新北师大版七年级下册第三章知识点及练习题
知识点详解北师大版七年级数学下册第三章变量之间的关系综合练习试题(含详细解析)
北师大版七年级数学下册第三章变量之间的关系综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了15,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x2、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据下列说法错误的是()A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快3、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。
队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。
设行进时间为t(单位:min ),行进的路程为s (单位:m ),则能近似刻画s 与t 之间的函数关系的大致图象是( )A .B .C .D .4、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②5、在圆周长计算公式2C r π=中,对半径不同的圆,变量有( ) A .,C rB .,,C r πC .,C r πD .,2,C r π6、一列火车从A 站行驶3公里到B 处以后,以每小时90公里的速度前进.则离开B 处t 小时后,火车离A 站的路程s 与时间t 的关系是( ) A .s =3+90tB .s =90tC .s =3tD .s =90+3t7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .8、如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系9、下表是某报纸公布的世界人口数据情况:表中的变量( )A .仅有一个,是时间(年份)B .仅有一个,是人口数C .有两个,一个是人口数,另一个是时间(年份)D .一个也没有10、某居民小区电费标准为0.55元/千瓦时,收取的电费y (元)和所用电量x (千瓦时)之间的关系式为0.55y x ,则下列说法正确的是( ) A .x 是自变量,0.55是因变量B .0.55是自变量,x 是因变量C.x是自变量,y是因变量D.y是自变量,x是因变量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图表示的是某种摩托车的油箱中剩余量y(升)与摩托车行驶路程x(千米)之间的关系.由图象可知,摩托车最多装__升油,可供摩托车行驶___千米,每行驶100千米耗油___升.2、地面温度为15 ºC,如果高度每升高1千米,气温下降6 ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________3、城市绿道串连起绿地、公园、人行横道和自行车道改善了城市的交通环境,引导市民绿色出行截至2019年年底,某市城市绿道达2000千米,该市人均绿道长度y(单位:千米)随人口数x的变化而变化,指出这个问题中的所有变量________________.4、长方形的周长为20,宽为x.若设长方形的面积为S,则面积S与宽x之间的关系是________.5、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_________,因变量是_________;(2)无人机在75米高的上空停留的时间是_________分钟;(3)在上升或下降过程中,无人机的速度为_________米/分;(4)图中a表示的数是_________;b表示的数是_________;(5)图中点A表示_________.三、解答题(5小题,每小题10分,共计50分)1、下表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口数那么随着x的变化,y的变化趋势是怎样的?2、如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.09米长的链条,需要多少个铁环?3、已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥1 2,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题: ①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为: ;(用“<”或“=”表示)②若直线y =k 与该函数图象有两个交点,则k 的取值范围是 ,此时,x 的取值范围是 .4、某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O点表示________;A点表示________;B点表示________.(2)从图中可知,小明家离体育馆________m,父子俩在出发后________min相遇.(3)你能求出父亲与小明相遇时距离体育馆还有多远?(4)小明能否在比赛开始之前赶回体育馆?5、光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:(1)大约几时的光合作用最强?大约几时的光合作用最弱?(2)说一说绿色植物光合作用的强度从7时到18时是怎样变化的.-参考答案-一、单选题1、D【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×15÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.2、B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.3、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案.【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键.4、A【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.5、A【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,进而得出答案.【详解】解:在圆周长计算公式C=2πr中,对半径不同的圆,变量有:C,r.故选:A.【点睛】此题主要考查了常量与变量,正确把握变量的定义是解题关键.6、A【分析】根据路程、速度、时间之间的关系可得关系式.【详解】解:火车离A站的距离等于先行的3公里,加上后来t小时行驶的距离可得:s=3+90t,故选:A.【点睛】本题考查了函数关系式,解题的关键是理解路程、速度、时间之间的关系.7、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.8、B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.9、C【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故C正确;故选:C.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.10、C【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.二、填空题1、10 500 2【分析】根据图象可知,当x=0时,对应y的数值就是摩托车最多装多少升油,当y=0时,x的值就是摩托车行驶的千米数;根据摩托车油箱可储油10升,可以行驶500km即可得出每行驶100千米消耗汽油升数.【详解】解:由图象可知,摩托车最多装10升油,可供摩托车行驶500千米,每行驶100千米耗油2升.故答案为:10,500,2.【点睛】此题主要考查了利用函数图象解决问题,从图象上获取正确的信息是解题关键.2、h=156t-.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=156t-.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.3、人均绿道长度y,人口数x【分析】根据常量与变量的定义进行填空即可.【详解】解:这个问题中的所有变量是该市人均绿道长度y 与人口数x ,故答案为:人均绿道长度y ,人口数x .【点睛】本题考查了常量与变量,掌握常量与变量的定义是解题的关键.4、210S x x =-【分析】先用x 表示出长方形的长,再根据长方形的面积公式解答即可.【详解】解:因为长方形的周长为20,宽为x ,所以长方形的长为(10-x ),所以长方形的面积S 与宽x 的关系式是:()21010S x x x x =-=-. 故答案为:210S x x =-.【点睛】本题考查了用关系式表示变量之间的关系,准确掌握长方形的周长与面积公式是解题的关键.5、操控无人机的时间t ; 无人机的飞行高度h ; 5; 25; 2; 15; 在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留时间为1275-=分钟即可;(3)根据“速度=路程÷时间”计算即可;(4)根据速速、时间与路程的关系式,列式计算求解即可;(5)根据点的实际意义解答即可.【详解】解:(1)横轴代表的是无人机被操控的时间,纵轴是无人机飞行的高度,所以自变量是操控无人机的时间t ;因变量是无人机的飞行高度h ;(2)无人机在75米高的上空停留时间为1275-=分钟;(3)在上升或下降过程中,无人机的速度为:75502576-=-米/分; (4)图中a 表示的数为:50=225分钟;图中b 表示的数为75121525+=分钟; (5)图中点A 表示,在第6分钟时,无人机的飞行高度为50米.【点睛】本题考查变量之间的关系在实际中的应用,根据图象学会分析是解题重点.三、解答题1、(1)两个变量;(2)用x 表示年份,用y 表示世界人口数,那么随着x 的变化,y 的变化趋势是增大.【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【详解】解:(1)表中有两个变量,分别是年份和人口数;(2)用x 表示年份,用y 表示世界人口总数,那么随着x 的变化,y 的变化趋势是增大.【点睛】本题考查了变量与常量的知识,解题的关键是能够了解常量与变量的定义,难度不大.2、(1)2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2) 3.4 1.6y n =+;(3)需要61个铁环【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y 与n 的关系式;(3)由(2)得,3.4n +1.6=209,进而求出即可.【详解】解:(1)由题意可得:2520.810 1.68.4()cm ⨯-⨯=-=,3540.815 3.211.8()cm ⨯-⨯=-=,4560.820 4.815.2()cm ⨯-⨯=-=.故2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)由题意得:n 个铁环一共有n -1个相接的地方,∴52(1)0.8y n n =--⨯,即 3.4 1.6y n =+;(3)∵2.09米=209cm∴据题意有3.4 1.6209n +=,解得:61n =,答:需要61个铁环.【点睛】本题主要考查了用关系式表示的变量之间的关系,利用链条结构得出链条长的变化规律是解题的关键.3、 (1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12,图象最低点为(2,1),再代入即可【详解】(1)设11k y x = ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-,(2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x 增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键4、(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB、OB分别表示父、子送票、取票过程,∴O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)∵O点与A点相距3600米,∴小明家离体育馆有3600米,∵从点O点到点B用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B点到O点的速度为3x=180米/秒,∴从B点到O点的所需时间=900180=5(分),而小明从体育馆到点B用了15分钟,∴小明从点O到点B,再从点B到点O需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.5、 (1)大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【解析】【分析】(1) 观察函数的图象,找出最高点和最低点表示的时间即可;(2) 在函数的图象上找出光合作用强度上升和下降的部分即可;【详解】(1) 函数的图象可得:大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (25)
一、选择题(共10题)1.随着时代的进步,人们对PM2.5(空气中直径小于或等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是( )A.B.C.D.2.下列关系中,y不是x的函数的是( )A.y=∣x∣B.y=x C.y=−x D.y=±x3.王强从家门口骑摩托车去单位上班,先走平路到达点A,再走上坡路到点B,最后走下坡路到达单位,所用的时间与路程的关系如图所示,下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )A.8分钟B.10分钟C.12分钟D.18分钟4.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米5.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是( )A.B.C.D.6.某兴趣小组做试验,如图,将一个装满水的啤酒瓶倒置,并设法使瓶里的水从瓶中匀速流出,那么该倒置的啤酒瓶内水面高度ℎ与水流出的时间t之间的函数图象大致是( )A.B.C.D.7.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x支笔,还买了单价为5元的三角尺两幅,用y(元)表示琪琪花的总钱数,那么y与x之间的关系式应该是( )A.y=1.5x+10B.y=5x+10C.y=1.5x+5D.y=5x+58.如图,三个大小相同的正方形拼成六边形ABCDEF,一动点P从点A出发沿着A→B→C→D→E方向匀速运动,最后到达点E.运动过程中△PEF的面积(S)随时间(t)变化的图象大致是( )A.B.C.D.9.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4min上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:m)与他所用时间t(单位:min)之间的函数关系如图所示,已知小明从家出发7min时与家的距离为1200m,从上公交车到他到达学校共用10min,下列说法:①小明从家出发5min时乘上公交车;②公交车的速度为400m/min;③小明下公交车后跑向学校的速度为100m/min;④小明上课没有迟到.其中正确的个数是( )A.1B.2C.3D.410.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平,自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是( )A.B.C.D.二、填空题(共7题)11.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是.12.某长途汽车站对旅客携带行李收费的收费方式作了如下说明:行李重量40千克以内(含40千克),不收费;超过40千克时,每超过1千克,收费2元.行李费y(元)与行李重量x(千克)之间的函数关系式为.13.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.乙回到学校用了分钟.14.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别是10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.15.甲、乙两人在直线跑道上同起点、同终点,同方向匀速跑步500m,先到终点的人原地休息,已知甲先出发2s,在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图,给出以下结论;① a=8;② b=92;③ c=123.其中正确的是.16.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是,常量是.17.周末小明匀速步行从家赶往学校参加植树活动,出发30分钟后,发现忘带植树工具,于是马上掉头往回走,速度比之前每小时提高了1千米(仍保持匀速步行),同时小明打电话给爸爸,请爸爸帮他把植树工具送过来,从小明开始打电话到爸爸出门一共用了4分钟,爸爸的速度与小明提速后的速度相同.两人相遇后,小明接过工具立即赶往学校,爸爸则转身回家,两人速度均保持不变,爸爸在回家途中用了10分钟吃早餐,当爸爸到家时小明刚好到达学校,两人相距的路程y(千米)与小明从家出发的时间x(分钟)之间的函数关系如图所示,则小明从家到学校途中步行的总路程是千米.三、解答题(共8题)18.如图,矩形ABCD的边AB=6cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直线,设PB=x cm,CQ=y cm,试以x为自变量,写出y关于x的函数关系式.19.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题.(1) 农民自带的零钱是多少?(2) 若降价前y,x满足y=kx+b,试求y与x之间的关系式.(3) 由表达式你能看出降价前每千克的土豆价格是多少吗?20.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1) 此变化过程中,是自变量,是因变量.(2) 甲的速度是千米/时,乙的速度是千米/时.(3) 路程为150千米,甲行驶了小时,乙行驶了小时.(4) 分别写出甲乙两人行驶的路程S(千米)与行驶的时间t(小时)的关系式(不要求写出自变量的取值范围)S甲=S乙=.21.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1) 根据图象,直接写出蓄电池剩余电量为35千瓦时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2) 当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.22.如图,Q是AB⏜与弦AB所围成图形的外部的一定点,P是弦AB上的一动点,连接PQ交AB⏜于点C.已知AB=6cm,设P,A两点间的距离为x cm,P,C两点间的距离为y1cm,Q,C两点间的距离为y2cm.小石根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:(1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012345 5.406y1/cm 4.63 3.89 2.61 2.15 1.79 1.630.95y2/cm 1.20 1.11 1.040.99 1.02 1.21 1.40 2.21(2) 在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3) 结合函数图象,解决问题:当C为PQ的中点时,PA的长度约为cm.23.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.24.