馆里一共有多少本书?
4. 一件商品原价200元,因为打折促销,现在只要原价的4/5。
这
件商品现在的价格是多少?
5. 一辆汽车以每小时60公里的速度行驶,如果它行驶6个小时,
它的行驶距离是多少?
题目二:比率练习题
1. 小明和小红一起制作一个蛋糕,小明需要2杯面粉和1杯牛奶,
小红需要3杯面粉和2杯牛奶。
小明和小红的面粉与牛奶的比率是多少?
2. 一桶水中混合了2升果汁和3升水,果汁与水的比率是多少?
3. 甲乙两支队伍进行篮球比赛,甲队有5名球员,乙队有7名球员。
甲队球员与乙队球员人数的比率是多少?
4. 一辆车以每小时80公里的速度行驶,而另一辆车以每小时100公里的速度行驶。
两辆车的行驶速度的比率是多少?
5. 一袋零食中有4块巧克力和6块薯片。
巧克力与薯片的比率是多少?
注意:回答题目时请标明答案,并且解答思路清晰,方便阅卷。
比例以及比例尺应用题(含答案)
比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是2.5厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是28.8cm,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶2.5小时后,离乙地还有多远?16.一个零件长0.02厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距25.5cm,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距1.2厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题――比例问题(1)年级姓名一、填空题 1. 4:( )=设4:x=16=( )?10=( )% 2021?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=0.5(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为20.4亩、0.8亩、0.4亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161???设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?2331112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?0.5=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。
六年级数学比和比例试题
六年级数学比和比例试题1.(6分)求未知数x4.2+0.5x=5.6:=:x=.【答案】x=2.8;x=;x=6【解析】①依据等式的性质,方程两边同时减去4.2,再同除以0.5求解;②先根据比例的基本性质,把原式转化为x=×,然后根据等式的性质,在方程两边同时乘4求解;③先根据比例的基本性质,把原式转化为0.6x=4×0.9,然后根据等式的性质,在方程两边同时除以0.6求解.解:①4.2+0.5x=5.64.2+0.5x﹣4.2=5.6﹣4.20.5x÷0.5=1.4÷0.5x=2.8②:=:xx=×x×4=××4x=③=0.6x=4×0.90.6x÷0.6=3.6÷0.6x=6点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.2.比例尺是()。
A.一把尺B.一个比例C.一个比D.一个分数【答案】C【解析】根据概念可知:比例尺是图上距离和实际距离的比。
它是一个比,所以选C。
3.小新、小志、小刚三人拥有的藏书数量之比为,三人一共藏书本,求他们三人各自的藏书数量.【答案】24【解析】根据题意可知,他们三人各自的藏书数量分别占三人藏书总量的、、,所以小新拥有的藏书数量为本,小志拥有的藏书数量为本,小刚拥有的藏书数量为本.4.(越城区)加工一批零件,甲需要10天完成,乙需要12天完成,甲与乙的工作效率比是5:6..【答案】错误【解析】把这批零件的总数看做单位“1”,则甲的工作效率是,乙的工作效率是,由此即可得出甲与乙的工作效率之比是::=6:5,由此即可判断.解答:解:根据题干分析可得甲的工作效率是,乙的工作效率是,所以甲与乙的工作效率之比是::=6:5,所以原题说法错误故答案为:错误.点评:此题也可以这样分析:工作时间×工作效率=工作总量,工作总量一定时,工作时间与工作效率成反比例,工作时间之比是:10:12=5:6,则工作效率之比就是6:5,由此判断原题说法错误.5.(平阳县)有一块菜地共600平方米,用它的种西红柿,其余的种黄瓜和茄子,已知黄瓜和茄子的种植面积的比是2:3.三种蔬菜的种植面积各是多少平方米?【答案】三种蔬菜面积分别是240平方米、144平方米、216平方米【解析】把菜地的总面积600平方米看作单位“1”,单位“1”是已知的,求种西红柿的面积就是求600的是多少,用乘法计算,再用总面积减去种西红柿的面积就是剩下的面积,把剩下的按2:3的面积比种黄瓜和茄子,再把剩下的面积看作单位“1”,先求出总份数2+3=5份,也就是黄瓜、茄子分别各占剩下面积的和,剩下面积已求出,就根据求一个数的几分之几是多少用乘法计算.解答:解:种西红柿的面积:600×=240(平方米),剩下的面积:600﹣240=360(平方米),总份数:2+3=5份,种黄瓜的面积:360×=144(平方米),种茄子的面积:360×=216(平方米);答:三种蔬菜面积分别是240平方米、144平方米、216平方米.点评:本题要先求出种黄瓜的面积,然后求出剩下的面积,再把剩下的面积按照2:3的比例分配求出即可.6.(2012•陕西)在比例尺是1:500,0000的中国地图上,量得上海到杭州的距离是3.4厘米.计算一下,上海到杭州的实际距离大约是多少千米?