高二理科数学上学期期末试卷及答案
高二上学期期末考试数学(理)试题 Word版含答案
数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线221168x y -=的虚轴长是( )A .8B .C ..2 2.在公差为d 的等差数列{}n a 中,“1d >”是“是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔k 为( )A .50B .60C .30D .404.已知椭圆22:1169x y C +=的左、右焦点分别为12F F 、,过2F 的直线交椭圆C 于P Q 、两点,若1F P +110FQ =,则PQ 等于( ) A .8 B .6 C.4 D .25.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为( )A .3B .2.5 C.3.5 D .2.756.某单位有员工120人,其中女员工有72人,为做某项调查,拟采用分层抽样法抽取容量为15的样本,则男员工应选取的人数是( ) A .5 B .6 C.7 D .87.已知椭圆()222:10525x y C b b +=<<的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是( )A .221254x y +=B .221259x y += C.2212516x y += D .22125x y +=8.已知点()00,A x y 是抛物线()220y px p =>上一点,且它在第一象限内,焦点为,F O 坐标原点,若32pAF =,AO = ) A .B .3x =- C.2x =- D .1x =-9.某班m 名学生在一次考试中数学成绩的频率分布直方图如图,若在这m 名学生中,数学成绩不低于100分的人数为33,则等于( )A .45B .48 C.50 D .5510.已知定点()3,0M -,()2,0N ,如果动点P 满足2PM PN =,则点P 的轨迹所包围的图形面积等于( ) A .1009π B .1429π C.103πD .9π11.已知命题p :直线20x y +=与直线20x y +-=之间的距离不大于1,命题q :椭圆2222754x y +=与双曲线22916144x y -=有相同的焦点,则下列命题为真命题的是( )A .()p q ∧⌝B .()p q ⌝∧ C.()()p q ⌝∧⌝ D .p q ∧12.如图,12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线分别交于点,A B ,且(A ,若2ABF ∆为等边三角形,则12BF F ∆的面积为( )A .1 BD .2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知0m >,0n >,向量(),1,3a m =-与()1,,2b n =垂直,则mn 的最大值为 .14.若[]x 表示不超过x 的最大整数,执行如图所示的程序框图,则输出S 的值为 .15.在区间2,43ππ⎡⎤-⎢⎥⎣⎦上任取一个数x ,则函数()3sin 26f x x π⎛⎫=- ⎪⎝⎭的值不小于0的概率为 .16.已知点A 是抛物线()2:20C x px p =>上一点,O 为坐标原点,若,A B 是以点为圆心,OA 的长为半径的圆与抛物线C 的两个公共点,且ABO ∆为等边三角形,则p 的值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在直角坐标系xOy 中,直线l 的参数方程为3x ty =+⎧⎪⎨=⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρθ=.(1)写出直线的普通方程及圆C 的直角坐标方程; (2)点P 是直线上的点,求点的坐标,使到圆心的距离最小.18. (本小题满分12分)已知p :方程()2220x mx m +++=有两个不等的正根;q :方程221321x ym m-=+-表示焦点在轴上的双曲线.(1)若为真命题,求实数m 的取值范围; (2)若“或”为真,“且”为假,求实数的取值范围.19. (本小题满分12分)某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x (百元)与日销售量(件)之间有如下关系:(1)求y 关于x 的回归直线方程;(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?相关公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. (本小题满分12分)如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x 表示.(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x 及乙组同学投篮命中次数的方差;(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率. 21. (本小题满分12分)如图,在三棱锥A BCD -中,AD ⊥平面BCD ,CB CD =,AD DB =,,P Q 分别在线段,AB AC 上,3AP PB =,2AQ QC =,M 是BD 的中点.