如图,在△ABC中,AB=8cm,点D是AC边的中点,点P是边AB上的一个动点,过点P作射线BC的垂线,垂足为点E,连接DE.设PA=x cm,ED=y cm.小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1) 通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345678y/cm 3.0 2.4 1.9 1.8 2.1 3.4 4.2 5.0(说明:补全表格时相关数据保留一位小数)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3) 结合画出的函数图象,解决问题:点E是BC边的中点时,PA的长度约为cm.25.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)答案一、选择题(共10题)1. 【答案】B【解析】当t=0时,极差y2=85−85=0;当0<t≤10时,极差y2随t的增大而增大,最大值为85−42=43;当10<t≤20时,极差y2随t的增大保持不变,为43;当20<t≤24时,极差y2随t的增大而增大,最大值为140−42=98.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】D【知识点】函数的概念3. 【答案】B【解析】从家到学校:平路是2千米,用3分钟,则从单位到家门口走平路仍用3分钟;从A到B是上坡,路程是1千米,时间是5−3=2分钟,则速度是:12千米/分钟从B到单位的一段是下坡,路程是6−3=3千米,时间是3分钟,则下坡的速度是1千米/分钟,则从单位到家门口需要的时间是:3 1 2+11+3=10(分钟).【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,∴甲的速度=4206−70(米/分)甲总共走了30分钟,∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】Dxy,【解析】由题可知:10=12(x>0).所以y=20x故选D.【知识点】用函数图象表示实际问题中的函数关系6. 【答案】A【解析】该倒置的啤酒瓶内水面高度ℎ变化的过程分为两段,其变化规律为先慢后快,因为水匀速流出,所以表现在图象上为两条首尾相接的线段.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】依题意得:笔单价为9÷6=1.5元,琪琪花的总钱数为x支笔和两幅三角板的总价和,∴y=1.5x+10.【知识点】解析式法8. 【答案】B【解析】动点P从点A出发沿着A→B→C→D→E方向匀速运动,∴可知三角形PEF的面积可分为四个步骤进行图象的描绘,分别为AB,BC,CD,DE,∴答案为B.【知识点】图像法9. 【答案】D【解析】公交车的速度为(3200−1200)÷(12−7)=400(m/min),故②正确;小明从家出发乘上公交车的时间为7−(1200−400)÷400=5(min),故①正确;坐公交车的时间为12−5=7min,跑向学校的时间为10−7=3min,因为3<4,所以小明上课没有迟到,故④正确.小明下公交车后跑向学校的速度为(3500−3200)÷3=100(m/min)时,故③正确.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】t=20v【知识点】解析式法12. 【答案】y ={0,0≤x ≤40,2x −80,x >40.【知识点】解析式法13. 【答案】 40【解析】由图象可得,甲的速度为:2400÷60=40(米/分钟), 乙的速度为:2400÷24−40=60(米/分钟), 则乙回到学校用了:2400÷60=40(分钟). 【知识点】用函数图象表示实际问题中的函数关系14. 【答案】 y =6x+105(0<x ≤656) 或 y =120−15x2(6≤x <8)【知识点】解析式法15. 【答案】①②③【解析】甲的速度为:8÷2=4(m/s );乙的速度为:500÷100=5(m/s );b =5×100−4×(100+2)=92(m );5a −4×(a +2)=0, 解得 a =8,c =100+92÷4=123(s ), ∴ 正确的有①②③.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】C ,r ;2π【知识点】函数的概念17. 【答案】296【解析】小明从家出发时速度为 20.5=4 千米/小时,小明返回速度为 (4+1)=5 千米/小时 小明返回 4 分钟,即115小时,小明爸爸才出门且速度与小明返回速度一样 5 千米/小时,设小明与爸爸相遇用时 t (爸爸出门到相遇), 2−5×115=(5+5)t , t =16 小时,相遇后爸爸吃早餐用时 10 分钟,即 16 小时,爸爸返回家中用时 5t 5=16 小时,小明刚好到达学校,则小明返回拿工具再去学校过程中用时为:1 15+16+16+16=1730,总路程S=2+1730×5=2+176=296千米.故小明从家到学校途中步行总路程为296干米.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】因为在Rt△ABP中,∠APB+∠BAP=90∘且∠APQ=90∘,所以∠APB+∠CPQ=90∘,所以∠BAP=∠CPQ,又∠B=∠C=90∘,所以△ABP∽△PCQ,所以PB:CQ=AB:PC,则xy =68−x,所以y=−16x2+43x(0<x<8).【知识点】性质与判定综合(D)、解析式法19. 【答案】(1) 5元.(2) y=0.5x+5.(3) 0.5元.【知识点】解析式法、用函数图象表示实际问题中的函数关系20. 【答案】(1) 时间t;路程S(2) 503;50(3) 9;3(4) 503t;50t−200【解析】(2) 甲的速度=1006=503km/h,乙的速度=50km/h.(3) 路程150千米/时,150÷503=9(小时),150÷50=3(小时),即甲行驶了 9 小时,乙行驶了 3 小时. (4) S =503t ,S =50t −200.【知识点】用函数图象表示实际问题中的函数关系、自变量与函数值、解析式法21. 【答案】(1) 由图象可知,蓄电池剩余电量为 35 千瓦时汽车已行驶了 150 千米. 1 千瓦时的电量汽车能行驶的路程为:15060−35=6 千米.(2) 设 y =kx +b (k ≠0),把点 (150,35),(200,10) 代入, 得 {150k +b =35,200k +b =10.∴{k =−0.5,b =110.∴y =−0.5x +110,当 x =180 时,y =−0.5×180+110=20,答:当 150≤x ≤200 时,函数表达式为 y =−0.5x +110,当汽车已行驶 180 千米时,蓄电池的剩余电量为 20 千瓦时.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 3.20 (2) (3) 5.58 【知识点】图像法23. 【答案】(1) 50∘ (2) ①x 1;x 2;②③−1.87.【知识点】列表法、函数的概念、图像法24. 【答案】(1) 2.7(2)(3) 6.8【知识点】图像法、列表法25. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数。
北师大版七年级下册数学第三章第1---3节同步复习题含答案
3.1用表格表示的变量间关系一、选择题1.如图,表格列出了一项实验的统计数据中变量y与x之间的关系:则下面能表示这种关系的式子是()A. y=x2B. y=2xC. y=x+15D. y=x2 2.下表是摄氏温度和华氏温度之间的对应表,则字母a的值是()A. 45B. 50C. 53D. 683.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系:下列说法不正确的是()A. x与y都是变量,且x是自变量,y是因变量B. 用电量每增加1千瓦时,电费增加0.55元C. 若用电量为8千瓦时,则应交电费4.4元D. 若所交电费为2.75元,则用电量为6千瓦时4.某烤鹅店在确定烤鹅的烤制时,主要依据的是下表中的数据:估计当鹅的质量为6.2kg时,烤制时间是()A. 130minB. 134minC. 144minD. 173min5.某日广东省遭受台风袭击,大部分地区发生强降雨.某条河流因受到暴雨影响,水位急剧上升,下表为这一天的水位记录,观察表中数据,水位上升最快的时间段是()A. 8时到12时B. 12时到16时C. 16时到20时D. 20时到24时6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A. 弹簧不挂重物时的长度为0cmB. x与y都是变量,且x是自变量,y是因变量C. 物体质量每增加1 kg,弹簧长度y增加0.5cmD. 所挂物体质量为7 kg时,弹簧长度为23.5cm7.将温度计从热茶的杯子中取出之后,立即被放入一杯凉水中.每隔5s后读一次温度计上显示的度数,将记录下的数据制成下表.下述说法不正确的是()A. 自变量是时间,因变量是温度计的读数B. 当t=10s时,温度计上的读数是31.0℃C. 温度计的读数随着时间推移逐渐减小,最后保持不变D. 依据表格中反映出的规律,t=35s时,温度计上的读数是13.0℃8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中x介于0∼20之间):下列说法错误的是()A. 在这个变化中,自变量是提出概念所用的时间,因变量是对概念的接受能力B. 学生对概念的接受能力是59.8时,提出概念所用的时间是12分钟C. 根据表格中的数据,提出概念所用的时间是13分钟时,学生对概念的接受能力最强D. 根据表格中数据可知:当x介于2∼13之间时,y值逐渐增大,学生对概念的接受能力逐步增强9.某种蔬菜的价格随季节变化如表:根据表中信息,下列结论错误的是()A. x是自变量,y是因变量B. 2月份这种蔬菜价格最高,为5.50元/千克C. 2~8月份这种蔬菜价格一直在下降D. 8~12月份这种蔬菜价格一直在上升10.一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示:下列关于这一变化过程的说法正确的是()A. 飞行时间t每增加0.5秒,飞行高度h就增加5.5米B. 飞行时间t每增加0.5秒,飞行高度h就减少5.5米C. 估计飞行时间t为5秒时,飞行高度h为11.8米D. 只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格二、填空题11.一支原长为20cm的蜡烛,点燃后,其剩余长度与燃烧时间之间的关系可从下表看出:则剩余长度y/cm与燃烧时间x/分的关系式为______,你能估计这支蜡烛最多可燃烧______分钟.12.米店买米,数量x(千克)与售价y(元)之间的关系如下表:则售价y与数量x之间的关系式是____13.某人购进−批苹果到集贸市场零售,已知卖出苹果数量x与售价的关系如下表:则售价y与数量x之间的关系式是______.14.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为______km.15.下面的表格列出了一个实验室的部分统计数据,表示将皮球从高处落下时,弹跳高度x与下降高度y的关系,能表示这种关系的式子是______.16.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法正确的是______.①x与y都是变量;②弹簧不挂重物时的长度为0cm;③物体质量每增加1kg,弹簧长度增加0.5cm;④所挂物体质量为7kg时,弹簧长度为13.5cm.17.一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.(1)请根据题意填写下表:(2)用含t的式子表示s为________;(3)这一变化过程中,________是常量,________是变量.18.某校组织学生到距离学校6km的某科技馆参观,准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3km以下(含3km) 6.003km以上,每增加1km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为______19.收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻,下面是它们的一些对应的数值:根据表中波长(m)和频率(kHz)的对应关系,当波长为800m时,频率为_______kHz.20.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下.一辆汽车停在路边,其正前方有一座山崖,驾驶员按响喇叭,4s后听到回声,若当时的气温为25℃,则由此可知,汽车距山崖______米.气温x(℃)0510152025音速y(米/秒)331334337340343346三、解答题21.表格是暑假旅游期间萌萌往家打长途电话的几次收费记录:通话时间/1234567分电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)用x表示通话时间,用y表示电话费,请写出y与x的关系式,随着x的变化,y的变化趋势是什么?22.某剧院的观众席的座位为扇形,且按下列分式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【答案】1. D2. B3. D4. C5. D6. A7. D8. B9. D 10. C11. y=20−x2001012. y=2.6x+0.113. y=2.1x14. 615. y=2x16. ①③④17. 解:(1)填表如下:(2)s=60t;(3)t;s.18. y=1.8x+0.619. 37520. 69221. (1)上表反映了时间与电话费之间的关系;时间是自变量,电话费是因变量;(2)y=0.6x,y随着x的增大而增大.22. 解:(1)由图表中数据可得:当x每增加1时,y增加3;(2)由题意可得:y=50+3(x−1)=3x+47;(3)某一排不可能有90个座位,理由:由题意可得:y=3x+47=90,.解得:x=433故x不是整数,则某一排不可能有90个座位.3.2用关式表示的变量关系一、选择题1.y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤42.当x=2时,y=的值是()A.3 B.2 C.1 D.03.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.4.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对5.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的的关系式是()A.y=10x﹣x2B.y=10x C.y=﹣x D.y=x(10﹣x)6.一定质量的干木,当它的体积V=4m3时,它的密度ρ=0.25×103kg/m3,则ρ与V的关系式是()A.ρ=1000V B.ρ=V+1 000 C.ρ=D.ρ=7.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是()A.s=10+60t B.s=60t C.s=60t﹣10 D.s=10﹣60t 8.小张为自己已经用光话费的手机充值100元,他购买的服务是:20元/月包接听,主叫0.2元/分钟.这个月内,他手机所剩话费y(元)与主叫时间t(分钟)之间的关系是()A.y=100﹣0.2t B.y=80﹣0.2t C.y=100+0.2t D.y=80+0.2t 二、填空题9.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y 元,那么y(元)与x(件)的关系式是.10.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.11.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的关系式为.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的解析式是.13.如图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的关系式为.三、解答题14.弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如表所挂物体的质量x(kg)0 1 2 3 4 5 6弹簧的长度y(cm)15 15.6 16.2 16.8 17.4 18 18.6(1)如表反映了哪两个变量之间的关系?哪个是自变量?(2)写出x与y之间的关系式;(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)当所挂物体的质量为11.5kg时,求弹簧的长度.15.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.x/kg0 1 2 3 4 5 …y/cm18 20 22 24 26 28 …(1)表中反映了两个变量之间的关系,是自变量,是因变量.(2)当所挂砝码质量为3g时,弹簧的长度是cm,不挂重物时弹簧长是cm.(3)弹簧长度y与所挂物体质量x之间的关系可以用式子表示为:.(在弹簧所承受的范围内)16.一支原长为20cm的蜡烛,点燃后,其剩余长度y(cm)与燃烧时间x(min)之前的关系如表:10 20 30 40 50 …燃烧时间x(min)19 18 17 16 15 …剩余长度y(cm)(1)表中反映的自变量是什么?因变量是什么?(2)求出剩余长度y(cm)与燃烧时间x(min)之间的关系式;(3)估计这支蜡烛最多可燃烧多少分钟?3.3用图像表示的变量间关系一、选择题23.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的关系如图所示,则小明出发4小时后距A地()A. 100千米B. 120千米C. 180千米D. 200千米24.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米25.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A. 5LB. 3.75LC. 2.5LD. 1.25L26.水池中原有3升水,现每分钟向池内注1升,则水池内水量Q(升)与注水时间t(分)之间关系的图象大致为()A. B.C. D.27.如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A. 36x =9x−0.54B. 36x−0.54=9xC. 36x+0.54=9xD. 36x=9x+0.5428.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(单位m)和放学后的时间t(单位min)之间的关系如图所示,那么下列说法错误的是()A. 小刚边走边聊阶段的行走速度是125m/minB. 小刚家离学校的距离是1000mC. 小刚回到家时已放学10minD. 小刚从学校回到家的平均速度是100m/min29.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据图象,下列选项中白昼时长低于11小时的节气是()A. 惊蛰B. 小满C. 立秋D. 大寒30.某厂前5个月生产的总产量y(件)与时间x(月)的关系如图所示,则下列说法正确的是A. 1−3月的月产量逐月增加,4、5两月产量逐月减少B. 1−3月的月产量逐月增加,4、5两月产量与3月持平C. 1−3月的月产量逐月增加,4、5两月停产D. 1−3月的月产量逐月持平,4、5两月停产31.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是A. ①②B. ③④C. ②③D. ①④32.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A. A城和B城相距300kmB. 甲先出发,乙先到达C. 