【答案】上海到杭州的实际距离大约是170千米【解析】图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出上海到杭州的实际距离.解答:解:3.4÷=17000000(厘米),17000000厘米=170千米;答:上海到杭州的实际距离大约是170千米.点评:此题主要依据图上距离、实际距离和比例尺的关系解决问题.7.水是由氢和氧按1:8的质量比化合成的.5.4千克的水含氢和氧各多少?【答案】5.4千克的水含氢0.6千克,氧4.8千克【解析】由水是由氢和氧按1:8的质量比化合成,可知:氢与水的比为1:9,氧与水的比为8:9,用5.4千克的水乘以氢和氧的比率即可解决问题.解答:解:5.4×=5.4×=0.6(千克),5.4×=5.4×=4.8(千克),答:5.4千克的水含氢0.6千克,氧4.8千克.点评:此题在解答时要先分别求出氢与水的比及氧与水的比,再分别列式解答即可.8.有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是()A.1:20B.20:1C.2:1D.1:2【答案】B【解析】比例尺=图纸上距离:手表零件实际长度,根据题意代入数据可直接得出这张图纸的比例尺.解答:解:10厘米=100毫米,比例尺=100:5=20:1.故选B.点评:本题考查了比例尺的概念,注意单位要统一.9.如果,那么a:b=.【答案】1:6【解析】由可得6a=b,运用比例的基本性质,把6和a当做比例的外项,把b和1当做比例的内项,写出比例即可.解答:解:因为,所以6a=b,a:b=1:6.故答案为:1:6.点评:变化式子,然后运用比例的基本性质解决问题.10.走一段路,甲用4小时,乙用3小时,甲和乙行走的速度的最简比是.【答案】3:4【解析】把这段路看成单位“1”,甲的速度是,乙的速度是,由此做出比,然后再化简即可.解答:解:甲的速度:乙的速度=:=3:4.答:甲和乙行走的速度的最简比是3:4.故答案为:3:4.点评:本题也可以根据路程一定,速度和时间成反比例进行求解.11.比的前项乘以,比的后项除以2,比值缩小4倍..(判断对错)【答案】×【解析】比的前项乘以,比的后项除以2,即比的前项和后项同时除以2,根据比的基本性质“比的前项和后项同时乘以或除以相同的数(零除外),比值不变”可知这个比的比值不变.解:根据比的基本性质,比的前项乘以,比的后项除以2,这个比的比值不变.故答案为:×.点评:本题主要考查了比的基本性质.12.求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18【答案】(1)x=1.8(2)x=69【解析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.解答:解:(1):x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69.13. a与b的比是1:4,b就是a的4倍. ()【答案】正确【解析】a:b=1:4,则b:a=4:1,4÷1=4,得出结论.解答:a:b=1:4,则b:a=4:1,4÷1=4,故答案为:√.14.圆的面积和半径成正比例..(判断对错)【答案】错误.【解析】判断圆的面积和半径是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解答:解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例;故答案为:错误.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.15. 3x=5y,那么x与y与正比例..(判断对错)【答案】×.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:3x=5y,若x和y都不为0,则x:y=,是比值一定,x与y与正比例;但题干没有确定x和y是否不为0,所以原题说法错误.故答案为:×.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.16.真相大白.①x﹣x=②x:1.2=.【答案】x=3;x=1.5.【解析】(1)先算x﹣x,再在等号的两边同时除以(1﹣)的值即可求出x的值;(2)根据比例的基本性质作答,即在比例里两个内项之积等于两个外项的积,再根据等式的性质,在等号的两边同时除以4,即可求出x的值;解答:解:(1)x﹣x=,x=,x÷=,x=3;(2)x:1.2=,4x=1.2×5,x=,x=1.5.点评:此题主要考查了解方程的方法,即利用等式的性质,在等号的两边同时加上、或减去、或乘、或除以同一个不为0的数,等号的左右两边仍然相等;解比例的方法,即根据比例的基本性质,在比例里两个内项之积等于两个外项的积,再根据等式的性质作答.17.解比例的依据是.【答案】比例的基本性质.【解析】在解比例时,应根据比例的基本性质,即:比例的两内项之积等于两外项之积.解答:解:解比例的依据是比例的基本性质.故答案为:比例的基本性质.点评:此题考查了解比例的依据:比例的基本性质.18.下列各句中的两个量,()不成比例.A.单价一定,总价与数量B.路程一定,速度与时间C.圆面积与半径的平方D.直径一定,圆周长与圆周率【答案】D【解析】解:A、因为总价÷数量=单价(一定),即商一定,所以数量和总价成正比例;B、因为速度×时间=路程(一定)即乘积一定,所以速度与时间成反比例.C、圆的面积÷半径的平方=π(一定),是比值一定,圆的面积和半径的平方成正比例;D、因为圆的周长C=πd,在此题中圆的直径一定,圆周率也是一定的,所以周长也是一定的,即三个量都是一定的,不存在变量问题,所以圆的周长和圆周率不成比例;故选:D.19.