(1)证明://DQ 平面CPM ; (2)若二面角C AB D --的大小为3π,求tan BDC ∠.22. (本小题满分12分)已知()222210x y a b a b+=>>的左、右焦点分别为12F F 、,1225F F =,点P 在椭圆上,21tan 2PF F ∠=,且的面积为4.(1)求椭圆的方程;(2)点M 是椭圆上任意一点,12A A 、分别是椭圆的左、右顶点,直线12MA MA ,与直线x =分别交于,E F 两点,试证:以EF 为直径的圆交x 轴于定点,并求该定点的坐标.试卷答案一、选择题1.B 因为28b =,所以虚轴长2b =.2.A 若1d >,则n N *∀∈,110n n a a d +-=>>,所以,{}n a 是递增数列;若{}n a 是递增数列,则n N *∀∈,10n n a a d +-=>,推不出1d >3.D 由于8002040÷=,即分段的间隔40k =.4.B 因为直线PQ 过椭圆的右焦点2F ,由椭圆的定义,在1F PQ ∆中,11416F P FQ PQ a ++==.又1110F P FQ +=,所以6PQ =. 5.A 设这100个成绩的平均数记为x ,则120210*********3100x ⨯+⨯+⨯+⨯+⨯==.6.B 男员工应抽取的人数为12072156120-⨯=. 7.C 设焦距为2c ,则有222552b c c b ⎧-=⎨+=⎩,解得216b =,所以椭圆22:12516x y C +=.8.D 因为0322p px +=,所以0x p =,0y =.又)2212p +=,所以2p =,准线方程为1x =-.9.D ()10.0150.025100.6P =-+⨯=,由0.633m =,得55m =.10.A 设(),P x y ,则由2PM PN =得()()2222342x y x y ⎡⎤++=-+⎣⎦,化简得223322x y x +-70+=,即221110039x y ⎛⎫-+=⎪⎝⎭,所以所求图形的面积1009S π=. 11.B 对于命题p ,将直线l 平移到与椭圆相切,设这条平行线的方程为20x y m ++=,联立方程组224120x y x y m ⎧+=⎨++=⎩,消去y 得222210x mx m ++-=.由0∆=得,所以m =,椭圆上的点到直线l最近距离为直线20x y +-=与l 的距离d =1>,所以命题p 为假命题,于是p ⌝为真命题.对于命题q ,椭圆2222754x y +=与双曲线22916144x y -=有相同的焦点()5,0±,故q 为真命题.从而()p q ⌝∧为真命题. 12.由已知212BF BF a -=,122AF AF a -=,又2ABF ∆为等边三角形,所以121AF AF BF -=2a =,所以24BF =.在12AF F ∆中,16AF a =,24AF a =,122F F c =,1260F AF ∠=︒,由余弦定理得,所以227c a =,22226b c a a =-=,所以双曲线方程为222216x y a a-=,又()1,3A 在双曲线上,所以,解得212a =,即22a =.所以122124sin1202BF F S a a ∆=⨯⨯⨯︒==. 二、填空题13.9 因为,所以,又,所以.14.7 第一次循环,0S =,2n =;第二次循环,1S =,4n =;第三次循环,3S =,6n =;第四次循环,5S =,8n =;第五次循环,7S =.因为8>6,所以输出S 的值为7. 15.611 当2,43x ππ⎡⎤∈-⎢⎥⎣⎦时,272,636x πππ⎡⎤-∈-⎢⎥⎣⎦.当[]20,6x ππ-∈,即7,1212x ππ⎡⎤∈⎢⎥⎣⎦时()0f x ≥,则所求概率为76121221134ππππ-=⎛⎫-- ⎪⎝⎭. 16.56如图,因为MA OA =,所以,点A 在线段OM 的中垂线上,又()0,10M ,所以可设(),5A x . 由tan 305x︒=,得x =,所以A ⎫⎪⎭的坐标代入方程22x px =,得56p =.三、解答题17.解:(1)由3,.x t y =+⎧⎪⎨=⎪⎩消去参数t ,得直线l0y --=,由ρθ=得2sin ρθ=,22x y +=,即圆C的直角坐标方程为(223x y +-=.(2)()3P t +,(C ,PC ==,0t =∴时PC 最小,此时()3,0P .18.解:(1)由已知方程221321x y m m -=+-表示焦点在y 轴上的双曲线,则()244202020m m m m ⎧∆=-+>⎪->⎨⎪+>⎩解得21m -<<-,即:21p m -<<-. 因p 或q 为真,所以p q 、至少有一个为真. 又且为假,所以至少有一个为假.因此,两命题应一真一假,当为真,为假时,213m m -<<-⎧⎨≥-⎩,解得21m -<<-;当为假,为真时,213m m m ≤≥-⎧⎨<-⎩或,解得.综上,21m -<<-或.19.解:(1)因为7x =,1089616.85y ++++==,所以,122121857 6.82255549ni ii ni i x y nx yb x nx==--⨯⨯===--⨯-∑∑,()6.82720.8a y bx =-=--⨯=,于是得到y 关于x 的回归直线方程220.8y x =-+.