甲车的速度为60km/h,乙车的速度为100km/hD. 6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前二、填空题(本大题共10小题,共30.0分)33.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需______分钟到达终点B.34.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家______米.35.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是______.36.图所示的是一根蜡烛燃烧时剩余的长度h(cm)与燃烧时间t(h)之间的关系图象,则蜡烛点燃后每小时燃烧__________cm.37.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是______min.38.如图所示,一边靠校园院墙,另外三边用50m长的篱笆,围起一个长方形场地,设垂直墙的边长为x(m),则长方形场地面积y(m2)与x的关系式为______.39.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为______小时.40.如图表示“龟兔赛跑”中路程与时间的关系,已知龟、兔同时从同一地点出发,由图中给出的信息,可知乌龟经过_________h追上兔子.41.如图二,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,图一表示的是小明从D点走到E点路程与时间的关系,已知小明从D点到E点走了3分钟,则AB=______米.42.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是______.三、解答题43.重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车起步价是______元;(2)当x>2时,求y与x之间的关系式;(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?22.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题.(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?【答案】1. C2. D3. B4. B5. C6. A7. D8. D9. C 10. D11. 7812. 135013. y=6x14. 515. 37.216. y=−2x2+50x17. 12318. 1019. 45020. ①②③21. 解:(1)10;(2)当x>2时,每公里的单价为(14−10)÷(4−2)=2,∴当x>2时,y=10+2(x−2)=2x+6;(3)当x=18时,y=2×18+6=42元,答:这位乘客需付出租车车费42元.22. 解:(1)由图可得农民自带的零钱为50元.(2)(410−50)÷100=360÷100=3.6(元/千克).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530−410)÷(3.6−1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530−160×2.1−50=144(元).答:李大爷一共赚了144元钱.44.。
北师大版七下数学第三章各节练习题含答案
3.1 用表格表示的变量间关系一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.一杯开水越晾越凉,这一过程中自变量是()A.时间B.温度C.时间和温度D.空气中的温度2.从深圳往北京打电话,电话费随时间的变化而变化,在这个问题中,因变量是( )A.时间B.电话费C.电话D.距离3.已知电费的收费标准为0.5元/千瓦时,当用电量为x(千瓦时)时,收取电费为y(元);在这个问题中,下列说法中正确的是()A.x是自变量,0.5元/千瓦时是因变量B.B.0.5元/千瓦时是自变量,y是因变量C.y是自变量,x是因变量D.D.x是自变量,y是因变量4.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:在这个问题中,下列说法正确的是()A.定价是不变量,销量是变量B.定价是变量,销量是不变量C.定价与销量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x (kg)间有下面的关系:A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0 cmD.物体质量每增加1kg,弹簧长度y增加0.5 cm6.在实验课上,利用同一块木板测得小车从不同高度(h)下滑时,高度(h)与下滑的时间(t)的关系如下表:下列结论错误的是()A.当40cmh=时,t约为2.66秒B.随高度增加,下滑时间越来越短C.估计当80cmh=时,t一定小于2.56秒D.高度每增加10cm,时间就会减少0.24秒二.填空题:(把正确答案填在题目的横线上)7.在一个变化过程中,如果有两个变量x和y,其中y随x的变化而变化,则x叫做__________,y叫做__________.8.用表格表示两个变量之间的关系:表示两个变量的关系的表格,一般第一行表示______变量,第二行表示______变量,借助表格,可以表示因变量随自变量的变化而变化的情况.9.汽车以m 千米/小时的速度从甲地驶向乙地,若甲、乙两地相距s 千米,当汽车行驶了x 小时后,距离乙地还有y 千米,在这个问题中,常量是__________,变量是__________,其中自变量是__________,因变量是__________.10.下表是某河流在汛期一天中涨水的情况,警戒水位为25米.(1)上表反映了 与时间之间的关系,其中 是自变量, 是因变量;(2) 从0时到24时,水位从 上升到 ; (3) 从 时到 时,水位上升最快;(4) 假设第二天持续下雨(基本与当天降水量一样),则第二天12时超警戒水位 米.11.下表为某商店薄利多销的情况,某商品原价为560元,随着不同幅度的降价,日销量(单位:件)发生相应的变化:这个表反映了______个变量之间的关系,__________是自变量,__________是因变量;从表中可以看出每降价5元,日销量增加__________件,从而可以估计降价之前的日销量为__________件,如果售价为500元,日销量为__________件. 三.解答题:12.下表是学校气象兴趣小组记录某天一昼夜温度变化的数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)早晨8时和中午12时的气温各是多少?(3)根据表格中的数据,说说一昼夜中什么时候气温最低?什么时候气温最高?温差是多少?(4)你能粗略说一说一昼夜内气温随时间变化的大概情况吗?13.下表是某自行车厂某年各月份生产自行车的数量:(2)为什么称自行车的月产量y为因变量?它是谁的因变量?(3)哪个月份自行车产量最高?哪个月份自行车产量最低?(4)哪两个月份间产量相差最大?根据这两个月的产量,自行车厂应采取什么措施?14.实验证明在弹性限度内,弹簧的伸长长度与所挂物体的质量有一定的比例关系,下表是某次实验测得的弹簧的长度y(cm)与所挂物体质量x(kg)的几组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体的质量为3kg时,弹簧多长?不挂重物时呢?(3)若所挂物体的质量为7kg时(在弹性限度内),弹簧的长度是多少?3.1 用表格表示的变量间关系(参考答案)1~6 ABDCCD7.自变量;因变量;8.自;因;9.s,m;x,y;x;y;10.(1)超警戒水位,时间,超警戒水位;(2)25.2,26;(3)12,20;(4)26.5;11.两;降价;日销量;30;750;1110;12.(1)反映了气温和时间的关系,时间是自变量,气温是因变量;(2)早上8点的气温是4℃,中午12点的气温是9℃;(3)早晨4时气温最低,午后14时气温最高,温差14℃;(4)0时至4时气温下降到4 ℃,4时至14时逐渐升高到10℃,然后气温又下降.13.(1) 随月份的增加,自行车总产量也逐渐增加;(2) 因为自行车的月产量y随时间x的变化而变化.自行车的月产量y;(3) 6月份产量最高,1月份产量最低;(4) 从6月份到7月份,自行车产量变化最大,下降2万辆,应总结经验教训,改善管理.14.(1)表格反映的是弹簧所挂物体质量与弹簧的长度两个变量之间的关系,弹簧所挂物体质量是自变量,弹簧的长度是因变量;(2)当所挂物体的质量为3kg时,弹簧长24 cm;不挂重物时,弹簧长18 cm;(3)由表中数据变化情况得:若所挂物体的质量为7kg时,弹簧的长度是32cm;3.2《用关系式表示的变量间关系》习题1.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A.y=4n-4 B.y=4n C.y=4n+4 D.y=n22.如图,△ABC的底边边长BC=a,当顶点A沿BC边上的高AD向D点移动AE时,△ABC的面积将变为原来的( )到E点,使DE=12A.12B.13C.14D.193.如图,△ABC 的面积是2cm 2,直线l ∥BC ,顶点A 在l 上,当顶点C 沿BC 所在直线向点B 运动(不超过点B )时,要保持△ABC 的面积不变,则顶点A 应( )A.向直线l 的上方运动;B.向直线l 的下方运动;C.在直线l 上运动;D.以上三种情形都可能发生.4.当一个圆锥的底面半径为原来的2倍,高变为原来的13时,它的体积变为原来的( )A.23B.29C.43D.495.如图,△ABC 中,过顶点A 的直线与边B C 相交于点D ,当顶点A沿直线AD 向点D 运动,且越过点D 后逐渐远离点D ,在这一运动过程中,△ABC 的面积的变化情况是( )A.由大变小B.由小变大D CAlCB AC.先由大变小,后又由小变大D.先由小变大,后又由大变小6.如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm变化到10cm时,圆柱的体积增加了______cm3.7.一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:写出用t表示s的关系式:________.8.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x分钟后水壶的水温为y℃,当水开时就不再烧了.(1)y与x的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.9.设梯形的上底长为x cm,下底比上底多2 cm,高与上底相等,面积为2cm2,则根据题意可列方程为_____.10.用一根长50cm的细绳围成一个矩形.设矩形的一边长为xcm,面积为y cm2.求y与x的函数关系式;11.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km (1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小? 12.一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5变7时,y如何变化?(3)用表格表示当x从3变到10时(每次增加1),y的相应值.(4)当x每增加1时,y如何变化?说明你的理由.13.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?14.一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:请你根据表格,解答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?15.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少参考答案1.答案:B解析:【解答】由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12,∴y=4n.故选B【分析】由图观察可知.2.答案:B解析:【解答】根据三角形的面积公式判断△ABC的面积将变为原来的三分之一.故选B.【分析】由图观察可知根据三角形的面积公式.3.答案:A解析:【解答】根据三角形的面积公式判断当顶点C沿BC所在直线向点B 运动时,三角形的底变小,则要保持△ABC的面积不变,高就要增大,即顶点A应向直线l的上方运动.故选A.【分析】由图观察可知根据三角形的面积公式.4.答案:C解析:【解答】设圆锥的底面半径为r,高为h,即可表示出变化后的底面半径和高,再根据圆锥的体积公式分别表示出原来的体积和变化后的体积,比较即可得到结果.故选C.【分析】根据圆锥的体积公式分别表示出原来的体积和变化后的体积.5.答案:C解析:【解答】由题意得,这个过程中△ABC的底始终不变,根据三角形的面积公式即可判断. 由题意得,这个过程中△ABC的底始终不变,则△ABC 的面积的变化情况是先由大变小,后又由小变大.故选C.【分析】根据三角形的面积公式即可判断.6.答案:(1)半径,体积;(2)297π.解析:【解答】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)体积增加了(π×102-π×12)×3=297πcm3.故答案为:(1)半径,体积;(2)297π.【分析】根据函数的定义.圆柱的高没有变化,只有底面积变化,因此计算底面积之差即可.7.答案:s=2t2(t≥0).21解析:【解答】观察表中给出的t与s的对应值,再进行分析,归纳得出关系式.t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s =2×42,…所以s与t的关系式为s=2t2,其中t≥0.故答案为s=2t2(t≥0).21【分析】观察表中给出的t与s的对应值,归纳出关系式.8.答案:(1)y=8x+20 x 在0--10变化;(2)28 60;(3)3.5解析:【解答】(1)根据题意,在20℃的基础上x和y有一定的变化规律,即y=8x+20;水温是随着时间的变化而变化的,因此自变量是时间x;当水温y=100时,水沸腾,因此时间x=10,所以x的变化范围是0≤x≤10.(2) x=1时,代入关系式y=28 x=5时代入关系式y=60(3)把y=48代入关系式,变形计算出x=3.5.【分析】先根据题意列出函数关系式,再依次代入求值即可9.答案为:x2+x-2=0解析:【解答】设这个梯形上底边长为x c m,那么下底就应该为(x+2)cm,高为x cm,根据梯形的面积公式得(2x+2)x÷2=2,化简后得x2+x-2=0.故答案为:x2+x-2=0【分析】如果设这个梯形上底边长为x cm,那么下底就应该为(x+2)cm,高为x cm,根据梯形的面积公式即可列出方程.10.答案:y=-x2+25x解析:【解答】设矩形的一边长为x cm,面积为y cm2,根据题意得出:y=-x2+25x答案为:y=-x2+25x【分析】先利用长方形的面积公式列出二次函数关系式即可.11.答案:见解析过程x+2)=17x+1400解析:【解答】(1)W1=16x+1000+200(200x+4)=6x+2800W2=4x+2000+200(100x+2)=12x+1400W3=8x+1000+200(50(2)当x=250时,W1=17×250+1400=5650(元)W2=6×250+2800=4300(元)W3=12×250+1400=4400(元),因为W1>W2>W3,所以应采用火车运输,才能使运输时的总支出费用最小.【分析】(1)根据表格中的关系列出式子:总费用=(运输时间+装卸时间)×损耗+途中费用×距离+装卸费用,依次代入数据即可.(2)x=250,依次代入关系式比较计算结果即可.(2)当x由5变到7时,y由18变到24(3)(4)x每增加1时,y增加3,这是因为:当x变为x+1时,y由3x+3变为3(x+1)+3=(3x+3)+3【分析】根据梯形的面积公式列出关系式,依次代入数值计算即可. 13.答案:见解答过程解析:【解答】(1)Q=800-50t(0≤t≤16);(2)当t=6时,Q=800-50×6=500(立方米).答:6小时后,池中还剩500立方米的水;(3)当Q=200时,800-50t=200,解得t=12.答:12小时后,池中还有200立方米的水.【分析】(1)根据“抽水时间×抽水速度=抽水量”,“蓄水量-抽水量=剩余水量”解题即可;(2)根据自变量与因变量的关系式,可得自变量相应的值;(3)根据自变量与因变量的关系式,可得相应自变量的值.14.答案:见解答过程.解析:【解答】(1)表中反映的是油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,时间t是自变量,油箱中剩余油量Q是因变量;(2)随着行驶时间的不断增加,油箱中的剩余油量在不断减小;(3)由题意可知汽车行驶每小时耗油7.5L,Q=54-7.5t;把t=6代入得Q =54-7.5×6=9(L);(4)由题意可知汽车行驶每小时耗油7.5L,油箱中原有54L汽油,可以供汽车行驶54÷7.5=7.2(h).答:最多能连续行驶7.2h.【分析】(1)认真分析表中数据可知,油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,再根据自变量、因变量的定义找出自变量和因变量;(2)由表中数据可知随着行驶时间的不断增加,油箱中剩余油量的变化趋势;(3)由分析表中数据可知,每行驶1h消耗油量为7.5L.然后根据此关系写出油箱中剩余油量Q(L)与行驶时间t(h)的代数式;(4)根据图表可知汽车行驶每小时耗油7.5L,油箱原有汽油54L,即可求出油箱中原有汽油可以供汽车行驶多少小时.15.答案:见解答过程解析:【解答】(1)y=2022x·x=(10-x)·x,x是自变量,它的值应在0到10之间(不包括0和10)(2)(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来y的值在由大变小的过程中,变小的速度越来越快;③当x取距5等距离的两数时,得到的两个y值相等.(4)从表中可以发现x=5时,y取到最大的值25.【分析】解答本题的关键是熟练掌握长方形的面积公式,同时熟记在一个变化的过程中,数值发生变化的量称为变量,函数值为因变量,另一个值为自变量.3.3 用图像表示变量间的关系同步测试一、单选题(共9题;共18分)1.2017年“中国好声音”全国巡演新安站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图能反映y与x的函数关系式的应该图象是()A. B.C. D.2.函数y=的图象为()A. B.C. D.3.小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是()A. ④②B. ①②C. ①③D. ④③4.小华家距离县城15km,星期天8:00,小华骑自行车从家出发,到县城购买学习用品,小华与县城的距离y(km)与骑车时间x(h)之间的关系如图所示,给出以下结论:①小华骑车到县城的速度是15km/h;②小华骑车从县城回家的速度是13km/h;③小华在县城购买学习用品用了1h;④B点表示经过h,小华与县城的距离为15km(即小华回到家中),其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A. B.C. D.6.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米7.已知P(x1,1),Q(x2,2)是一个函数图象上的两个点,其中x1<x2<0,则这个函数图象可能是()A. B.C. D.8.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t 变化的函数图象是()A. B.C. D.9.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A. B.C. D.二、填空题(共5题;共5分)10.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .11.如图是甲、乙两种固体物质在0°C—50°C之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息:①30°C时两种固体物质的溶解度一样;②在0°C—50°C之间,甲、乙两固体物质的溶解度随温度上升而增加;③在0°C—40°C之间,甲、乙两固体物质溶解度相差最多是10g;④在0°C—50°C之间,甲的溶解度比乙的溶解度高.