下列各数中,()不能与2、8、10组成比例.A.B.C.D.40【答案】A【解析】解:A、因为在、2、8、10这四个数中,任何两个数的积都不等于其它两个数的积,所以不能组成比例;B、因为×10=2×8,所以、2、8、10四个数能组成比例;C、因为×8=2×10,所以、2、8、10四个数能组成比例;D、因为8×10=2×40,所以40、2、8、10四个数能组成比例.故选:A.20.甲乙两车同时从东、西两城出发,甲车在超过中点20千米的地方与乙车相遇,已知甲车所走的路程与乙车所行路程的比是7:6,东西两城相距多少千米?【答案】520【解析】解:设东西两城相距为x千米,由题意得,x+20=x,x﹣x=20,x=20,x=520;答:东西两城相距为520千米.21.在比例中,两个内项互为倒数,一个外项是0.6,另一个外项是.【答案】【解析】解:根据比例的性质可知两个内项互为倒数,那么两个外项也互为倒数,0.6的倒数是:1÷0.6=1÷=故答案为:.【点评】此题考查比例性质的运用:在比例里,两个内项的积等于两个外项的积;也考查了倒数的意义.22.将日:12时化成最简单的整数比是,比值是.【答案】4:3;.【解析】解:日:12时=16时:12时=(16÷4):(12÷4)=4:3日:12时=16时:12时=16÷12=故答案为:4:3;.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23.一个三角形三个内角度数的比是1:2:3,这个三角形一定是()三角形.A.锐角 B.直角 C.钝角【答案】B【解析】解:因为1+2+3=6180°×=90°因为这个三角形里最大的角是直角,所以这个三角形是直角三角形.故选:B.【点评】此题考查了根据角对三角形分类的方法:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.24.华锋水泥厂往某大型建筑工地运送水泥,第一次从仓库里运走,第二次又运走了33吨,这时运出的和剩下的比是2:3,华峰水泥厂仓库原有水泥多少吨?【答案】220【解析】解:33÷()=33÷()=33÷=220(吨),答:华峰水泥厂仓库原有水泥220吨.【点评】本题考查了分数四则复合应用题,首先根据运了两次后,已运的与未运的比求出运走的占总数的分率是完成本题的关键.25.下列各式中(a、b均不为0),a和b成反比例的是()A.a×8=B.9a=6b C.a×﹣1÷b=0D.=b【答案】C【解析】要想判定a和b成什么比例关系,必须根据式子,进行推导.然后根据正反比例的意义,分析数量关系,找出一定的量,然后看那两个变量是比值一定还是乘积一定,从而判定哪一个选项a与b成反例关系.解:A选项:a×8=,所以b:a=40(一定),a与b成正比例;B选项:因为9a=6b,所以a:b=(一定),a与b成正比例;C选项:因为a×﹣1÷b=0,所以a×b=3(一定),a与b成反比例;D选项不成正比例也不成反比例.故选:C【点评】此题重点考查正比例和反比例的意义.26.小林的身高是160厘米,表弟的身高是1米,小林和表弟身高的比是160:1.(判断对错)【答案】×【解析】先把小林身高1m化成100cm,进而写出小林和表弟身高的比并化简比.解:1m=100cm小林身高:表弟身高=160cm:100cm=8:5.故答案为:×.【点评】此题考查比的意义,要注意把单位名称化统一后再写比.27.解方程.45:x=0.3:2.4x+80%=1.4.【答案】50;0.25【解析】(1)首先根据比例的基本性质,可得0.3x=45×,然后根据等式的性质,两边同时除以0.3即可.(2)首先根据等式的性质,两边同时减去0.8,然后两边再同时除以2.4即可.解:(1)45:x=0.3:0.3x=45×0.3x=150.3x÷0.3=15÷0.3x=50(2)2.4x+80%=1.42.4x+0.8﹣0.8=1.4﹣0.82.4x=0.62.4x÷2.4=0.6÷2.4x=0.25【点评】(1)此题主要考查了解比例的方法,要熟练掌握,注意比例的基本性质的应用.(2)此题还考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等.28.圆的周长与半径成正比例..(判断对错)【答案】√【解析】圆的周长与半径是两种相关联的量,圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例,解:圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例;故答案为:√.【点评】此题考查辨识成正比例的量,只要两种相关联的量比值一定,就成正比例.29. X和Y表示两种相关联的量,同时5X﹣7Y=0,X和Y成正比例..(判断对错)【答案】√【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:X和Y表示两种相关联的量,同时5X﹣7Y=0,则5X=7Y,即Y:X=5:7=(一定),所以Y和X成正比例;故答案为:√.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30.甲乙丙三人共同植树360棵,他们植树棵数的比是4:3:2.每个人植树多少棵?【答案】甲植了160棵、乙植了120棵、丙植了80棵.【解析】解:4+3+2=9(份),360×=160(棵),360×=120(棵),360×=80(棵),答:甲植了160棵、乙植了120棵、丙植了80棵.31.下列各式中,a和b成反比例的是()A.a+b=8 B.a×b=12 C.a:b=3【答案】B【解析】判断两种相关联的量成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例;据此逐项分析后再选择.解:A、a+b=10,是和一定,所以a和b不成比例;B、a×b=12,是a和b的乘积一定,所以a和b成反比例;C、a:b=3,是a、b的比值一定,所以a和b成正比例.故选:B.【点评】此题考查了判断两种量成正比例还是成反比例关系的方法.32.周长相等的正方形和圆,边长与半径的比是:,面积之比是:.