(2)销售价为时的利润为()()24220.8228.883.2x x x x ω=--+=-+-,当28.8722x =≈⨯时,日利润最大. 20.(1)解:依题意得:82910789112155x +⨯+++++⨯=-,解得6x =,41=5x 乙,22222141414141682910 1.7655555s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-⨯+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. (2)记甲组投篮命中次数低于10次的同学为123,,A A A ,他们的命中次数分别为9,8,7. 乙组投篮命中次数低于10次的同学为1234,,,B B B B ,他们的命中次数分别为6,8,8,9. 依题意,不同的选取方法有:()()()()()()()()()()()()111213142122232431323334,,,,,,,,,,,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B A B A B A B 共12种.设“这两名同学的投篮命中次数之和为16”为事件,则中恰含有()()()222334,,,,,A B A B A B 共3种.()31124P C ==∴. 21.(1)证明:取AB 的中点E ,连接ED EQ 、,则2AE AQEP QC==,所以//EQ PC . 又EQ ⊄平面CPM ,所以//EQ 平面CPM . 又PM 是BDE ∆的中位线,所以//DE PM , 从而//DE 平面CPM . 又DEEQ E =,所以平面//DEQ 平面CPM .因为DQ ⊂平面DEQ ,所以//DQ 平面.(2)解:法1:由AD ⊥平面BCD 知,AD CM ⊥, 由BC CD =,BM MD =,知BD CM ⊥, 故CM ⊥平面ABD .由(1)知//DE PM ,面DE AB ⊥,故PM AB ⊥. 所以CPM ∠是二面角的平面角,即3CPM π∠=.设PM a =,则CM =,又易知在Rt ABD ∆中,4B π∠=,可知DM BM ==,在Rt CMD ∆中,tan MC MDC MD ∠===法2:以M 为坐标原点,,,MC MD ME 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标.设MC a =,MD b =,则(),0,0C a ,()0,,0B b -,()0,,2A b b ,则,()0,2,2BA b b =,设()1,,n x y z =是平面ABC 的一个法向量,则110,0.n BC n BA ⎧=⎪⎨=⎪⎩即0,220.ax by by bz +=⎧⎨+=⎩取()1,,n b a a =-, 不难得到平面ABD 的一个法向量为()21,0,0n =,所以121cos ,2nn <>==,所以a b =, 在中,6tan 2MC a MDC MD b ∠===.22.解:(1)因为21tan 2PF F ∠=,所以21sin PF F ∠=,21cos PF F ∠=. 由题意得((2222122125542522PF PF PF PF ⎧⨯⨯=⎪⎪⎨⎪=+-⨯⎪⎩,解得1242PF PF ⎧=⎪⎨=⎪⎩. 从而1224263a PF PF a =+=+=⇒=,结合2c =,得24b =,故椭圆的方程为22194x y +=. (2)由(1)得()13,0A -,()23,0A ,设()00,M x y ,则直线1MA 的方程为()0033y y x x =++,它与直线x =的交点的坐标为0033y E x ⎫⎫+⎪⎪⎪⎪+⎭⎭, 直线2MA 的方程为()0033y y x x =--,它与直线的交点的坐标为003535,3232y F x ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-⎝⎭⎭, 再设以EF 为直径的圆交x 轴于点(),0Q m ,则QE QF ⊥,从而1QE QF k k =-,即033y x ⎫+00353321352y x m ⎛⎫- -⎝⎭=--,即,解得3512m =±. 故以为直径的圆交x 轴于定点,该定点的坐标为351,02⎛⎫+ ⎪ ⎪⎭或351,02⎛⎫- ⎪ ⎪⎭.。
高二上理科数学期末试卷及答案
第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。
每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。
高二理科数学上学期期末试卷及答案