其中正确的信息有:________ (只要填序号即可).12.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为________ 平方米.13.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C 时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线0M为抛物线的一部分),则下列结论:①BC=BE=5cm;②=;③当0<t≤5时,y=t2;④矩形ABCD的面积是10cm2.其中正确的结论是________ (填序号).14.小亮早晨从家骑车到学校,先上坡后下坡,所行路程y(米)与时间x (分钟)的关系如图所示,若返回时上坡、下坡的速度仍与去时上、下坡的速度分别相同,则小明从学校骑车回家用的时间是________分钟.三、解答题(共2题;共20分)15.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?16.某旅游团上午6时从旅馆出发,乘汽车到距离210km的某著名旅游景点游玩,该汽车离旅馆的距离S(km)与时间t(h)的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:(1)求该团去景点时的平均速度是多少?(2)该团在旅游景点游玩了多少小时?(3)求返回到宾馆的时刻是几时几分?四、综合题(共2题;共33分)17.如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.(1)如图反映的自变量、因变量分别是什么?(2)爷爷每天从公园返回用多长时间?(3)爷爷散步时最远离家多少米?(4)爷爷在公园锻炼多长时间?(5)计算爷爷离家后的20分钟内的平均速度.18.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,________是自变量,________是因变量.(2)甲的速度________乙的速度.(大于、等于、小于)(3)6时表示________;(4)路程为150km,甲行驶了________小时,乙行驶了________小时.(5)9时甲在乙的________(前面、后面、相同位置)(6)乙比甲先走了3小时,对吗?________.第三章变量之间的关系单元测试题一、选择题(3分×10=30分)1.某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是( )A.70 B.xC.y D.不确定2.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器3.变量x与y之间的关系是y=2x-3,当因变量y=6时,自变量x的值是( ) A.9 B.15C.4.5 D.1.54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的关系式为( )A.y=-12x B.y=12xC.y=-2x D.y=2x5.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )6.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( ) A.-2 B.2C.-1 D.07.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个8.李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的关系式是( )A.y=-2x+24(0<x<12) B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12) D.y=12x-12(0<x<24)9.在关系式y=5x+3中,有下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x的值无关;④用关系式表示的,不能用图象表示;⑤y 与x的关系还可以用列表如图象法表示.其中,正确的是( )A.①②③B.①②④C.①②⑤D.①④⑤10.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s(千米)与行驶时间t(小时)的关系如图所示,则下列结论中错误的是( )A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地二、填空题(3分×8=24分)11.在求补角的计算公式y=180°-x中,变量是,常量是.12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.13.若一个长方体底面积为60cm2,高为h cm,则体积V(cm3)与h(cm)的关系式为,若h从1cm变化到10cm时,长方体的体积由cm3变化到cm3.14.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=.15.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.16.某种储蓄的月利率是0.2%,存入100元本金后,不扣除利息税,本息和y(元)与所存月数x(x为正整数)之间的关系为,4个月的本息和为.17.如图是小明从学校到家里行进的路程s(米)与时间t(分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).18.如图(1),在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止.设点P运动的路程为x,三角形ABP的面积为y,如果y关于x的函数图象如图(2)所示,则三角形BCD的面积是.三、解答题(共66分)19.(8分)某商场经营一批进价为a元/台的小商品,经调查得如下数据:(1)(2)用语言描述日销售量y和日销售额t随销售价x变化而变化的情况.20.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.(1)这一天的最高温度是多少?是在几时到达的?最低温度呢?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?21.(8分)科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关:当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?22.(10分)汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快乐,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上所花时间最长?(3)用自己的语言大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (46)
一、选择题(共10题)1.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是( )A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点2.对圆的周长公式C=2πr的说法正确的是( )A.C,r是变量,π,2是常量B.π,r是变量,2是常量C.r是变量,2,π,C是常量D.C是变量,2,π,r是常量3.用每张长6cm的纸片,重叠1cm粘贴成一条纸带,如图,纸带的长度y(cm)与纸片的张数x之间的函数关系式是( )A.y=6x−1B.y=6x+1C.y=5x+2D.y=5x+14.如果某函数的图象如图所示,那么y随x的增大而( )A.增大B.减小C.不变D.有时增大有时减小5.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度ℎ与时间t之间的关系的图象是( )A.B.C.D.6.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.7.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是( )A.4月份的利润为50万元B.治污改造完成前后共有4个月的利润低于100万元C.治污改造完成后每月利润比前一个月增加30万元D.9月份该厂利润达到200万元8.下列函数中y不是x的函数的是( )B.y=x C.y=−x D.y2=x A.y=1x9.下列图象中,y是x的函数的是( )A.B.C.D.10.如图,是一种古代计时器--“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)( )A.B.C.D.二、填空题(共7题)11.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.12.物体自由下落的高度ℎ(单位:m)与下落时间t(单位:s)的关系是ℎ=4.9t2,在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.13.已知某地的地面气温是20∘C,如果每升高1000m气温下降6∘C,则气温t(∘C)与高度ℎ(m)的函数关系式为.14.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示:数量x(千克)1234⋯则售价y与数量x之间的函数关系式售价y(元)8+0.416+0.824+1.232+1.6⋯为.15.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了10.5分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.16.若f(x)=2x2+x,g(x)=3x−1,则f(2)⋅g(−1)=.17.经科学家研究,蝉在气温超过28∘C时才会活跃起来,此时边吸树木的汁液边鸣叫,如图是某地一天的气温变化图象,在这一天中,听不到蝉鸣的时间是小时.三、解答题(共8题)18. 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x (cm ) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y (cm 3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1) 上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2) 当易拉罐底面半径为 2.4 cm 时,易拉罐需要的用铝量是多少?(3) 根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4) 粗略说一说易拉罐底面半径对所需铝质量的影响.19. 将长为 30 cm ,宽为 10 cm 的长方形白纸按图所示的方法黏合起来,黏合部分的宽为 3 cm .(1) 求 5 张白纸黏合后的长度;(2) 设 x 张白纸黏合后的总长度为 y cm ,写出 y 与 x 之间的关系式,并求 x =20 时 y 的值及 y =813 时 x 的值;(3) 设 x 张白纸黏合后的总面积为 S cm 2,写出 S 与 x 之间的关系式,并求 x =30 时 S 的值及 S =5430 时 x 的值.20. 中国联通在某地的资费标准为包月 186 元时,超出部分国内拨打 0.36 元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准.时间/分12345⋯电话费/元0.360.72 1.08 1.44 1.8⋯(1) 这个表反映了哪两个变量之间的关系?哪个是自变量?(2) 如果用 x 表示超出时间,y 表示超出部分的电话费,那么 y 与 x 的表达式是什么? (3) 如果打电话超出 25 分钟,需付多少电话费?(4) 某次打电话的费用超出部分是 54 元,那么小明的爸爸打电话超出几分钟?21. 希望中学学生从 2018 年 12 月份开始每周喝营养牛奶,单价为 2 元/盒,总价 y 元随营养牛奶盒数 x 变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.22. 小明从 A 地出发向 B 地行走,同时晓阳从 B 地出发向 A 地行走,小明、晓阳离 A 地的距离y(千米)与已用时间x(分钟)之间的函数关系分别如图中l1,l2所示.(1) 小明与晓阳出发几分钟时相遇?(2) 求晓阳到达A地的时间.23.小张同学尝试运用课堂上学到的方法,自主研究函数y=1x2的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现请你来完成:(1) 函数y=1x2的定义域是;(2) 下表列出了y与x的几组对应值:x⋯−2−32m−34−1212341322⋯y⋯144911694416914914⋯表中m的值是;(3) 如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4) 结合函数y=1x2的图象,写出这个函数的性质:.(只需写一个)24.小南一家到某度假村度假,小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发,爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,(取东西的时间忽略不计),如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图,请根据图回答下列问题:(1) 图中的自变量是 ,因变量是 ,小南家到该度假村的距离是 km .(2) 小南出发 小时后爸爸驾车出发,爸爸驾车的平均速度为 km/h ,图中点 A 表示 . (3) 小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是 km .25. 某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收 1 元印制费,另需收取所有印制材料的制版费 1500 元;乙印刷厂提出:每份材料收 2.5 元印制费,不收制版费. 设该电视机厂在同一个印刷厂一次印刷的数量为 x 份 (x >0).(1) 根据题意填表:一次印刷数量(份)3005001500⋯甲印刷厂花费(元) 2000 ⋯乙印刷厂花费(元)1250⋯(2) 设在甲印刷厂花费 y 1 元,在乙印刷厂花费为 y 2 元.分别求 y 1,y 2 为关于 x 的函数解析式;(3) 根据题意填空:①若电视机厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视机厂在同一个印刷厂一次印制材料的数量为 份; ②印制 800 份宣传材料时,选择 印刷厂比较合算;③电视机厂拟拿出 3000 元用于印制宣传材料,在 印刷厂印制宣传材料可以多一些.答案一、选择题(共10题)1. 【答案】C【知识点】用函数图象表示实际问题中的函数关系2. 【答案】A【知识点】常量、变量3. 【答案】D【知识点】解析式法4. 【答案】A【知识点】图像法5. 【答案】D【解析】根据题意和图形的形状,可知水的最大深度ℎ与时间t之间的关系分为两段,先慢后快,所以D选项是正确的.【知识点】图像法6. 【答案】B【知识点】用函数图象表示实际问题中的函数关系7. 【答案】B【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D中,y是x的函数,故此选项不合题意;【解析】A.y=1xB.y=x中,y是x的函数,故此选项不合题意;C.y=−x中,y是x的函数,故此选项不合题意;D.y2=x中,y不是x的函数,故此选项符合题意.【知识点】函数的概念9. 【答案】D【知识点】函数的概念10. 【答案】B【解析】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、D;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C选项;所以B选项正确.故选:B.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】1.5【知识点】用函数图象表示实际问题中的函数关系12. 【答案】10【解析】当ℎ=490时,4.9t2=490,∴t=±10,∵t≥0,∴t=10,答:有一个物体从490m高的建筑物上自由落下,到达地面需要10s.【知识点】解析式法13. 【答案】t=−0.006ℎ+20【解析】∵每升高1000m气温下降6∘C,∴每升高1m气温下降0.006∘C,∴气温t(∘C)与高度ℎ(m)的函数关系式为t=−0.006ℎ+20.【知识点】解析式法14. 【答案】y=8.4x【知识点】解析式法15. 【答案】270【解析】由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0∼10.5分钟时,小明自己走,爸爸还没有出发,∴小明的速度v1=630÷10.5=60米/分钟,从10.5∼21分钟时,爸爸开始从家出发,并在时间t=21分钟时追上小明,∴此时小明的路程为:60×21=1260米,∴爸爸的速度为v2=1260÷(21−10.5)=120米/分钟,设爸爸返回时的速度为v,根据题意得,4v+60×6=920,∴v=140米/分钟,∴等爸爸送完作业返回家时所用时间为21×60÷140=9分钟,∴等爸爸到家小明总用时:21+9+2=32,∴此时小明与学校相距的距离为:2280−32×60=360米.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】−40【知识点】解析式法17. 【答案】12【解析】图象不超过28∘C的时间是10−0=10,24−22=2,10+2=12小时,故答案为:12.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】(1) 易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2) 当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3) 易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4) 当易拉罐底面半径在1.6∼2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8∼4.0cm间变化时,用铝量随半径的增大而增大.【知识点】函数的概念、列表法19. 【答案】(1) 30×5−4×3=138cm.(2) y=27x+3(x为正整数),当x=20时,y=543;当y=813时,x=30.(3) S=270x+30(x为正整数),当x=30时,S=8130;当S=5430时,x=20.【知识点】一次函数的应用20. 【答案】(1) 国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量.(2) 由题意可得:y=0.36x.(3) 当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费.=150(分钟).(4) 当y=54时,x=540.36答:小明的爸爸打电话超出150分钟.【知识点】解析式法、函数的概念21. 【答案】y=2x;常量:2;变量:x,y;自变量:x;y是x的函数.【知识点】函数的概念、常量、变量22. 【答案】(1) 由图象可得,小明的速度为4÷30=215(千米/分钟),1.6÷215=1.6×152=12(分钟),即小明与晓阳出发12分钟时相遇;(2) 晓阳的速度为:(4−1.6)÷12=0.2(千米/分钟),4÷0.2=20(分钟),即晓阳到达A地用时20分钟.【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) x≠0的实数(2) −1(3) 图(略);(4) 图象关于y轴对称【解析】(4) 图象在x轴的上方;在对称轴的左侧函数值y随着x的增大而增大,在对称轴的右侧函数值y随着x的增大而减小;函数图象无限接近于两坐标轴但永远不会和坐标轴相交等.【知识点】函数关系式为分式的自变量的取值范围、图像法、自变量与函数值24. 【答案】(1) 时间t;距离s;60(2) 1;60;2.5小时后小南和妈妈离家距离为50千米(3) 30或45【解析】(1) 图中一共两个变量:时间、距离,其中自变量是时间t,因变量是距离s.由图可知,距离家最远的位置为度假村,距离为60km.(2) 爸爸出发的晚,由图可知晚出发1小时,爸爸第一次到达度假村时,时间为2小时,即爸爸走了1个小时,爸爸的速度为60÷1=60(km/h).点A表示2.5小时后小南和妈妈离家距离为50千米.(3) 由图象可知,爸爸第一次去时,当小南与爸爸相遇时,离家的速度是30km,爸爸往回返时,两个相距20千米,小南速度;60÷3=20(km/h),20÷(60+20)=14(h),=15(km).60×1460−15=45(km),综上,当小南与爸爸相遇时,离家的距离约是30km或45km.【知识点】用函数图象表示实际问题中的函数关系、自变量与函数值25. 【答案】(1) 1800;3000;750;3750;(2) 由题意可得,y1=x+1500,y2=2.5x;(3) 1000;乙;甲【解析】(1) 由题意可得,当印制300份材料时,甲印刷厂的花费为:300×1+1500=1800(元),乙印刷厂的花费为:300×2.5=750(元),当印制1500份材料时,甲印刷厂的花费为:1500×1+1500=3000(元),乙印刷厂的花费为:1500×25=3750(元).(3) ①由题意可得,x+1500=2.5x,解得,x=1000,故答案为:1000;②当x=800时,y1=1500+800=2300,y2=2.5×800=2000,∵2300>2000,∴选择乙家印刷厂,故答案为:乙;③当y=3000时,选择甲印刷厂时,3000=x+1500,得x=1500,选择乙印刷厂时,3000=2.5x,得x=1200,∵1500>1200∴电视机厂拟拿出3000元用于印制宣传材料,在甲印刷厂印制宣传材料可以多一些,故答案为:甲.【知识点】列表法、方案问题。