【答案】π:2,π:4.【解析】周长公式可得:周长C相等时,正方形边长=,圆的半径=由此即可解决.解:边长与半径之比为:÷=×=,面积的比为:÷【π×】=÷【π×】=÷=×=,答:边长与半径的比是π:2,面积之比是π:4.故答案为:π:2,π:4.【点评】此题考查了圆与正方形面积公式的灵活应用.33.在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米.求这间教室的实际面积.【答案】150【解析】图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”,代入数据即可求出这间教室的实际的长和宽,然后根据长方形的面积公式即可求出实际的面积.解:长:3÷,=1500(厘米),=15(米);宽:2÷,=1000(厘米),=10(米);面积:15×10=150(平方米);答:这间教室的实际面积是150平方米.【点评】此题主要考查图上距离、实际距离和比例尺的关系,关键是求出实际的长和宽,解答时要注意单位的换算.34.出租车司机叔叔从甲地到乙地,前3个小时行了150千米.照这样的速度,再行5小时到达乙地,甲乙两地相距多远?(用比例解)【答案】400千米【解析】照这样的速度,也就是速度一定,根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲乙两地相距x千米.150:3=x:(5+3)3x=150×(5+3)3x=1200x=400;答:甲乙两地相距400千米.【点评】解答此题的关键是,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.35.程或比例3.2x﹣4×3=52x:1=5:313﹣4x=5.【答案】20;2;2.【解析】(1)先计算4×3=12,根据等式的性质,等式两边同时加上12,然后等式两边同时除以3.2;(2)根据比例的基本性质,把原式化为3x=1×5,然后等式的两边同时除以3;(3)根据等式的性质,等式两边同时加上4x,把原式化为4x+5=13,等式两边同时减去5,然后等式两边同时除以4.解:(1)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(2)x:1=5:33x=1×53x÷3=1×5÷3x=2;(3)13﹣4x=513﹣4x+4x=5+4x4x+5=134x+5﹣5=13﹣54x=84x÷4=8÷4x=2.【点评】解方程是利用等式的基本性质,即等式的两边同时乘或除以同一个数(0除外),等式的两边仍然相等;等式的两边同时加或减同一个数,等式的两边仍然相等;解比例是利用比例的基本性质,即比例的两个内项的积等于两个外项的积.36.圆的面积和半径成正比例..(判断对错)【答案】×【解析】判断圆的面积和半径是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例;故答案为:×.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.37.汽车行驶的速度一定,行驶的时间和行驶的路程成反比例..(判断对错)【答案】×【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:汽车行驶的路程÷行驶的时间=速度(一定),是比值一定,所以,汽车行驶的速度一定,行驶的时间和行驶的路程成正比例.故答案为:×.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.38.把3:8的前项加上12,要使比的比值不变,后项应()A.乘4 B.增加40 C.增加32【答案】C【解析】根据比的性质,比的前项和后项同时乘或除以相同的数(0除外),比值不变.首先观察前项的变化,由3变成3+12=15,前项扩大了5倍,所以后项也应该扩大5倍.解:前项由3变成3+12=15,前项扩大了5倍,所以后项也应该扩大5倍.即8×5=40,40=8+32,答:后项应增加32.故选:C.【点评】此题考查的目的是理解掌握比的性质及应用.39.写出两个比值是3的比,再组成比例是.【答案】6:2=12:4.【解析】任意写出比值是3的两个比,再组成比例即可.解:因为6:2=3;12:4=3;所以可得比例式:6:2=12:4.故答案为:6:2=12:4.【点评】此题考查比例的意义:表示两个比相等的式子;解决此题只要任意写出两个比值为3的比,即可组成比例.40. 4:5的后项增加10,要使比值不变,前项应增加()A.10B.15C.8D.12【答案】C【解析】比的性质是指比的前项和后项同时乘或除以相同的数(0除外),比值不变;据此分析解答.解:4:5的后项增加10,可知比的后项由5变成15,相当于后项乘3;要使比值不变,前项也应该乘3,由4变成12,也可以认为是前项增加:12﹣4=8.故选:C.【点评】此题也可以这样解答:根据4:5的后项增加10,是后项增加了后项的2倍,要使比值不变,前项也应增加前项的2倍,即增加4×2=8.41.把改写成数值比例尺是.【答案】1:4000000【解析】图上距离和实际距离已知,依据“比例尺=”即可将线段比例尺改为数值比例尺;解答即可.解:图上距离1厘米表示实际距离是40千米,又因40千米=4000000厘米,则改成数值比例尺为1厘米:4000000厘米=1:4000000;故答案为:1:4000000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.42.已知两个比值是0.8,它们组成的比例的两个外项是1.2和5,这个比例是.【答案】1.2:1.5=4:5【解析】假设第一个外项为1.2,则第二个外项为5,则第一个内项为1.2÷0.8=1.5,则第二个内项为5×0.8=4;然后写出比例式即可.解:解:1.2÷0.8=1.5,5×0.8=4,比例式1.2:1.5=4:5,故答案为:1.2:1.5=4:5.