高二理科数学上学期期末试卷及答案数学期末考试卷一、 选择题(本大题共12小题,每小题4分,共48分) 1、与向量(1,3,2)a =-r平行的一个向量的坐标是( )A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1) D .(2,-3,-22)2、设命题p :方程0132=-+x x的两根符号不同;命题q :方程0132=-+x x 的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .3 3、“a >b >0”是“ab <222b a+”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于( ).A .5B .8C .5或 3D .5或85、已知空间四边形OABC 中,,,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .cb a 212132++-C .c b a 212121-+ D .213232-+ 6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716B .1516C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 55C. 33D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥39、已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( )A .55B .555C .553D .511 10、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .无法确定11、已知数列{a n }的通项公式为21log 2++=n n a n(n ∈N *),设其前n 项和为S n ,则使5-<nS 成立的自然数n( )A .有最大值63B .有最小值63C .有最大值32D .有最小值3212、设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是( ) A. ()0,0132322>>=+y x y x B. ()0,0132322>>=-y x y x C.()0,0123322>>=-y x y x D.()0,0123322>>=+y x y x二、 填空题(本大题共4小题,每小题4分,共16分) 13、命题:01,2=+-∈∃x x R x 的否定是14、若双曲线4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 . 15、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 .16、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k+=u u u r u u u r,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=.其中真命题的序号为 _________. 三、 解答题(本大题共5小题,共56分) 17、(本题满分10分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.18.在ABC ∆中,角,,A B C 的对边分别为,,,6a b c B π=,3cos ,25A b ==。
高二年级上学期期末考试数学(理科)试卷及参考答案(共3套)
广东省珠海市高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题,5分,满分60分)1.已知命题p:∀x≥0,x3﹣1≥0,则¬p为()A.∀x≥0,x3﹣1<0 B.∃x≥0,x3﹣1<0C.∃x<0,x3﹣1<0 D.∀A<0,x3﹣1<02.若=(2,﹣3,5),=(﹣3,1,2),则||=()A.B.C.D.3.下面四个条件中,使a>b成立的充分不必要条件是()A.<B.a>b﹣1 C.a2>b2D.a>b+14.已知ax2﹣(1+a)x+b≥0的解集为{x|≤x≤1},则a+b=()A.B.C.﹣4 D.45.已知=1表示焦点在y轴上椭圆,则m的取值范围为()A.(1,2) B.(1,)C.(1,+∞)D.(,2)6.已知{a n}为等差数列,前n项和为S n,若,则sinS9=()A.B.C.﹣D.7.设变量x,y满足,则目标函数z=2x+4y最大值为()A.13 B.12 C.11 D.108.已知在△ABC中,∠BAC=60°,AB=6,若满足条件的△ABC有两个,则边BC的取值范围为()A.[3,6) B.(3,6)C.[3,6) D.[,6)9.在棱长为3的正方体ABCD﹣A1B1C1D1中,点E,F分别在棱A1B1,C1D1上且A1E=1,C1F=1,则异面直线AE,B1F所成角的余弦值为()A.B.C.D.010.一动圆P过定点M(﹣3,0),且与已知圆N:(x﹣3)2+y2=16外切,则动圆圆心P的轨迹方程是()A.=1(x≥2)B.=1(x≥2)C.=1(x≤﹣2)D.=1(x≤﹣2)11.已知a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1•a2•…•a n为整数的数n叫做“劣数”,则在n∈(1,2018)内的所有“劣数”的和为()A.1016 B.2018 C.2024 D.202612.已知点A,B均在抛物线x2=4y上运动,且线段AB的长度为5,则AB的中点到x轴的最短距离为()A.B.C.1 D.2二、填空题(共8小题,每小题5分,满分40分)13.