北师大版七年级下册数学第三章知识点详细归纳附第三章测试卷及参考答案
北师大版七年级下册数学第三章知识点详细归纳附第三章测试卷及参考答案第三章变量之间的关系@考点归纳1.自变量一、变量的概念2.因变量变量之间的关系 1. 表格法2. 关系式法二、变量的表达方法(1).速度时间图象3. 图象法(2).路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并写成关系式的形式。
(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。
北师大版七年级下册数学第1-5章试题
第三章《生活中的数据》复习一、知识点:1、百万分之一:对较小数据的感受,用科学计数法表示绝对值较小数及单位的换算。
如:1微米= 米,1纳米= 米,4纳米= 微米= 毫米= 厘米= 米200千米的百万分之一是米.用科学计数法表示:0.00000368=2、近似数和有效数字:一般地,通过测量的结果都是近似的。
对于一个近似数从边第个不是的数字起,到的数位止,所有的数字都叫做这个数的有效数字.如:0.03296精确到万分位是,有个有效数字,它们是3、世界新生儿图:会从给出的信息图中得到有用信息;会画生动形象的统计图。
二、巩固练习:(一)填空选择题:1、下列数据中,是精确值的有()个(1)在9·11恐怖事件中,估计有5000人死亡;(2)某细胞的直径为百万分之一米;(3)中国的国土面积约为960万km2(4)我家有3口人(5)一(1)班有53人(A)1 (B)2 (C)3 (D)42、下列各组数据中,()是精确的。
(A)小明的身高是183.5米(B)小明家买了100斤大米(C)小明买笔花了4.8元(D)小明的体重是70千克3、某学生测量长度用的刻度尺的最小单位是厘米现测量一物品的结果为6.7cm ,那么位是精确值,位是估计值。
4、1纳米相当于一根头发丝直径的六万分之一,那么一根头发丝的半径为米(用科学计数法表示)5、一只蚂蚁的重量约为0.0002㎏,用科学计数法记为用科学计数法表示的数3.02×10-8,其原数为6、小东买了12.65kg苹果,精确到0.1kg,则所买苹果约为 kg7、数0.8050精确到位,有个有效数字,是8、数4.8×105精确到位,有个有效数字,是9、数5.31万精确到位,有个有效数字,是10、一箱雪梨的质量为20.95㎏,按下面的要求分别取值:(1)精确到10㎏是㎏,有个有效数字,它们是(2)精确到1㎏是㎏,有个有效数字,它们是(3)精确到0.1㎏是㎏,有个有效数字,它们是11、我国普通高校招生2756300人,若精确到万位是人有个有效数字,它们是米,12、九届人大一次会议上,李鹏同志所作的政府工作报告中指出:1997年我国粮食总产量达到492500000t,按要求填空:(1)精确到百万位是(用科学计数法表示),有个有效数字,它们是(2)精确到亿位是(用科学计数法表示),有个有效数字,它们是13、数0.000125保留两个有效数字记为14、北冰洋的面积是1475.0万平方千米,精确到()位,有()个有效数字(A)十分位,四(B)十分位,五(C)千位,四(D)千位,五15、下表是中国奥运会奖牌回眸统计表及历届奖牌总数折线图届数金牌银牌铜牌总计第23届15 8 9第24届11 12 28第25届22 12 54第26届16 16 50第27届28 16 59(1)完成上表(2)把第23届奖牌总数在统计图上标出,并完成此折线统计图7035G H I J K2324252627(二)解答题1、举例说明哪些是近似数,哪些是准确数,哪些是有效数字?2、、如图,(1)写出图中阴影部分的面积;(2)当a=3, b=2时,计算阴影部分的面积( =3.1415,保留3个有效数字,单位:cm)3、随机抽取城市30天的空气质量状况统计图如下:污染指数(w)40 70 90 110 120 140天数(t) 3 5 10 7 4 1其中:w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (32)
一、选择题(共10题)1.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少2.如图,在△ABC中,∠B=90∘,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动.若P,Q 两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t 的函数关系图象大致是( )A.B.C.D.3.如图,在Rt△ABC中,∠ACB=90∘,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是( )A.B.C.D.4.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发做匀速运动,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x的函数关系的是( )A.B.C.D.5.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③ b=960;④ a=34.以上结论正确的有( )A.①②B.①②③C.①③④D.①②④7.如图a,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x 分钟后甲、乙两人相距y米,y与x的函数关系如图b所示,有以下结论:①图a中a为1000;②图a中EF表示1000−200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,10分钟后相遇.其中正确的结论是( )3A.①②B.③④C.①②③D.①③④8.已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是( )A.小强在体育馆花了20分钟锻炼B.小强从家跑步去体育场的速度是10km/hC.体育馆与文具店的距离是3kmD.小强从文具店散步回家用了90分钟9.某校在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59min后,学生才能进入室内10.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度二、填空题(共7题)11.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD−DE−EF所示.其中点C 的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.12.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图所示,线段OA和折线BCDE,分别表示货车和轿车离开甲地的距离y(km)与货车离开甲地的时间x(h)之间的函数关系.小明根据图象,得到下列结论:①轿车在途中停留了半小时;②货车从甲地到乙地的平均速度是60km/h;③轿车从甲地到乙地用的时间是4.5小时;④轿车出发后3小时追上货车.则小明得到的结论中正确的是(只填序号).13.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则慢车从甲地出发又回到甲地,一共行驶了km.14.甲,乙两车分别从A,B两地同时出发,匀速相向而行,两车相遇后甲车停下来休息了2小时,然后以原速继续向B行驶,到达后立即掉头向A行驶,乙车没有休息,以原速继续向A行驶,到达后立即掉头向B行驶,假设掉头时间忽略不计,掉头后速度保持不变,两车到第一次相遇地点的路程之和S(千米)与甲车出发的时间t(小时)的部分函数图象如图所示,则当乙车到达A地时,甲车与B地相距千米.15.星期一升旗仪式前,李雷和韩梅梅两位数学课代表因为清查作业耽搁了时间,打算匀速从教室跑到600米外的中心广场参加升旗仪式,出发时李雷发现鞋带松了,停下来系鞋带,韩梅梅继续跑往中心广场,李雷系好鞋带后立即沿同一路线开始追赶韩梅梅,李雷在途中追上韩梅梅后,担心迟到继续以原速度往前跑,李雷到达操场时升旗仪式还没有开始,于是李雷站在广场等待,韩梅梅继续跑往中心广场.设李雷和韩梅梅两人相距s(米),韩梅梅跑步的时间为t(秒),s关于t 的函数图象如图所示,则在整个运动过程中,李雷和韩梅梅第一次相距80米后,再过秒钟两人再次相距80米.16.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在整个跑步的过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示,则当甲到达终点时,乙跑了米.三、解答题(共8题)18. 如图,在平面直角坐标系 xOy 中,直线 y =x +3 与函数 y =kx(x >0)的图象交于点A (1,m ),与 x 轴交于点B .(1) 求 m ,k 的值;(2) 过动点 P (0,n )(n >0)作平行于 x 轴的直线,交函数 y =kx (x >0)的图象于点 C ,交直线 y =x +3 于点 D .①当 n =2 时,求线段 CD 的长;②若 CD ≥OB ,结合函数的图象,直接写出 n 的取值范围.19. 如图所示是由若干个点组成的形如三角形的图案,每条边(包括两个顶点)有 n (n ≥2,n 为整数)个点,每个图案中点的总数是 S .(1) 请按上述规律推断出 S 与 n 的关系式,S 可以看成 n 的函数吗? (2) 当 n =15 时,S 的值是多少?20. 上网费包括网络使用费(每月 38 元)和上网通信费(每小时 2 元).某电信局对拔号上网的用户实行分时段优惠,具体政策如下表(包括最大值,不包括最小值):每月上网总时间优惠标准0∼30 h 无优惠30∼50 h 通信费优惠30%50∼100 h 通信费优惠40%100 h 以上通信费优惠60%例如:某户某月上网总时间为 42 h ,则他应缴上网费为:38+2×30+(42−30)×(1−30%)×2=114.8 元.你能根据上面提供的例子完成下表吗?每月上网总时间应缴上网费20 h 40 h 60 h 21. 已知 A ,B 两地之间有一条 270 千米的公路,甲、乙两车同时出发,甲车以 60 千米/时的速度沿此公路从 A 地匀速开往 B 地,乙车从 B 地沿此公路匀速开往 A 地,两车分别到达目的地后停止.甲、乙两车相距的路程 y (千米)与甲车的行驶时间 x (时)的函数关系如图所示.(1) 乙车的速度为 千米/时,a = ,b = ; (2) 求甲、乙两车相遇后,y 与 x 之间的函数关系式;(3) 当甲车到达距 B 地 70 千米处时,求甲、乙两车之间的路程.22. 问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数 y =∣x ∣−2 中,自变量 x 可以是任意实数.(1) 下表是 y 与 x 的几组对应值.x ⋯−3−2−10123⋯y ⋯10−1−2−10m⋯① m = ; ②若 A (n,8),B (10,8) 为该函数图象上不同的两点,则 n = ;(2) 如下图,在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得: ①该函数的最小值为 ;②已知直线 y 1=12x −12 与函数 y =∣x ∣−2 的图象交于 C ,D 两点,当 y 1>y 时 x 的取值范围是 .23.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交AB⏜于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整.(1) 对于点C在AB⏜上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8AC/cm0.10.5 1.0 1.9 2.6 3.2 4.2 4.9CD/cm0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD/cm0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC,CD,FD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2) 在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3) 结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是.24.如图,半圆O的直径AB=6cm,点M在线段AB上,且BM=1cm,点P是AB⏜上的动点,过点A作AN⊥直线PM,垂足为点N.小东根据学习函数的经验,对线段AN,MN,PM的长度之间的关系进行了探究.下面是小东的探究过程,请补充完整:(1) 对于点P在AB⏜上的不同位置,画图、测量、得到了线段AN,MN,PM的长度的几何值,如表:位置1位置2位置3位置4位置5位置6位置7AN/cm0.00 3.53 4.58 5.00 4.58 4.000.00MN/cm 5.00 3.53 2.000.00 2.00 3.00 5.00PM/cm 1.00 1.23 1.57 2.24 3.18 3.74 5.00在AN,MN,PM的长度这三个量中,确定的长度是自变量,和的长度都是这个自变量的函数;(2) 在同一直角坐标系xOy中,画出(1)中所确定的函数的图象.(3) 结合函数图象,解决问题:当AN=MN时,PM的长度约为cm.25.甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:(1) 哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?(2) 甲,乙两车的速度分别是多少?(3) 试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式.(4) 乙车能在1.5小时内追上甲车吗?若能,说明理由.若不能,求乙车出发几小时才能追上甲?答案一、选择题(共10题)1. 【答案】C【知识点】用函数图象表示实际问题中的函数关系2. 【答案】C【解析】根据题意表示出△PBQ的面积S与t的关系式.【知识点】图像法、解析式法3. 【答案】A【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的EP边上的高BC不变,则其面积是x的一次函数,面积随x的增大而增大,当x=2时,有最大面积为4;当点P在AD边上运动时,△CPE的底边EC不变,其上的高越来越大,则其面积是x的一次函数,且面积随x的增大而增大,当x=6时,有最大面积为8;当点P在DC边上运动时,△CPE的CP边上的高(点E到CD的距离,即BC的长)不变,底边CP越来越小,则其面积是x的一次函数,面积随x的增大而减小,当x=10时,有最小面积为0.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】C【解析】A选项,由函数图象可知,甲队走完全程需要82.3秒,乙队走完全程需要90.2秒,甲队率先到达终点,本选项错误;B选项,由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C选项,由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D选项,由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误.【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】①当x=0时,y=1200,∴A,B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24−4)=60(m/min),甲的速度为1200÷12−60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③ b=(60+40)×(24−4−12)=800,结论③错误;④ a=1200÷40+4=34,结论④正确.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】由题图可知,a=100,故①正确;=300(米/分),故③错误;乙的速度为1000+100×3−4003题图中EF表示1000+100x−300x=1000−200x,故②正确;令1000=300x+100x,得x=2.5,即两人在相距a米处同时相向而行,2.5分钟后相遇,故④错误.故选A.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】A.小强在体育馆花了60−30=30分钟锻炼,错误;=10km/h,正确;B.小强从家跑步去体育场的速度是50.5C.体育馆与文具店的距离是5−3=2km,错误;D.小强从文具店散步回家用了200−130=70分钟,错误.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32=4米/秒,故B正确;米/秒,则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,所以可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D正确;由于该题选择错误的,故选:C.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】(4,160)【知识点】用函数图象表示实际问题中的函数关系12. 【答案】①②【解析】由图象可得,轿车在途中停留了2.5−2=0.5(小时),故①正确;货车从甲地到乙地的平均速度是:300÷5=60(km/h),故②正确;轿车从甲地到乙地用的时间是4.5−1=3.5小时,故③错误;在DE段,轿车的速度为(300−80)÷(4.5−2.5)=110(km/h),令60t=80+110(t−2.5),解得,t=3.9,即轿车出发后3.9−1=2.9小时追上货车,故④错误.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】390【知识点】用函数图象表示实际问题中的函数关系14. 