【点评】解答此题的关键是运用比的知识及比例的基本性质的应用,做题时应认真分析,找出内、外项即比值的关系,进而得出结论.43.把2.4:1.5化成最简单的整数比是,这个比的比值是.【答案】8:5,1.6【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)求比值,用比的前项除以后项即可.解:2.4:1.5=(2.4×10÷3):(1.5×10÷3)=8:5;2.4:1.5=2.4÷1.5=1.6;故答案为:8:5,1.6.【点评】此题主要考查了化简比和求比值的方法,要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.44.如果7A=8B,那么A:B= .【答案】8:7.【解析】根据比例的基本性质,在比例里,两外项之积等于两内项之积.据此解答即可.解:因为,7A=8B,所以,A:B=8:7,故答案为:8:7.【点评】此题考查的目的是理解掌握比例的基本性质及应用.45.化简下面各比.0.07:0.21 ::8.【答案】1:3;4:3;1:10.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:(1)0.07:0.21,=(0.07×100):(0.21×100),=7:21,=1:3;(2):,=(×16):(×16),=12:9,=4:3;(3):8,=(×5):(8×5),=4:40,=1:10.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果才是一个数.46.解比例.56:X=7:8 :X=: 3.2:0.6=X:4.5.【答案】64;;24.【解析】(1)根据比例的基本性质,两内项之积等于两外项之积,把原式改写成7X=56×8,然后等式的两边同时除以7即可;(2)根据比例的基本性质,两内项之积等于两外项之积,把原式改写成X=×,然后等式的两边同时除以即可;(3)根据比例的基本性质,两内项之积等于两外项之积,把原式改写成0.6X=3.2×4.5,然后等式的两边同时除以0.6即可.解:根据题意可得:(1)56:X=7:8,7X=56×8,7X=448,7X÷7=448÷7,X=64;(2):X=:,X=×,X=,X÷=÷,X=;(3)3.2:0.6=X:4.5,0.6X=3.2×4.5,0.6X=14.4,0.6X÷0.6=14.4÷0.6,X=24.【点评】本题主要考查解比例,根据比例的基本性质和等式的性质进行解答即可.47.一个三角形三个内角度数比是1:1 : 2,这个三角形按角分是一个()三角形,按边分是一个()三角形。
六年级数学题(解比例,以及比例的应用题)
解比例
1. 3:X=12:8 3. X:12=2:3 5. 6:16=X:8 7. 5:3=35:x 9. 21:7=X:35
2. 7:X=8:16 4. X:5=4:2 6. 7:13=X:26 8. 17:4=51:X 10. 2:X=5:9
15. 某厂买回一批煤,原计划每天烧15吨可以烧 80天。实际每天比计划节约20%, 这批煤实际 烧了多少天? 16.工程队抢修一段公路,原计划每天修50米,6 天修完。实际提前1天修完,实际每天修多少米 17. 工程队铺一段铁路,原计划每天铺3.2千米, 实际每天铺4千米,实际铺完这段铁路用了12天。 实际比计划提前几天铺完? 18.用一批纸装订成同样大小的练习本,计划每本 20页,装订300本,实际装订的本数比计划少 。 实际每本比计划多多少页?
11.一间房子要用方砖铺地。用边长是3分米 的方砖,需要96块。如果改用边长是2分米 的方砖,需要多少块? 12.农场要收割小麦224公顷,3天收割了 84 公顷。照这样计算,剩下的还要几天才能 收割完 13.一辆汽车要从甲地开往乙地,2小时行了 160千米,照这样的速度,再行3小时能到 达乙地。甲、乙两地相距多少千米? 14.张英借了一本故事书,原计划每天读 20 页,9天读完。实际每天多读10页,实际多 少天读完?
7. 六⑴班男生和女生人数的比是6∶5,女 生有30人,问男生有多少人? 8. 六⑴班男生和女生人数的比是6∶5,女 生有30人,问全班有多少人?男生占全班 人数的百分比? 9.一种农药,用药液和水按照2∶500配制而 成。5千克药液能配制这种农药多少千克? 10,某车间有男工25人,女工20人。如果新 招男工15人,要使男、女工人数的比不变, 应新招女工多少人?
(完整版)小学六年级数学比例应用题典型题库1
小学数学比和比例应用题典型题库一、判断。
1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。
()2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。
()3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。
()4.两个圆的周长比是2∶3,面积之比是4∶9。
()二、选择题1、固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间()A.成正比例B.成反比例C.不成比例三、解答应用题。
1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。
2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。
若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。
现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。
三个车间各有多少人?11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。