已知=(1,﹣3,λ),=(2,4,﹣5),若,则λ=.14.已知F1,F2为椭圆=1的两个焦点,过F2的直线交椭圆于A,B两点,若|F1A|+|F1B|=,则|AB|=.15.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,命题q:指数函数f(x)=(3﹣2a)x是增函数,若p∧q为真,则实数a的取值范围为.16.已知各项为正数的等比数列{a n}中,a1a3=4,a7a9=25,则a5=.17.已知空间四边形ABCD中,=,,=,若,且(x,y,z∈R),则y=.18.若在△ABC中,,则△ABC是三角形.19.已知直线l:ax+y+2=0及两点P(﹣2,1),Q(3,2),若直线l与线段PQ有公共点,则a的取值范围是.20.如图,已知F1,F2分别是双曲线=1(a>0,b>0)的左、右两个焦点,|F1F2|=10,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=3,则双曲线的离心率为.三、解答题(共5小题,共50分)21.(10分)在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且(a2+b2﹣c2)tanC=ab.(1)求角C;(2)若c=,b=2,求边a的值及△ABC的面积.22.(10分)在梯形ABCD中,BC∥DA,BE⊥DA,EA=EB=BC=2,DE=1,将四边形DEBC沿BE 折起,使平面DEBC⊥平面ABE,如图2,连结AD,AC.(1)若F为AB中点,求证:EF∥平面ADC;(2)求平面ABE与平面ADC所成锐二面角的余弦值.23.(10分)某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18﹣,B产品的利润y2与投资金额x的函数关系为y2=(注:利润与投资金额单位:万元).(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?24.(10分)已知椭圆C:=1(a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A、B两点,且k OA•k OB=.求证:△AOB的面积为定值.25.(10分)正项数列{a n}的前n项和S n满足:=0.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,且前n项和为T n,且若对于∀n∈N*,都有(m ∈R),求m的取值范围.理科数学参考答案1-5:BCDCB6-10:BABAC11-12:DB13、-214、15、(-2,1)1617、2 318、等腰直角19、20、5 321、第一学期期末调研考试高二数学(必修⑤、选修2-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“若2017x >,则0x >”的否命题是A .若2017x >,则0x ≤B .若0x ≤,则2017x ≤C .若2017x ≤,则0x ≤D .若0x >,则2017x >2.抛物线212y x =的焦点坐标是 A .()0,1 B .10,2⎛⎫ ⎪⎝⎭ C .10,4⎛⎫ ⎪⎝⎭ D .10,8⎛⎫ ⎪⎝⎭3.已知等比数列{}n a ,11a =,313a =,则5a =A .19±B ..19- D .194.在C ∆AB 中,角A ,B ,C 的对边长分别为a ,b ,c ,b =45A =,60B =,则a =A ..4 D .65.若a ,b 为实数,则“ab 1<”是“1<ab ”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.椭圆221(0)x y m n m n+=>>的一个焦点为()1,0,且=12mn ,则椭圆的离心率为 A .32 B .32 C .12 D .41 7.在空间四边形CD AB 中,,,DA a DB b DC c ===,P 在线段D A 上,且DP=2PA ,Q 为C B 的中点,则PQ =A .211322a b c -++ B .112223a b c +- C .121232a b c -+ D .221332a b c +- 8.设0a >,0b >5a 与5b的等比中项,则11a b+的最小值为 A .8 B .4 C .1 D .149.已知等差数列{}n a 中,前n 项和为n S ,1100810090,0a a a >+=,则当n S 取最大值时,n = A .1008 B .1009 C .2016 D .201710.不等式组0002x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩表示的平面区域的面积为A .2B .3C .4D .511.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<mC .94<≤mD .4≥m 且9≠m12.