【答案】40【解析】将图中各段标上字母a,b,c,d,e,f,如图所示:根据题意:t=0时S=120,则A,B两地相距120千米,t=127时,S=0,则甲、乙两相遇,故甲乙两车的速度和为120127=70千米/小时,bc段S均匀增大,则该段只有乙车在运动向A地,cd段S增大比bc段大,则乙车向A地运动,甲车向B地运动,d点时乙车到达A地,并开始折回向B地,de段S增大速度放缓,则甲车向B地运动,乙车向B地运动,且甲车速度大于乙车,ef段S减小,则甲向A地运动,乙车向B地运动,则e点时即t=5时,甲到达B地,∵甲在t=127时,停下来休息2小时,∴甲由A地到B地需用5−2=3小时,∴甲的速度为1203=40千米/小时,∴乙的速度为70−40=30千米/小时,∴乙从两车第一次相遇到达A地所用的时间为12030−127=167小时,∴甲车此时共走了40×127+40×(167−2)=80千米,此时甲车与B地相距120−80=40千米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】60【解析】根据题意,前10秒李雷没跑,韩梅梅跑了40米,∴韩梅梅的速度为40÷10=4米/秒.10秒至30秒,20秒中,李雷在追韩梅梅,设李雷的速度为x米/秒,则(x−4)⋅20=40,解得x=6.李雷和韩梅梅相遇后,距离越来越远,当距离为80米时,需要时间为80÷(6−4)=40秒.此时韩梅梅跑步的时间为40+30=70秒.李雷在韩梅梅出发后110秒到达目的地之后李雷到达,韩梅梅继续前进,当她距目的地80米时,就是距离李雷80米,此时距离她出发(600−80)÷4=120秒.∴李雷和韩梅梅第一次相距80米后,再过120−70=60秒钟两人再次相距80米.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】1380【解析】乙的速度18001200=1.5m/s,甲的速度1.5+300300=2.5m/s,甲、乙相遇时甲跑2.5×300=750m,离终点1050=1800−750,=420s,甲到终点还需10502.5乙跑420s跑了420×1.5=630m,∴甲到终点,乙一共跑了750+630=1380m.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】(1) ∵直线y=x+3经过点A(1,m),∴m=4.的图象经过点A(1,4),又∵函数y=kx∴k=4.(2) ①当n=2时,点P的坐标为(0,2),∴点C的坐标为(2,2),点D的坐标为(−1,2).∴CD=3.② 0<n≤2或n≥3+√13.【知识点】反比例函数与方程、不等式、反比例函数的解析式19. 【答案】;(1) 当n=2时,S=3=2×32当n=3时,S=6=3×4;2当n=4时,S=10=4×5;⋯.2所以S=n(n+1)(n≥2,n为整数).2S可以看成n的函数.=120.(2) 当n=15时,S=15×(15+1)2【知识点】解析式法20. 【答案】78元;112元;138元.【解析】20h时:38+2×20=78元;40h时:38+2×30+(40−30)×(1−30%)×2=112元;60h时:38+2×30+20×(1−30%)×2+10×(1−40%)×2=138元.【知识点】列表法21. 【答案】(1) 75;3.6;4.5(2) 如图,根据(1)可得 A (2,0),B (3.6,216),C (4.5,270).设当 2<x ≤3.6 时,线段 AB 的解析式为 y =k 1x +b 1(k 1≠0),将 A (2,0),B (3.6,216) 分别代入 y =k 1x +b 1,得{2k 1+b 1=0,3.6k 1+b 1=216, 解得 {k 1=135,b 1=−270, ∴ 当 2<x ≤3.6 时,y =135x −270.设当 3.6<x ≤4.5 时,线段 BC 的解析式为 y =k 2x +b 2,将 B (3.6,216),C (4.5,270) 分别代入 y =k 2x +b 2,得{3.6k 2+b 2=216,4.5k 2+b 2=270, 解得 {k 2=60,b 2=0, ∴ 当 2<x ≤3.6 时,y =60x . ∴y ={135x −270,2<x ≤3.660x, 3.6<x ≤4.5.(3) ∵ 甲车的速度为 60 千米/时,∴ 当甲车到达距 B 地 70 千米时行驶的时间为 270−7060=103时,由(2)知当 2<x ≤3.6 时,y =135x −270, ∴ 将 x =103代入 y =135x −270,得 y =135×103−270,∴y =180.答:当甲车到达距 B 地 70 千米处时,甲、乙两车之间的路程为 180 千米. 【解析】(1) 设乙车的速度为 v 千米/时,根据题图中的图象可知甲、乙两车在行驶 2 小时后相遇,可得 2×60+2v =270,解得 v =75, ∴ 乙车的速度为 75 千米/时, ∴a =27075=3.6,b =27060=4.5.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 1;−10 (2) 如图. −2;−1≤x ≤3 【解析】(2) 解方程组 {y 1=12x −12,y =−x −2, 得 {x =−1,y =−1.解方程组 {y 1=12x −12,y =x −2,得 {x =3,y =1,所以 C (−1,−1),D (3,1). 【知识点】图像法、解析式法23. 【答案】(1) AC;CD;FD(2) 如图所示.(3) 3.5cm<x<5cm【知识点】列表法、图像法24. 【答案】(1) PM;AN;MN(2) 如图所示:(3) 1.23或4.06【知识点】常量、变量、图像法25. 【答案】(1) 由函数图象,得l2表示乙车离出发地的距离y与追赶时间x之间的关系.(2) 甲车的速度为180−602=60km/h,乙车的速度为901=90km/h.(3) 甲车的函数的关系式为:y1=60x+60.乙车的函数关系式为:y2=90x.(4) 设乙车行驶a小时可以追上甲车,由题意,得90a=60+60a,解得:a=2.∵1.5<2,∴乙车不能在1.5小时内追上甲车.乙车追上甲车时,乙车行驶了2小时.【知识点】用函数图象表示实际问题中的函数关系。
北师大版七年级下册知识点梳理及典型例题
第一章整式考点分析:本章的内容以计算为主,故大部分的分值落在计算题,属于基础题,同学们要必拿哦!占15—20分左右一、整式的有关概念1、单项式:数与字母乘积,这样的代数式叫单项式。
单独一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式: 几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数 叫多项式的次数。
6、整式:单项式与多项式统称整式。
(分母含有字母的代数式不是整式) 练习一:(1)指出下列单项式的系数与指数各是多少。
a )1( (2)指出下列多项式的次数及项。
二、整式的运算(一)整式的加减法:基本步骤:去括号,合并同类项。
(二)整式的乘法 1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
数学符号表示:练习三:判断下列各式是否正确。
432)2(y x mn32)3(rπ32)4(-252)1(523-+n m y x 4232372)2(ab z y x +-()()(),________________________________)()()())(4________________________________,,2)3________________________________,,)2________________________________,,2)16623222844333改正:改正:改正:改正:x x x x x m m m b b b a a a =-=-∙-∙-=+=+=∙()()()()________________________________)()())(4________________________________,))(3________________________________]))[(2________________________________,,))(12244241222443243284444改正:改正:改正:改正:m m m n n a a a x x b bb a a a ===-====--⨯⨯+3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (30)
一、选择题(共10题)1.甲、乙两人以相同路线前往距离单位10千米的培训中心参加学习.图中l甲,l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了6千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.1个B.2个C.3个D.4个2.如图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是80千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个3.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度ℎ(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的( )A.B.C.D.4.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是( )A.B.C.D.5.甲、乙两车在某时间段内速度随时间变化的图象如图所示,下列结论:①乙车前4秒行驶的总路程为48米;②第3秒时,两车行驶的速度相同;③甲在8秒内行驶了256米;④乙车第8秒时的速度为2米/秒.其中正确的是( )A.①②③B.①②C.①③④D.①②③④6.小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家,如图,反映了小明离家的距离y(单位:km)与时间t(单位:h)之间的对应关系,下列描述错误的是( )A.小明家距图书馆3kmB.小明在图书馆阅读时间为2hC.小明在图书馆阅读书报和往返总时间不足4hD.小明去图书馆的速度比回家时的速度快7.三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A.①②B.①③C.②D.②③8.速度分别为100km/h和a km/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:① a=60;② b=2;③ c=b+52;④若s=60,则b=32.其中说法正确的是( )A.①②③B.②③④C.①②④D.①③④9.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩排名情况如图所示.甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是( )A.①B.②C.①②D.①③10.如图①,某矩形游泳池ABCD,BC长为25m,小林和小明分别在游泳池的AB,CD两边,同时沿各自的泳道朝另一边游泳,设他们游泳的时间为t(s),离AB边的距离为y(m),图②中的实线和虚线分别是小明和小林在游泳过程中y与t的函数图象(0≤t≤180).下面的四个结论:①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的路程大于小林游泳的路程;③小明游75m时,小林游了90m;④小明与小林共相遇5次.其中所有正确结论的序号是( )A.①②B.①③C.②④D.③④二、填空题(共7题)11.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是.(把你认为正确结论的序号都填上)12.如图是一辆慢车与一辆快车沿相同路线从A地到B地所行的路程与时间之间的函数图象,已知慢车比快车早出发2小时,则A,B两地的距离为km.13.为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如下:根据图中提供的信息,下列关于成人患者使用该药物的说法中,①首次服用该药物1单位约10分钟后,药物发挥疗效作用;②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用;③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒.所有正确的说法是.14.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的函数关系如图所示.根据图象回答下列问题:(1)干旱持续10天时,蓄水量为万立方米.(2)如果蓄水量小于400万立方米时,将发出严重干旱警报,那么干旱天后将发出严重干旱警报.15.如图,是用图象反映储油罐内的油量V与输油管开启时间t的函数关系.观察这个图象,以下结论正确的有.①随着输油管开启时间的增加,储油罐内的油量在减少;②输油管开启10分钟时,储油罐内的油量是80立方米;③如果储油罐内至少存油40立方米,那么输油管最多可以开启36分钟;④输油管开启30分钟后,储油罐内的油量只有原油量的一半.16.周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步.祖孙俩在长度为600米的AB路段上往返行走.他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步.如图反映了他们分别与A地的距离S(米)与小赵跑步的时间t(分钟)的关系图(他们各自到达A地或B地后立即调头,调头转身时间忽略不计).下列说法:①爷爷的速度为30米每分钟;②小赵跑步过程中在第8分钟第一次与爷爷相遇;③小赵跑步的速度为100米每分钟;④小赵跑步过程中,在第20分钟第三次与爷爷相遇;⑤小赵跑步过程中祖孙俩第四次与第五次相遇地点间距为75米.其中说法正确的是.(只填序号)17.如图1,四边形ABCD中,AB∥CD,∠B=90∘,AC=AD.动点P从点B出发沿折线B−A−D−C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出① AB=.② CD=(提示:过A作CD的垂线).③ BC=.三、解答题(共8题)18.科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(∘C)之间有关,它们之间的关系如表所示:气温/∘C⋯05101520⋯速度/(米/秒)⋯331334337340343⋯(1) 上表中,自变量是,因变量是;(2) 气温每上升5∘C,声音在空气中的速度就增加米/秒;(3) 直接写出y与x的关系式:;(4) 当声音在空气中传播的速度为403米秒/时,气温x=∘C.19.为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程s(km)与行驶时间t(h)的函数图象如图示.(1) 两地相距千米,当货车司机拿到清单时,距出发地千米.(2) 试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?20.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm.E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP=x cm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1) 画函数y1的图象.①按照如表自变量的值进行取点、画图、测量、得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象:(2) 画函数y2的图象.在同一坐标系中,画出函数y2的图象.(3) 根据画出的函数y1的图象、函数y2的图象,解决问题.①函数y1的最小值是.②函数y1的图象与函数y2的图象的交点表示的含义是.③若PE=PC,AP的长约为cm.21.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1) 当轿车刚到乙地时,此时货车距离乙地千米;(2) 当轿车与货车相遇时,求此时x的值;(3) 在两车行驶过程中,当轿车与货车相距20千米时,求x的值.22.已知动点P以每秒2cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:(1) 图甲中的BC长是多少?(2) 图乙中的a是多少?(3) 图甲中的图形面积的多少?(4) 图乙中的b是多少?23.如图,P是线段AB上的一点,AB=6cm,O是AB外一定点.连接OP,将OP绕点O顺时针旋转120∘得OQ,连接PQ,AQ.小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整.(1) 对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7 AP0.00 1.00 2.00 3.00 4.00 5.00 6.00 PQ 4.00 2.310.84 1.43 3.07 4.77 6.49 AQ 4.00 3.08 2.23 1.57 1.40 1.85 2.63在AP,PQ,AQ的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2) 在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3) 结合函数图象,解决问题:当AQ=PQ时,线段AP的长度约为cm.24.“龟兔赛跑”的故事同学们非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题.(1) 折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是米.(2) 兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3) 乌龟用了多少分钟追上了正在睡觉的兔子?(4) 兔子醒来,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?.点P 25.如图①,在平面直角坐标系中,点A,C分别在y轴和x轴上,AB∥x轴,cosB=45从点B出发,以1cm/s的速度沿BA边匀速运动,点Q从点A出发,沿线段AO→OC→CB匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△BPQ的面积为S(cm2),已知S与t之间的函数关系如图②中的曲线段OE、线段EF与曲线段FG.(1) 点Q的运动速度为cm/s,点B的坐标为;(2) 求曲线段FG的函数解析式;(3) 当t为何值时,△BPQ的面积是四边形OABC的面积的1.9答案一、选择题(共10题)1. 【答案】D【解析】①乙在28分时到达,甲在40分时到达,∴乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15(千米/时);故②正确;④设乙出发x分钟后追上甲,则有:1028−18×x=104×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×1028−18=6(km),故③正确;∴正确的结论有4个:①②③④.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】D【解析】读图可得,在时间为40分时,速度为0千米/时,故(1)(4)正确;AB段,速度的值相等,故速度不变,故(2)正确;时间为30分时,速度为80千米/时,即在第30分钟时,汽车的速度是80千米/时,故(3)正确;综上可得(1)(2)(3)(4)正确,共4个.【知识点】用函数图象表示实际问题中的函数关系3. 【答案】B【解析】由题意,得y=30−5t,∵y≥0,t≥0,∴30−5t≥0,∴t≤6,∴0≤t≤6,∴y=30−5t是降函数且图象是一条线段.故选:B.【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【解析】由题可知:10=12xy,所以y=20x(x>0).故选D.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】由图象知:A.小明家距图书馆3km,正确;B.小明在图书馆阅读时间为3−1=2小时,正确;C.小明在图书馆阅读书报和往返总时间不足4h,正确;D.