已知六年级分得56本,学校共购进图书多少本?12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?13、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?。
小学数学比和比例
第1章比的认识一、课前检测1、小汽车2小时行驶180千米,大客车3小时行驶210千米,写出下列各比。
(1)大客车行驶的路程与时间比(2)小汽车行驶的路程与时间比(3)小汽车与大客车的速度比2、学校举行数学竞赛,男女生参赛人数分别是160人和140人(1)写出参赛的男生人数和女生人数的比(2)写出参赛的男生人数和总人数的比(3)写出参赛的女生人数和总人数的比(4)写出参赛的女生人数和男生人数的比二、知识要点1、比的含义两个数相除,又叫做这两个数的比。
例如长方形的长是7,宽是5,长和宽的比是7比5,宽和长的比是5比7.2、比的各部分名称及读、法。
7÷5写作7:5,“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
7这个比的前项,4是这个比的后项。
3、求比值的方法:用比的前项除以比的后项得到一个数,这个数就是比值。
比值可以用分数表示,也可以用小数或整数表示。
4、比与除法、分数的关系比跟除法、分数的比较,比的前项相当于被除数、分子,比的后项相当于除数、分母,比值相当于商、分数值,比号相当于除号、分数线。
因为除数和分母不能为“0”,所以比的后项也不能为“0”。
用字母表示为a:b=a÷b=ab(b≠0)5、求比值时单位要一致三、典型例题例1、(1)如果甲数与乙数的比是1:25,那么乙数:甲数=5:2 ()(2)一杯盐水,盐占盐水的110,盐和水的比是1:9 ( )(3)7与5的比可以记作75()(4)3与4的比可以记作4:3。
()(5)比号就是冒号()配套练习:甲正方体棱长为4厘米,乙正方体棱长为5厘米。
(1)甲正方体与乙正方体棱长总和的比是():(),比值为();(2)甲正方体与乙正方体表面积的比是():(),比值为():(3)甲正方体与乙正方体体积的比是():(),比值为()例2、一个三角形的底是3厘米,高是4厘米,另一个三角形的底是8厘米,高是6厘米,它们的面积的比是多少?配套练习:有两块花布,一块是正方形,边长是8分米,另一块是长方形,长是10分米,宽是6分米。
六年级下册数学试题-比例及比例应用题(含部分答案)全国通用
本讲的内容较多,分为分数的定义与分类、通分与约分的技巧、分数的四则混合运算。
为了老师讲解方便,我们加入了有关分数知识总结。
知识点总结部分适合对分数零基础的学生,其中知识点的例子可以作为铺垫题。
实际教学中,可视学生的实际能力调整讲解内容。
例题的线索和知识点的线索是一致的,可以把知识点的讲解融入到例题中去。
一、比的意义⑴3÷4也可以写作3∶4,读作3比4,比表示两个数的相除关系,两个数相除又叫做两个数的比,比号前面的数叫前项,比号后面的数叫后项,比的结果叫比值。
⑵比与除法和分数的关系⑶比的性质由于3÷4=6÷8,所以3∶4=6∶8,因此得到比的前项和后项同时扩大或缩小相同的倍数(零除外),比值不变二、比例的意义⑴比例的定义:表示两个比相等的式子叫做比例。
如:9612:154:5128==组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:在以上3个比例中,我们可以发现:12:154:5125154609698126721282.4:1.660:40 2.440 1.66096=⇒⨯=⨯==⇒⨯=⨯==⇒⨯=⨯=⑵比例的基本性质:在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
解比例:根据比例的基本性质,如果我们已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,就叫做解比例。
(例子很多,随便写3个数就可以求第4个)如::1201:5512011201524xxxx==⨯⨯==教师随笔比例及比例应用题三、正比例和反比例(选讲)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。
如果用字母x 、y 表示两种关联的量,用k 表示它们的比值,正比例关系可以用下面式子表示:y ÷x =k (一定)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量,他们的关系叫做反比例关系。
完整版)小学数学比和比例应用题(小升初)
完整版)小学数学比和比例应用题(小升初)
第3讲:比和比例、工程、路程等应用题
一、基础知识
比的定义:两个数的比实际上就是两个数的商。
可以化为
分数形式,如a:b=a÷b,也可以化为等式形式,如ac=bd,化
简后得到a:b=c:d。
连比的定义:三个数的比叫连比,如a:b:c,满足a:b:c=na:
正比例和反比例的定义:正比例关系为y=kx,反比例关
系为y·x=k(定值)或y=k/x。
应用举例:速度v一定时,路程s与时间t成正比例,即
s=vt;工作效率一定时,工作量与工作时间成正比例,即工作
量=工作效率×工作时间;浓度一定时,溶质重量与溶液重量
成正比例,即溶质重量=溶液重量×浓度。
二、典型例题
例1、已知a:b=53:74,求a:b的值。
例2、已知a:b=3:4,b:c=5:6,求a:b:c的值。
例3、甲、乙两个瓶子里装的酒精体积相等,甲瓶中与水的体积比是3:1,乙瓶中与水的体积比是4:1,混合后酒精和水的体积比是多少?
例4、甲、乙、丙三个数的比是6:7:8,已知这三个数的平均数是42,求甲、乙、丙三个数各是多少?
例5、甲、乙两个课外小组人数比是5:3,从甲组调9人去乙组后,甲、乙两组人数比是2:3,求甲、乙两组原来各有多少人。
例6、有两支同样质地的蜡烛,粗细、长短不同,一支能燃烧3.5小时,一支能燃烧5小时,当燃烧2小时的时候,两支蜡烛的长度恰好相同,这两支蜡烛长度之比是多少?