在三棱柱111ABC A B C -中,点E 、F 、H 、K 分别为1AC 、1CB 、1A B 、11B C 的中点,G 为ΔABC 的重心,有一动点P 在三棱柱的面上移动,使得该棱柱恰有5条棱与平面PEF 平行,则以下各点中,在点P 的轨迹上的点是A .HB .KC .GD .1B二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()2,1,1a =-,(),2,1b t =-,R t ∈,若a b ⊥,则t = . 14.等差数列{}n a 中, 74a =,1992a a =,则{}n a 的通项公式为 .15.已知命题:p R x ∃∈,220x x a --<,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)16.已知2z y x =-,式中变量x ,y 满足下列条件: 213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知命题p :指数函数(2)xy a =- 是R 上的增函数,命题q :方程22122x y a a +=-+表示双曲线.(Ⅰ)若命题p 为真命题,求实数a 的取值范围;(Ⅱ)若命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.18.(本小题满分12分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.19.(本小题满分12分)已知等差数列}{n a 的前n 项和为n S ,且53-=a ,244-=S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)求数列|}{|n a 的前20项和20T .20.(本小题满分12分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的左焦点为1(1,0)F -,左顶点为A ,上、下顶点分别为,B C .(Ⅰ)若直线1BF 经过AC 中点M ,求椭圆E 的标准方程;(Ⅱ)若直线1BF 的斜率为1,1BF 与椭圆的另一交点为D ,椭圆的右焦点为2F ,求三角形2BDF 的面积.21.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?22.(本小题满分12分)如图,四棱锥ABCDP-中,底面ABCD为矩形,平面PDC⊥平面ABCD,32==PDAD,6==ABPB.(Ⅰ)证明:PABD⊥;(Ⅱ)求直线AP与平面PBC所成角的正弦值.PAB CD第一学期期末调研考试高中数学必修5及选修2-1试题 参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分. 13.3214.12n n a += 15. (],1-∞- 16.23三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(Ⅰ)命题p 为真命题时,2-a >1,即a <1. ……………………2分(Ⅱ)若命题q 为真命题,则(2)(2)0a a -+<,所以22a -<<, ……………………4分 因为命题“p q ∨”为真命题,则,p q 至少有一个真命题,“p q ∧”为假命题,则,p q 至少有一个假命题,所以,p q 一个为真命题,一个为假命题 ……………………6分 当命题p 为真命题,命题q 为假命题时,122a a a <⎧⎨≤-≥⎩或,则2a ≤-;当命题p 为假命题,命题q 为真命题时,122a a ≥⎧⎨-<<⎩,则12a ≤<. ………………9分综上,实数a 的取值范围为(][),21,2-∞-. ……………………10分18.(本小题满分12分)解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………3分 得2()0a c -=,=a c ,…………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………6分 (Ⅱ)由4cos 5A =,得3sin 5A =,……………………………………………………7分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅……………………………………………8分314525=⨯+10分由正弦定理得(3sin sin c Bb C+⋅=== ………………………………………12分19.(本小题满分12分)解:(Ⅰ)设等差数列}{n a 的公差为d ,则由条件得11254624a d a d +=-⎧⎨+=-⎩ ,…………………………………2分 解得⎩⎨⎧=-=291d a ,……………………………………3分所以错误!不能通过编辑域代码创建对象。
(完整版)高二理科数学(上)期末试卷包含答案,推荐文档
20、(本题满分 10 分)如图所示,在直角梯形 ABCD 中,|AD|=3,|AB|=4,|BC|= 3,
4 /8
高二理科数学(上)期末试卷包含答案 曲线段 DE 上任一点到 A、B 两点的距离之和都相等. (1)建立适当的直角坐标系,求曲线段 DE 的方程; (2)过 C 能否作一条直线与曲线段 DE 相交,且所
D. 2 a 2 b 1 c 3 32
6、抛物线 y 4x2 上的一点 M 到焦点的距离为 1,则点 M 的纵坐标为( )
17
A.
16
15
B.
16
7
C.