因为小明去图书馆需要1小时,回来不足1小时,所以小明去图书馆的速度比回家时的速度快,错误,符合题意.故选:D.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】B【解析】横坐标表示的是时间,通过观察点A1,A2,A3的横坐标可知上午派送快递所用时间最短的是甲,①正确;纵坐标表示的是派送件数,通过观察点B1,B2,B3的纵坐标可知下午派送件数最多的是乙,②错误;每个人的派送总件数是上、下午派送件数之和,甲约为65件,乙约为75件,丙约为50件,乙最多,③正确,故选B.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】①两车的速度之差为80÷(b+2−b)=40(km/h),∴a=100−40=60,结论①正确;②两车第一次相遇所需时间s100−60=s40(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+80100+60=b+52(h),∴c=b+52,结论③正确;④ ∵b=s40,s=60,∴b=32,结论④正确.故选:D.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】D【解析】由折线统计图可知:①甲的一百米跑成绩排名比10项总成绩排名靠前,结论正确;②乙的一百米跑成绩排名比10项总成绩排名靠前,故原说法错误;③由图2中10项总成绩的位置可知丙的一百米跑成绩排名比跳远成绩排名靠前,结论正确.所以合理的是①③.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】C【解析】①错误.小明游泳的平均速度大于小林游泳的平均速度;②正确.小明游泳的距离大于小林游泳的距离;③错误,小明游75米时小林游了50米;④正确.小明与小林共相遇5次.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】②③【解析】火车的长度是150米,故①错误;如图,在BC段,所用的时间是5秒,路程是150米,则速度是150÷5=30米/秒,故②正确;火车整体都在隧道内的时间是35−5−5=25秒,故③正确;隧道长是35×30−150=900米,故④错误.故正确的是②③.【知识点】用函数图象表示实际问题中的函数关系12. 【答案】828【解析】根据函数图象可知:s=(14−2)v快=18v慢,∴v快=32v慢,设两车相遇的时间为t,根据函数图象可知:t⋅v慢=(t−2)⋅v快=276,解得t=6,v慢=46,∴s=18v慢=18×46=828.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】①②【知识点】用函数图象表示实际问题中的函数关系14. 【答案】1000;40【知识点】用函数图象表示实际问题中的函数关系15. 【答案】①③④【解析】由函数图象知,随着输油管开启时间的增加,储油罐内的油量减少,故①说法正确;由函数图象知,输油管开启10分钟时,储油罐内的油量大于80立方米,故②说法错误;由函数图象知,如果储油罐内至少存油40m3,那么输油管最多可以开启36分钟,故③说法正确;由函数图象知,输油管开启30分钟后,储油罐内的油量只有原油量的一半,故④说法正确.∴结论正确的有①③④.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】①②【知识点】用函数图象表示实际问题中的函数关系17. 【答案】3;6;5【解析】当t=3时,点P到达A处,即AB=3,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12CD,∴CD=2AB=6,当S=15时,点P到达点D处,则S=12CD⋅BC=12⋅(2AB)⋅BC=3⋅BC =15,则 BC =5.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题) 18. 【答案】(1) x ;y (2) 3(3) y =331+35x (4) 120 【解析】(3) ∵ 气温每上升 1 ∘C ,声音在空气中的速度就增加 35 米/秒,∴y 与 x 的关系式:y =331+35x .(4) 当声音在空气中传播的速度为 403 米/秒时, 403=331+35x ,解得 x =120.【知识点】解析式法、常量、变量、列表法19. 【答案】(1) 172;40(2) 设直线 BC 的解析式为 y =kx +b , ∵ B (2.8,40),C (5,172), ∴ {2.8k +b =40,5k +b =172,解得{k=60,b=−128.∴直线BC的解析式为y=60x−128.(172−40)÷(5−2.8)=60千米/小时.【解析】(1) 当t=5时,y=172km所以两地相距172km.80−50×(2.8−2)=80−40=40km,所以货车司机拿到清单时,距出发地40千米.故答案为:172;40.【知识点】用函数图象表示实际问题中的函数关系、行程问题20. 【答案】(1) ① 0.69②如图所示.(2) 由y1,y2关系可知,y1,y2的图象关于x=2对称,故在同一坐标系内,y2的图象如图所示.(3) ① 0.5②代入x=2时,PE与PF的长相等③ 2.49【解析】(1) ①画出1:1等大的图形,令x=0.5,通过测量得出PE=y1=0.69.(3) ①由图象可知,时,y1图象的最低点为0.5;也可理解为当PE⊥AC时,PE最小,最小值为0.5.②代入x=2时,PE与PF的长相等.③根据题意,PC长的函数解析式为y3=4−x,在图中的坐标系内当PE=PC时,即y1=y3时,根据图象可知,AP的长约为2.49.【知识点】图像法21. 【答案】(1) 30(2) 设 CD 段函数解析式为 y =kx +b (k ≠0)(2.5≤x ≤4.5). ∵C (2.5,80),D (4.5,300) 在其图象上, {2.5k +b =80,4.5k +b =300, 解得 {k =110,b =−195,∴CD 段函数解析式:y =110x −195(2.5≤x ≤4.5); 易得 OA:y =60x ,{y =110x −195,y =60x,解得 {x =3.9,y =234,∴ 当 x =3.9 时,轿车与货车相遇;(3) 当 x =2.5 时,y 货=150,两车相距 =150−80=70>20, 由题意 60x −(110x −195)=20 或 110x −195−60x =20,解得 x =3.5或4.3 小时.答:在两车行驶过程中,当轿车与货车相距 20 千米时,x 的值为 3.5 或 4.3 小时. 【解析】(1) 根据图象信息:货车的速度 v 货=3005=60,∵ 轿车到达乙地的时间为货车出发后 4.5 小时,∴ 轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米), 此时,货车距乙地的路程为:300−270=30(千米). ∴ 轿车到达乙地后,货车距乙地 30 千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8cm;故图甲中的BC长是8cm.(2) 由(1)可得,BC=8cm,则:a=12×BC×AB=24cm2;图乙中的a是24cm2(3) 由图可得:CD=2×2=4cm,DE=2×3=6cm,则AF=BC+DE=14cm,又由AB=6cm,则甲图的面积为AB×AF−CD×DE=60cm2,图甲中的图形面积的60cm2.(4) 根据题意,动点P共运动了BC+CD+DE+EF+FA=8+4+6+2+14=34cm,其速度是2cm/秒,则b=34÷2=17秒,图乙中的b是17秒.【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) AP;PQ;AQ(2) 如图所示.(3) 3.07【知识点】图像法、函数的概念、列表法24. 【答案】(1) 兔子;1500(2) 结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米)兔子在起初每分钟跑700米,乌龟每分钟爬50米.(3) 700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4) 30+0.5−1−(1500−700)÷400=27.5(分钟),所以兔子中间停下睡觉用了27.5分钟.【知识点】用函数图象表示实际问题中的函数关系25. 【答案】(1) 3;(18,9)(2) 如图:PB=t,BQ=30−3t,过点Q作QM⊥AB于点M,则QM=35(30−3t)=18−95t,所以S△PBQ=12t(18−95t)=−910t2+9t(5≤t≤10),即曲线FG段的函数解析式为:S=−910t2+9t.(3) 因为S梯形OABC =12(6+18)×9=108,所以S=19×108=12,当0<t<3时,S=32t2,S=12时,t=2√2或−2√2(舍弃),当5<t<10时,12=−910t2+9t;解得t=15+√1053或15−√1053(舍弃),综上所述:t=2√2或t=15+√1053,△BPQ的面积是四边形OABC的面积的19.【解析】(1) 由题意可得出:当3秒时,△BPQ的面积的函数关系式改变,则Q在AO上运动3秒,当3秒时,BP=3,此时△BPQ的面积为13.5cm2,所以AO为9cm,所以点Q的运动速度为:9÷3=3(cm/s),当运动到5秒时,函数关系式改变,则CO=6cm,因为cosB=45,所以可求出AB=6+12=18(cm),所以B(18,9).【知识点】图像法、余弦、其他实际问题、解析式法。
北师大七年级下册第三章《三角形》知识要点分梳理及单元测试题
- 1 -“三角形”知识要点梳理三角形 三角形内角和定理角平分线 中线高线全等图形的概念全等三角形的性质 三角形 全等三角形 SSSSAS全等三角形的判定 ASA AASHL (适用于RtΔ)全等三角形的应用 利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
2、顶点是A 、B 、C 的三角形,记作“ΔABC ”,读作“三角形ABC ”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a +b >c ,a +c >b ,b +c >a ;a -b <c ,a -c <b ,b -c <a 。
2、判断三条线段a ,b ,c 能否组成三角形:(1)当a +b >c ,a +c >b ,b +c >a 同时成立时,能组成三角形; (2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b -<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (33)
一、选择题(共10题)1.已知y是x的函数,且当自变量的值为2时函数值为1,则该函数的解析式可以是( )A.y=x2B.y=x−1C.y=2x D.y=−2x2.若一辆在高速公路上以150km/h的速度匀速行驶的汽车,则下列图象能大致刻画汽车的速度与时间的关系的是( )A.B.C.D.3.在全民健身环城越野赛中,甲、乙两名选手各自的行程y(km)随时间t(h)变化的图象(全程)如图所示.有下列说法:①起跑后1h内,甲在乙的前面;②第1h时两人都跑了10km;③甲比乙先到达终点;④两人都跑了20km.其中正确的说法有( )A.1个B.2个C.3个D.4个4.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(h)后,与乙港的距离为y(km),y与x的函数关系如图所示,则下列说法正确的是( )A.甲港与丙港的距离是90km B.船在中途休息了0.5小时C.船的行驶速度是45km/h D.从乙港到达丙港共花了1.5小时5.如图1,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ 的长度y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动 2.5秒时,PQ的长是( )A.2√2cm B.3√2cm C.4√2cm D.5√2cm6.下列各曲线中,不表示y是x的函数的是( )A.B.C.D.7.健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是( )A.B.C.D.8.已知三角形的面积一定,则它底边a上的高ℎ与底边a之间的函数关系的图象大致是( )A.B.C.D.9.今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.便利店离小丽家的距离为1000米10.如图是一辆汽车行驶的速度(千米/时)与时间(分)之间变化图,下列说法正确的是( )A.时间是因变量,速度是自变量B.从3分到8分,汽车行驶的路程是150千米C.时间每增加1分钟,汽车的速度增加10千米/时D.第3分钟时汽车的速度是30千米/时二、填空题(共7题)11.下列各式中,y是x的函数的有.① y=4x;② 2x−3y=5;③ ∣y∣=∣3x+2∣;④ y=√3x;⑤ y=x+z;⑥ y=x2+3;⑦ y2=x;⑧ y=12−x.12.甲、乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇.若两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示乙车从A地出发到返回A地需小时.13.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.14.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是折.15.在地球某地,地表以下岩层的温度y(∘C)与所处深度x(km)之间的关系可以近似地用关系式y=35x+20来表示,当此地所处深度为km时,地表以下岩层的温度达到335∘C.16.如图为某油箱中存油Q(升)与放油时间t(分)的函数图象,试根据图象回答下列问题:(1)放油前,油箱中存油升;(2)放油20分钟后,油箱中剩油升;(3)当油箱中剩油10升时,已放油分钟;(4)写出Q与t的函数关系式为.17.常用的函数表示法有、、.三、解答题(共8题)18.已知动点P以每秒2cm的速度沿如图甲所示的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,其中∠A=∠B=∠C=∠E=∠F=90∘,相应的△ABP的面积S关于时间t的函数图象如图乙所示,若AB=6cm,试回答下列问题:(1) 如图甲,BC=cm,EF=cm.(2) 如图乙,图中的a=,与b=.(3) 在上述运动过程中,△ABP面积的最大值是cm2.19.如图所示,某花园护栏是用直径为80cm的半圆形条钢组制而成,且毎增加一个半圆形条钢,护栏长度增加a cm(a>0),设半圆形条钢的个数为x(x为正整数),护栏总长度为y cm.(1) 若a=60cm,①当x=3时,y=cm.②写出y与x之间的函数关系式为.(2) 若护栏总长度为3380cm,则当a=50时,所用半圆形条钢个数为.(3) 若护栏总长度不变,则当a=60时,用了n个半圆形条钢;当a=50时,用了(n+k)个半圆形条钢.请求出n与k之间的关系式.20.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1) 小亮行走的总路程是米,他途中休息了分.(2) 分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3) 当小颖到达缆车终点时,小亮离缆车终点的路程是多少?21.某乡镇从1960∼2010年的水稻平均产量统计数据如下:时间/年196019701980199020002010平均产量/kg450550650750850950(1) 上表反映哪两个变量之间的关系,哪个是自变量?哪个是因变量?(2) 从表中可知,随着时间的变化,平均产量的变化趋势是什么?22.如图,在梯形ABCD中,AD∥BC,BD⊥CD,CD=5,AD=6.5,BC=13,BD=12,S=45,P是一动点,沿AD,DC由A经D点向C点移动,设P点移动的路程为x.梯形ABCD(1) 当P点在AD上运动时,求△PAB的面积y与x的函数解析式及定义域;(2) 当P点继续沿DC向C点运动时,求四边形ADPB的面积y与x的函数解析式及定义域.23.下面是某港口在某天从0时到12时的水位情况变化曲线.(1) 在这一问题中,自变量是什么?(2) 大约在什么时间水位最深,最深是多少?(3) 大约在什么时间段水位是随着时间推移不断上涨的?24.“龟兔赛跑”的故事同学们都非常热悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1) 填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2) 兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3) 乌龟用了多少分钟追上了正在睡觉的兔子?(4) 兔子醒来假,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.函数是两个变量x和y之间的一种对应关系,数学家欧拉提出一种简便的记法,使用“y=f(x)”来表示y和x的某种对应关系.如函数y=4−2x,可用f(x)=4−2x来表示,当x=3时,y=4−2×3=−2,可表示成f(3)=−2.若f(x)=2x+4,你能求出f(−1)和f[f(−1)]的值吗?答案一、选择题(共10题)1. 【答案】B【解析】A.当x=2时,y=22=4,故本选项不符合题意;B.当x=2时,y=2−1=1,故本选项符合题意;C.当x=2时,y=2×2=1,故本选项不符合题意;=−1,故本选项不符合题意.D.当x=2时,y=−22【知识点】解析式法2. 【答案】C【知识点】图像法3. 【答案】C【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【解析】A、甲港与丙港的距离是30+90=120km;B、船在中途没有休息;=60km/h,错误;C、船的行驶速度是300.5=1.5小时,正确.D、从乙港到达丙港共花了9060【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【解析】点P运动2.5秒时P点运动了5cm,CP=8−5=3cm,由勾股定理,得PQ=√32+32=3√2cm,【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【解析】由图象可知,C选项在−1<x<1的图象,一个x对应两个y,不满足函数定义.【知识点】函数的概念7. 【答案】B【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【知识点】图像法9. 【答案】A【解析】A .小丽在便利店时间为 15−10=5(分钟),错误;B .公园离小丽家的距离为 2000 米,正确;C .小丽从家到达公园共用时间 20 分钟,正确;D .便利店离小丽家的距离为 1000 米,正确.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【解析】速度是因变量,时间是自变量,故选项A 不合题意;从 3 分到 8 分,汽车行驶的路程是 30×560=2.5 千米,故选项B 不合题意;从汽车出发到第 3 分钟,时间每增加 1 分钟,汽车的速度增加 10 千米/时,第 3 分钟到第 8 分钟,汽车匀速行驶,故选项C 不合题意;第 3 分钟时汽车的速度是 30 千米/时,正确,故选项D 符合题意.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】①②④⑥⑧【知识点】函数的概念12. 【答案】 897【解析】设甲车的速度为 a 千米/小时,乙的速度为 b 千米/小时,甲乙第一相遇之后再 c 小时,相距 200 千米,{3.5a =(3.5−1)b,a (c −3.5)+200=b (c −3.5),a (8−c )+b (8−c )=200,解得 { a =50027,b =70027,c =10314. ∴ 乙车从A 地出发返回A 地需要:(10314−1)×2=897(小时).【知识点】用函数图象表示实际问题中的函数关系13. 【答案】温度;时间;时间;温度【知识点】函数的概念14. 