2DPSK调制与解调电路设计解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春理工大学

信息综合训练

课程设计报告

2DPSK调制与解调电路

学生姓名:学号:电话:

指导教师:

学院:光电工程学院

课程设计时间:2014 年12 月29 日—2015年 1 月9日

一、二进制差分相移键控(2DPSK )基本原理

1.1 2DPSK 信号基本原理

传输系统中要保证信息的有效传输就必须要有较高的传输速率和很低的误码率!为了后的较低的误码率,就得让传输的信号又较低的误码率。在传输信号中,2PSK 信号和2ASK 及2FSK 信号相比,具有较好的误码率性能,但是,在2PSK 信号传输系统中存在相位不确定性,并将造成接收码元“0”和“1”的颠倒,产生误码。为了保证2PSK 的优点,又不会产生误码,将2PSK 体制改进为二进制差分相移键控(2DPSK ),及相对相移键控。

2DPSK 方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK 信号的码元相位关系可举例表示如2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图1所示。

图1 2DPSK 信号

在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义 ∆Φ为本码元初相与前一码元初相之差,假设:

∆Φ=0→数字信息“0”;

信号

DPSK 2基带信号

∆Φ=π→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:(0)π π 0 π π 0 π 0 0 π

或:(π) 0 0 π 0 0 π 0 π π 0

采用π相位后,若已接收2DPSK序列为π0πππ0ππ0,则经过解调后和逆码变换后可得基带信号,这一过程如下:

2DPSK 信号:(0)π 0 π π π 0 π π 0 (π)0 π 0 0 0 π 0 0 π

∆Φ : π π π 0 0 π π 0 π π π π 0 0 π π 0 π

变换后序列 :(0)1 0 1 1 1 0 1 1 0 (π) 0 1 0 0 0 1 0 0 1(相对码) 基带信号 : 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 (绝对码) 虽然相同信噪比2DPSK信号的比2PSK稍高一点,但比2PSK要稳定得多。

1.2 2DPSK信号的解调原理

2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。

2DPSK信号解调的极性相位比较法:原理是2DPSK信号先经过带通滤波器,滤除调制信号频带以外的在信道中混入的噪声,此后该信号分为两路,一路延时一个码元的时间后与另一路的信号相乘,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决,抽样判决器的输出即为原基带信号。它的原理框图如图1.3.2所示。

图2 极性比较解调原理图

2DPSK信号解调的差分相干解调法:差分相干解调的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波

相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图3所示。

图 3 差分相干解调原理图

差分变换模型的功能是将输入的基带信号变为它的差分码。逆码变换器原理图如下:

图 4 逆码变换原理框图

相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。原始信号 2DPSK 与载频 cos(ωt + θ) 调制后得到信号Acos(ωt + θ);解调时引入相干(同频同相)的参考信号 cos(ωt + θ),则得到: Acos(ωt+θ)cos(ωt+θ)

利用积化和差公式可以得到

A*1/2*[cos(ωt+θ+ωt+θ)+cos(ωt+θ-ωt-θ)]

=A*1/2*[cos(2ωt+2θ)+cos(0)]

=A/2*[cos(2ωt+2θ)+1]

=A/2+A/2cos(2ωt+2θ)

利用低通滤波器将高频信号cos(2ωt+2θ)滤除,即得原始信号 A。因此相干解调需要已知发送端的同步信号,在接收端需要相应的接收机和载波同步;

二、2DPSK解调电路部分的任务

有用的信息具有有较高的传输速率和很低的误码率!传输速率越高,延时越小,有效性就越高;码元错误率低,信息失真越小,准确度就高。为了后的较低的误码率,就得让传输的信号又较低的误码率。在传输信号中,2PSK信号和2ASK 及2FSK信号相比,具有较好的误码率性能,但2FSK对相位不敏感,为了保证2PSK的优点,又不会产生误码,将2PSK体制改进为二进制差分相移键控(2DPSK),及相对相移键控。2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:

Φ=0表示0码;

Φ=π表示1码;

则数字信息序列与2DPSK信号的码元相位关系可由不同相位直接去表示相应的数字信号而得出的,2DPSK信号最常用的解调方法有两种,一种是相位比较法,另一种是差分相干解调法。由于相位比较法对延时单元的精度要求较高,很难实现,而采用想干解调后,原理及电路比较容易实现,所以在接收端只能采用相干解调对2DPSK信号进行解调。

2DPSK信号解调的差分相干解调法又称为极性比较法,其原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图5所示。

图 5 相干解调法原理框图

相关文档
最新文档