三、比和比例应用题随堂练
1、甲、乙两厂人数的比是7∶6.从甲厂调360人到乙厂后,甲、乙两厂人数比为2∶3,甲、乙两厂原有多少人?。
小学数学比例及经典应用题
⼩学数学⽐例及经典应⽤题第⼗讲⽐例及应⽤题1、两个数相除,⼜叫做这两个数的⽐,“:”是⽐号,⽐号前⾯的数叫做⽐的前项,⽐号后⾯的数叫做⽐的后项,前项除以后项所得的商叫做⽐值。
⽐的后项不能为0。
2、分数的基本性质:分数的分⼦和分母同时乘以或者除以相同的数(0除外),分数的⼤⼩不变。
3、⽐的基本性质:⽐的前项和后项同时乘以或者除以相同的数(0除外),它们的⽐值不变。
4、公因数只有1的两个数叫做互质数。
最简整数⽐:⽐的前项和后项是互质数。
5、⽐的化简:⽤商不变的性质、分数的基本性质或⽐的基本性质来化简。
6、⽐例:表⽰两个⽐相等的式⼦叫做⽐例。
如:(3:4=9:12)。
⽐例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做⽐例的外项,4与9叫做⽐例的内项。
⽐例的四个数均不能为0。
7、⽐例的基本性质:在⼀个⽐例中,两个外项的积等于两个内项的积。
8、⽐、⽐例、⽐例尺、百分数的后⾯不能带单位1、掌握⽐及⽐例的概念以及⽐例在实际问题中的应⽤;⽐例尺作为重点掌握2、具体问题中百分数的应⽤例1:下⾯哪⼏组中的两个⽐能组成⽐例,把组成的⽐例写下来。
(1) 5 :6 和15 :18 (2) 0.2 :0.1 和 3 :1(3)21 :31 和 1.2 :0.8 (4) 6 :2 和83:81 解析:依据⽐例的意义,分别求出每组中两个⽐的⽐值,如果相等就能组成⽐例,不相等就不能组成⽐例。
(1)因为5 :6 =65,15 :18 = 65,所以5 :6 = 15 :18。
(2)因为0.2 :0.1 = 2, 3 :1 = 3,所以 0.2 :0.1 和 3 :1不能组成⽐例。
(3)因为21 :31 = 23, 1.2 :0.8 = 23 ,所以21 :31= 1.2 :0.8。
(4) 6 :2 = 3,83:81 = 3,所以6 :2 = 83:81答案:(1)5 :6 = 15 :18 (2)0.2 :0.1 和 3 :1不能组成⽐例。
六年级数学上册典型例题系列之第四单元比:按比例分配应用题专项练习
六年级数学上册典型例题系列之第四单元比:按比例分配应用题专项练习(解析版)专项练习一:和比、差比、单量与比问题的辨析1.配置一种药水,水与药的比是5:3,现在有药水2400克,那么药有多少克? 解析:该题是和比问题。
水:2400×355+=1500(克) 药:2400×353+=900(克) 答:略。
2.配置一种药水,水与药的比是5:3,现在有水2400克,那么药有多少克? 解析:该题是单量与比的问题。
药:2400÷5×3=1440(克)答:略。
3.配置一种药水,水与药的比是5:3,现在水比药多2400克,那么药有多少克?解析:该题是差比问题。
药:2400÷(5-3)×3=3600(克)答:略。
4.把一根长4.8米的绳子按3:2截成甲、乙两段,甲、乙两段各长多少米? 解析:该题是和比问题。
甲段:4.8×233+=2.88(米) 乙段:4.8×232+=1.92(米) 答:略。
5.把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8米, 乙段长多少米? 解析:该题是单量与比的问题。
乙段:4.8÷3×2=3.2(米)答:略。
6.把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8米, 这根绳子原来长多少米?解析:该题是单量与比的问题。
原来长:4.8÷2×(3+2)=12(米)答:略。
7.把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短4.8米, 甲、乙两段各长多少米?解析:该题是差比问题。
甲段:4.8÷(3-2)×3=14.4(米)乙段:4.8÷(3-2)×2=9.6(米)答:略。
8.一种糖水,糖与水的比是2:5,现在有糖水140千克,其中糖有多少千克? 解析:该题是和比问题。
糖:140×522+=40(克) 答:略。
9.一种糖水,糖与糖水的比是2:5,现在有糖水140千克,其中糖有多少千克?解析:该题是单量与比的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 讲比和比例、工
程、路程等应用题
一、基础知识
两个数的的比实际上就是两个数的商
a:b=a
=a÷ b b
a:b=c:d可以化作a
=
c
;也可以化作a×d=c×b。
b d
三个数的比叫连比,如a:b:c ,满足 a:b:c=na: nb:nc(n≠ 0)。
正比例:y=kx
反比例:y· x=k(定值)或y=k/x
例如 : 速度 v 一定时,路程s 与时间 t 成正比例即s=vt
速度 v 与时间 t 就成反比例;即v=s/t
工作效率一定时,工作量与工作时间成正比例, 即工作量 =工作效率×工作时间;工作效率与工作时间成反比例;工作效率=工作量 / 工作时间
浓度一定时 , 溶质重量与溶液重量成正比例,即溶质重量=溶液重量×浓度
溶质重量一定时,浓度与溶液重量成反比例;浓度=溶液重量 / 溶质重量
二、典型例题
例1、①a的5
等于b的
3
,那么a : b =________.
7 4
② a :b 3 : 4 , b : c 5 : 6,那么 a : b : c__________.
例 2、甲、乙两个瓶子里装的酒精体积相等,甲瓶中究竟与水的体积比是3:1,乙瓶中究竟与水的体积比是4:1,现在把两瓶溶液混合在一起,这时酒精和水的体积比是多少
例3、在比例尺为 1: 4000000 的地图上,量得 A 城与 B 城的距离是厘米,一辆汽车以每小时
50 千米的速度从 A 城开往 B 城,几小时可以到达
例4、甲、乙、丙三个数的比试 6: 7: 8,已知这三个数的平均数是 42,求甲、乙、丙三个数各是多少
例5、甲、乙两个课外小组人数比是 5:3,如果从甲组调 9 人去乙组,那么甲、乙两组人数比是2: 3,求甲、乙两组原来各有多少人 .