【答案】七【解析】打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27−20)÷(15−10)=1.4元,1.4=0.7,2所以,在这个超市买10本以上的练习本优惠折扣是七折.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】9【解析】当y=335时,y=35+20,335=35x+20,∴x=9.【知识点】解析式法16. 【答案】40;30;60;Q=40−t2【知识点】用函数图象表示实际问题中的函数关系17. 【答案】解析法;列表法;图象法【知识点】列表法、图像法、解析式法三、解答题(共8题)18. 【答案】(1) 8;2(2) 24;17(3) 42【解析】(1) 已知当P在BC上时,以AB为底的三角形的高在不断增大,到达点C时,开始不变,由第二个图得,P在BC上移动了4秒,∴BC=4×2=8cm.在CD上移动了2秒,∴CD=2×2=4cm.在DE上移动了3秒,∴DE=3×2=6cm,∵AB=6cm,∴EF=AB−CD=2cm.(2) 由图得,a是点P运行4秒时△ABP的面积,×6×8=24,∴S△ABP=12b为点P走完全程的时间:t=9+1+7=17s,∴a=24,b=17.(3) ∵点P移动到点E时面积达到最大值a,AB⋅(BC+DE),∴S=12∵AB=6cm,BC=8cm,×6×(8+6)=42(cm2).∴S=12【知识点】图像法19. 【答案】(1) ① 200;② y=60x+20(2) 67(3) 当a=60时,n个条钢做成护栏长度为60n+20,当a=50时,(n+k)个条钢做成护栏长度为50(n+k)+30,根据题意,得60n+20=50(n+k)+30,∴n=5k+1.【解析】(1) ① a=60cm,x=3时,y=80+60×2=200cm.②由题意得y=80+60(x−1)=60x+20.(2) 当a=50,y=3380时,80+50(x−1)=3380,解得x=67.【知识点】自变量与函数值、解析式法20. 【答案】(1) 3600;20(2) 小亮休息前的速度为:195030=65(米/分).小亮休息后的速度为:3600−195080−50=55(米/分).(3) 小颖所用时间:36002180=10(分).小亮比小颖迟到80−50−10=20(分).∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米).【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 反映了平均产量(kg)与时间(年)之间的关系,时间是自变量,平均产量是因变量.(2) 随时间的推移,平均产量越来越大.【知识点】列表法、自变量与函数值22. 【答案】(1) y=3013x,定义域是0<x≤6.5(2) y=6x−24,定义域是6.5<x≤11.5【知识点】梯形的面积、解析式法23. 【答案】(1) 因为该问题描述的是水深随时间的变化情况,图中横坐标表示时间,故该问题中,自变量是时间.(2) 由图可知,当t=3时,水深达到最大值,故在3时时水位最深,最深是8米.(3) 由图可知,水深随时间单调增加的时间段是0∼3时和9∼12时,故大约在0∼3时和9∼12时的时间段,水位是随着时间推移不断上涨的.【知识点】用函数图象表示实际问题中的函数关系24. 【答案】(1) 兔子;1500(2) 结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3) 700÷30=703(分钟),所以乌龟用了703分钟追上了正在睡觉的兔子.(4) (1500−700)÷400=2(分钟),50+0.5−2−2=46.5(分钟),所以兔子中间停下睡觉用了46.5分钟.【解析】(1) 由图可知,折线OABC表示赛跑过程中兔子的路程与时间的关系,赛跑的全程是1500米.【知识点】用函数图象表示实际问题中的函数关系25. 【答案】能.当x=−1时,f(x)=2×(−1)+4=2,∴f(−1)=2.∴f[f(−1)]=f(2)=2×2+4=8.∴f(−1)=2,f[f(−1)]=8.【知识点】解析式法。
新北师大版七年级数学下册知识点总结
第一章 整式运算知识点(一)公式应用1 、n m n m a a a +=⋅ (m,n 都是正整数)如=⋅-23b b ________。
拓展运用 如已知 =2, =8,求 。
解: ___________________.已知 =2, =8,求 .解: _____________________.2 、mn n m a a =)( (m,n 都是正整数) 如=-4362)()(2a a _________________。
拓展应用 。
若 , 则 __________。
3. (n 是正整数) 拓展运用 。
4. (a 不为0, m,n 都为正整数, 且m 大于n)。
拓展应用 如若 , , 则 _____________。
5. ; , 是正整数)。
如6、平方差公式 a 为相同项, b 为相反项。
如22224)2()2)(2(n m n m n m n m -=--=--+-7、完全平方公式2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-逆用:如22244)2(y xy x y x +-=-8、应用式:ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-两位数 10a +b 三位数 100a +10b +c 。
9、单项式与多项式相乘: m(a+b+c)=ma+mb+mc 。
10、、多项式与多项式相乘: (m+n)(a+b)=ma+mb+na+nb 。
11.多项式除以单项式的法则:12.常用变形:知识点(三)运算:1、常见误区:1. ( );2. ( ); 3、 ( );4. ( ); 5、 ( );6. ( ); 7、 ( );8、 ( ); 9、 (1), (1);10、222)2)(2(b a b a b a -=-+ (224(b a -);11. ( );12. ( )。
2 、简便运算:①公式类2525125)2504.0(252504.02504.0200520052005200520062005=⨯=⨯⨯=⨯⨯=⨯11)8125.0(8125.0)2(125.02125.01001001001001003100300100==⨯=⨯=⨯=⨯②平方差公式11123123)1123)(1123(1231221241232222=+-=-+-=⨯-③完全平方公式998001120001000000)11000(99922=+-=-=第二章 平行线与相交线知识点(一)理论1. 若∠1+∠2=90, 则∠1与∠2互余。
2024年北师大版七年级数学下册知识点总结(二篇)
2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。
方程的解是使得方程成立的数。
2.解方程:通过变量的运算和移项,求出方程的解。
3.解一元一次方程:如ax+b=0,解得x=-b/a。
4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。
5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。
6.解不等式:通过移项,求出不等式的解的范围。
7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。
第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。
2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。
3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。
第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。
2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。
3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。
4.正多边形:具有相等边长和相等内角的多边形。
5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。
6.图形的相似性:具有相等比例关系的图形称为相似图形。
7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。
第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。
2.梯形:有两个底边,两个腰。
3.平行四边形:具有相对边平行的四边形。
4.矩形:具有四个直角的四边形,对角线相等。
5.菱形:具有四个相等边的四边形,对角线互相垂直。
6.正方形:具有四个相等边且具有对称性的四边形。
第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。
比值相等时称为成比例。
2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。
北师大版七年级下册数学第三章《变量间的关系》知识点梳理及典型例题
第三章变量之间的关系知识点梳理及典型例题知识回顾——复习路程、速度、时间之间的关系:,,;知识点一常量与变量在一个变化过程中,我们称数值发生变化的量为.数值始终不变的量为;在某一变化过程中,如果有两个变量x和y,当其中一个变量x在一定范围内取一个数值时,另一个变量y也有唯一一个数值与其对应,那么,通常把前一个变量x叫做,后一个变量y叫做自变量的;注意:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如:s=60t,速度60千米/时是,时间t和里程s为变量.t 是,s是。
知识点二用表格表示变量之间的关系表示两个变量之间的关系的表格,一般第一行表示自变量,第二行表示因变量;借助表格,可以表示因变量随自变量的变化而变化的情况。
注意:用表格可以表示两个变量之间的关系时,能准确地指出几组自变量和因变量的值,但不能全面地反映两个变量之间的关系,只能反映其中的一部分,从数据中获取两个变量关系的信息,找出变化规律是解题的关键.知识点三用关系式表示两个变量之间的关系例如,正方形的边长为x,面积为y,则y=x2这个关系式就是表示两个变量之间的对应关系,其中x是,y是;一般地,含有两个未知数(变量)的等式就是表示这两个变量的关系式;【温馨提示】(1)写关系式的关键是写出一个含有自变量和因变量的等式,将表示因变量的字母单独写在等号的左边,右边是用自变量表示因变量的代数式.(2)自变量的取值必须使式子有意义,实际问题还要有实际意义.(3)实际问题中,有的变量关系不一定能用关系式表示出来.【方法技巧】列关系式的关键是记住一些常见图形的相关公式和弄清两个变量间的量的关系.根据关系式求值实质上是求代数式的值或解方程.知识点四用图象表示两个变量间的关系图象法就是用图象来表示两个变量之间的关系的方法;在用图象法表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示,用竖直方向的数轴(纵轴)上的点表示,用坐标来表示每对自变量和因变量的对应值所在位置;【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】(1)借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.(2)借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.知识点五变量之间的关系的表示方法比较表示变量之间的关系,可以用、和;其中表格法一目了然,使用方便,但列出的数值有限,不容易看出因变量与自变量的变化规律;关系式法简单明了,能准确反映出整个变化过程中因变量与自变量之间的相互关系,但是求对应值时,要经过比较复杂的计算,而且在实际问题中,有的变量之间的关系不一定能用关系式表示出来;图象法的特点是形象、直观,可以形象地反映出变量之间的变化趋势和某些性质,是研究变量性质的好工具,其不足是由图象法往往难以得到准确的对应值;专题一能从表格中获取两个变量之间关系的信息专题二根据表格确定自变量、因变量及变化规律4.一辆小汽车在高速公路上从静止到启动10秒之间的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个变量是自变量?哪个变量是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1 s时,v的变化情况相同吗?在哪一秒钟,v的增加量最大?(4)若在高速公路上小汽车行驶速度的上限为120 km/h,试估计还需几秒这辆小汽车的速度就达到这个上限?专题三用关系式表示两个变量之间的关系5.某水果批发市场香蕉的价格如下表:专题四用关系式求值7.一棵树苗,栽种时高度约为80厘米,为研究它的生长情况,测得数据如下表:(1)此变化过程中是自变量,是因变量;(2)树苗高度h与栽种的年数n之间的关系式为;(3)栽种后后,树苗能长到280厘米.8.某市为了鼓励市民节约用水,规定自来水的收费标准如下表:(1)现已知小伟家四月份用水18吨,则应缴纳水费多少元?(2)写出每月每户的水费y(元)与用水量x(吨)之间的函数关系式.(3)若已知小伟家五月份的水费为17元,则他家五月份用水多少吨?专题五曲线型图象9.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.10.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题六折线型图象11.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.栽种以后的年数n/年高度h/厘米1 1052 1303 1554 180……每月每户用水量每吨价(元)不超过10吨部分0.50超过10吨而不超过20吨部分0.75超过20吨部分 1.50第三章 变量之间的关系复习题1.一名同学在用弹簧做实验,在弹簧上挂不同质量的物体后,弹簧的长度就会发生变化,实验数据如下表:(2)弹簧不挂物体时的长度是多少?如果用x 表示弹性限度内物体的质量,用y 表示弹簧的长度,那么随着x 的变化,y 的变化趋势如何?(3)如果此时弹簧最大挂重量为15千克,你能预测当挂重为10千克时,弹簧的长度是多少?2.如图:将边长为20cm 的正方形纸片的四个角截去相同的小正方形,然后将截好的材料围成一个无盖的长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学周周清
一、课堂知识总结
1、三角形的三个内角之和是____________。
2、直角三角形的两个锐角_________。
3、三角形的分类:
按角进行分类:___________三角形;___________三角形;___________三角形。
4、在一个三角形中,任意两边之和_______第三边,任意两边之差_________第三边。
5、在三角形中,一个内角的 与它的对边 ,这个角的 与 之间的 叫做三角形的角平分线。
6、一个三角形有 条角平分线,它们都在三角形的 部,且相交于 点。
如图:∵AD 是三角形ABC 的角平分线。
∴∠1= ∠2= ∠BAC , 或:∠BAC = ∠1= ∠2
7、在三角形中,连接一个 与它对边 的线段,叫做这个三角形的中线。
如图:∵AD 是三角形ABC 的中线。
∴BD = = BC 或:BC = BD = DC 。
8、一个三角形有 条中线,它们都在三角形的 部,且相交于 点。
9、三角形的高:从三角形的 向它的对边所在直线作 ,顶点和 之间的 叫做三角形的高线,简称三角形的高。
如图,线段AM 是BC 边上的高。
∵ AM 是BC 边上的高 ∴AM BC 。
10、锐角三角形的三条高在三角形的_________,交于_____点。
直角三角形的三条高交于_________处。
钝角三角形的三条高所在直线交于______点,此点在三角形的_________ 。
11、能够________的两个三角形叫做全等三角形。
12、如图所示,三角形ABC 和三角形DEF 可以相互重合:
1 2
A
C
D B
D
C
B
A
三角形ABC 全等于三角形DEF,记作___________
点A 的对应顶点是_____ 点B 的对应顶点是_____ 点C 的对应顶点是_____
A ∠的对应角是_______;
B ∠的对应角是_______;
C ∠的对应角是_______ AB 的对应边是_________;AC 的对应边是_________;BC 的对应边是__________ 13、三边对应相等的两个三角形___________,简写为_________或“SSS ” 推理格式:在△ABC 和△DEF 中
AB=DE AC=DF BC=EF
∴△ABC ≌△DEF (SSS)
14、三角形的三边或三个顶点一旦确定,三角形的形状和大小就固定不变,这一性质叫三角形的_____________性。
15、_______________对应相等的两个三角形全等,简写成“______”或“AAS ”。
16、_______________对应相等的两个三角形全等,简写成“______”或“ASA ”。
17、如果两个三角形两边和它们的_______对应相等,那么这两个三角形________。
简记为“__________”或“SAS ”。
二、填空题
1 、一个等腰三角形的两边长分别是4 cm 和6 cm ,则它的周
长是_____cm.
2、已知AD 是△ABC 的角平分线,∠BAC=80°,则
∠BAD=__________. 3、已知AE 是△ABC 的中线,BE=5cm,则BC=____________.
4、 直角三角形两个锐角的平分线所构成的钝角等于_____ 度。
5、如图,△ABD ≌△ABC ,∠C =100°,∠ABD =30°, 那么 ∠DAB = °. 三、选择题
1、在下图中,正确画出AC 边上高的是( ).
E
B
A
C C A B
C
A B
C
A B
E E
E
(A ) (B ) (C ) (D ) 2、如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且PD =PE ,
则△APD 与△APE 全等的理由是( ). (A )SAS (B )AAS
(C )SSS (D )HL 四、解答题 1、已知:如图,AB =AC ,F 、E 分别是AB 、AC 的中点. 求证:△ABE ≌△ACF .
A
B
C
D
B
P
D
E
A B
C
D
2、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .
3、如图,点A 、D 、C 、F 在同一条直线上,AB=FE ,AC=FD ,∠A=∠F ,∠B 与∠E 相等吗?试说明理由。
4、已知如图,A B ∥DE ,AB =DE , BE =CF ,求证:AC =DF 。
5、下图中,若AE=BC 则这两个三角形全等吗?请说明理由.
6、如图,已知AD=BC ,AC=BD ,求证:∠D=∠C
7、已知,如图,C 为BE 上一点,∠B=∠E ,AB CE =,BC ED =.求证:AC CD =.
8、如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD
A C
E
D
B
A
E C F
D B A 29︒29︒D C
A B (2)E 2
1
D C
B
A
9、已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4
10、已知,如图,AD是BC上的中线,BE⊥AE,CF⊥AE.
求证:BE=CF.
11、如图,已知,AD=AB,AC=AE,∠DAB=∠CAE,求证:BE=CD
12、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB 上一点,AE⊥CD于E,BF⊥CD交CD的延长线于F。
求证:AE=EF+BF
13、如图△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,
过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
求证:①AE=CD;②若AC=12 cm,求BD的长。
14、.如图,∠ABC=90°,AB=BC,BP为一条射线,AD⊥BP,CE⊥PB,若AD=4,EC=2.
求DE的长。
F
E
D
C
B
A。