5 小时,当例 6、有两支同样质地的蜡烛,粗细、长短不同,一支能燃烧小时,一支能燃烧
燃烧 2 小时的时候,两支蜡烛的长度恰好相同,这两支蜡烛长度之比是多少
三、比和比例应用题随堂练习
1、甲乙两厂人数的比是 7∶ 6。
从甲厂调 360 人到乙厂后,甲乙两厂人数比为 2∶ 3,甲乙两厂原有多少人
2、一辆汽车在甲、乙两站之间匀速行驶,往返一次共用去 4 小时(停车时间不计算在内)。
已知汽车去时速度为每小时45 千米,返回时速度为每小时30 千米,甲乙两站相距多少千米
3、 A、 C 两站相距 10 千米, A、 B 两站相距 2 千米,甲车从 A 站,乙车从 B 站同时向 C站开
去,当甲车到达 C 站时,乙车距 C 站还有千米,甲车是在离 C 站多远的地方追上乙车的
4、某班在一次数学考试中,平均成绩是 78 分,男、女生各自的平均成绩分别是分、 81 分。
这个班男、女生人数的比是多少
5、王师傅原定在若干小时内加工完一批零件。
他估算了一下,如果按原定速度加工120 个零件后工作效率提高 25%,可提前 40 分钟完成;如一开始工作效率就提高 20%的话,就可提前 1 小时完成。
他原计划每小时加工多少个零件
6、一只野兔跑出 80 步后,猎狗才追它。
野兔跑 8 步的路程,猎狗只需跑 3 步;猎狗跑 4 步的时
间,野兔要跑 9 步。
那么猎狗至少要跑多少步才能追上野兔
7、某团体100 名会员,男会员与女会员的人数之比是14∶ 11,会员分成三个组,甲组人数
与乙、丙两组人数之和一样多,且各组男会员与女会员人数之比是:甲:(12∶ 13)、乙:( 5∶3)、丙:( 2∶ 1)。
那么丙组有多少名男会员
四、巩固练习
1、一个三角形的三个内角之比是2: 3: 4,求这个三角形三个内角的度数。
2、将 88 厘米的铁丝焊成一个长方体框架,长方体长、宽、高的比是5: 4: 2,求这个长方体的体积是多少立方厘米
3、有一块合金,其中铜与锡的比试 4: 3,如果再加入 8 克铜,所得新合金共 63 克,求新合金铜和锡的比是多少
4、在比例尺为1:5000000 的地图上量得A、 B 两地的距离是 5 厘米,若把比例尺改为1:4000000,那么 A、 B 两地应画多少厘米
5、已知x : y1: 3 , y : z12 : 11 ,求x : y : z.
6、两个杯子里装有体积相等的盐水溶液. 一个杯子里盐与水的体积之比是5: 2,另一个杯子里盐与水的体积之比是1: 3,若把两个杯子里的盐水混合,那么混合后盐与水的比是多
少
7、甲数的2
等于乙数的25%,甲数与乙数的比是多少5
8、长方形草坪ABCD被分成面积相等的甲、乙、丙和丁四份,其中图形甲长和宽的比是
a :
b 2 :1,求其中图形乙的长和宽的比是多少.
乙
丁
甲
丙
9、某班一次测试全班平均分是 82 分,男生的平均分是 79 分,女生的平均分是 87 分,求这个班男生与女生人数的比 .
10、甲、乙两包糖的重量比是 3:4,如果从甲包取 50 克放入乙包,则两包的重量比是 2:5,求两包糖的总重量 .
11、甲走的路程比乙多1
,乙用的时间比甲多
1
,求甲、乙两人的速度比.
3 5
12、明明读一本故事书,已读的页数和未读的页数比是
读页数的比是3: 4,求这本书有多少页.
2: 5,如果再读20 页,则已读和未13、直角三角形三条边的长度比是 3: 4: 5,已知这个三角形的周长是 36 厘米,求三角形面积 .
14、某校合唱队与舞蹈队人数之比是 3: 2,如果将合唱队的队员调 10 名到舞蹈队,那么这
时的人数比是 7: 8,原合唱队有多少人
15、王先生、 李先生、 赵先生、杨先生四个人比年龄, 王先生的年龄是另外三人年龄和的
1 ,
1
,赵先生的年龄是其他三人年龄和的
1
,杨先生 2
李先生的年龄是另外三人年龄和的
26 岁,
3
4
你知道王先生多少岁吗
16、某学校入学考试,参加的男生与女生人数之比是 4: 3。
结果录取 91 人,其中男生与女 生人数之比是 8: 5。
未被录取的学生中,男生与女生人数之比是 3: 4。
问报考的共有多少 人
17、幼儿园大班和中班共有 32 名男生, 18 名女生。
已知大班男生数与女生数的比为 5:3,
中班男生数与女生数的比为
2:1 ,那么大班有女生多少名
18、有若干个突击队参加某工地会战, 已知每人突击队人数相同, 而且每个队的女队员的人
数是该队的男队员的
7
,以后上级从第一突击队调走了该队的一半队员,
而且全是男队员,
18
于是工地上的全体女队员的人数是剩下的全体男队员的8
,问开始共有多少支突击队参加17
会战
19、一堆围棋子有黑白两种颜色,拿走15 枚白棋子后,黑子与白子的个数之比为2:1;再拿走 45 枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子与白棋子各有多少枚。