8
D.0
7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线 x+2y-3=0,则该双曲线的
离心率为(
)
A.5 或 5 4
B. 5 或 5 2
和为 3,判断命题“ p ”、“ q ”、“ p q ”、“ p q ”为假命题的个数为( )
A.0
B.1
C.2
D.3
3、“a>b>0”是“ab< a 2 b2 ”的 (
)
2
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
x2
4、椭圆
y2
1的焦距为 2,则 m 的值等于 (
18、(本题满分 8 分) (1)已知双曲线的一条渐近线方程是,
y
3 2
x 焦距为 2
13 ,求此双曲线的
标准方程;
(2)求以双曲线 y2 x2 1 的焦点为顶点,顶点为焦点的椭圆标准方程。 16 9
19.(本小题满分 12 分)
已知函数 f (x) x3 ax 2 4(a R), f '(x) 是 f (x) 的导函数。 (1)当 a=2 时,对于任意的 m [1,1], n [1,1],求f (m) f '(n) 的最小值; (2)若存在 x0 (0,) ,使 f (x0 ) 0, 求 a 的取值范围。
高二上学期期末考试数学(理)试题 Word版含答案
吉林油田高级中学第一学期期末考试高二数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设命题:0p x ∀>,||x x =,则p ⌝为( )A .0x ∀>,||x x ≠B .00x ∃≤,00||x x =C .0x ∀≤,||x x = D .00x ∃>,00||x x ≠ 2.已知A (-2,0,3),B (-1,2,1)是空间直角坐标系中的两点,则|AB |=( ) A .3 B 3 C .9 D .33.已知双曲线222:1(0)x C y a a-=>的一个焦点为(2,0),则C 的离心率为( )A .32 B .2 C .32 D .2334.将正弦曲线sin y x =作如下变换:23X xY y =⎧⎨=⎩,得到的曲线的方程为( )A .2sin3X Y = B .2sin 31X Y = C .X Y 2sin 31= D .X Y 2sin 3=5.已知向量(2,4,)AB x =,平面α的一个法向量(1,,3)n y =,若α⊥,则( ) A .3420x y ++= B .4320x y ++= C .6x =,2y = D .2x =,6y = 6.已知双曲线C:x 216−y 248=1的左、右焦点分别为F 1,F 2,P 为C 上一点,F 1Q ⃑⃑⃑⃑⃑⃑⃑ =QP ⃑⃑⃑⃑⃑ ,O 为坐标原点,若|PF 1|=10,则|OQ|=( ) A .10 B .9 C .1 D .1或97.已知正四棱柱ABCD -A 1B 1C 1D 1中(正四棱柱是指底面为正方形,侧棱和底面垂直的四棱柱),AA 1=2AB ,E 是AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A .35 B .-31010 C .1010 D .310108.设F 为抛物线24y x =的焦点,该抛物线上三点A 、B 、C 的坐标分别为11(,)x y 、22(,)x y 、33(,)x y .若||||||9FA FB FC ++=,则123x x x ++=( )A .9B .6C .4D .3 9.“x 2−x ≤0”是“x ≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.若椭圆2213616x y +=上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直,则△PF 1F 2的面积为( )A .36B .16C .20D .2411.在三棱锥P -ABC 中,P A =AC =BC ,P A ⊥平面ABC ,90ACB ∠=︒,O 为PB 的中点,则直线CO 与平面P AC 所成角的余弦值为( )A B C D .1212.抛物线22(0)y px p =>的焦点为F ,AB 是经过抛物线焦点F 的弦,M 是线段AB 的中点,过A ,B ,M 作抛物线的准线l 的垂线AC ,BD ,MN ,垂足分别是C ,D ,N ,其中MN 交抛物线于点Q .则下列说法中不正确的是( )A .1||||2MN AB = B .FN AB ⊥ C .Q 是线段MN 的一个三等分点 D .QFM QMF ∠=∠ 二、填空题:本大题共4小题,每小题5分,共20分.13.已知F 为椭圆C :221164x y +=的左焦点,过F 作x 轴的垂线交C 于A 、B 两点,则|AB |=____. 14.给下列三个结论:①命题“若a >b ,则a 2>b 2”的逆否命题为假;②命题“若2am b <2m ,则a b <”的逆命题为真;③命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”;④命题“若直线a //直线b ,直线b //直线c ,则直线a //直线c”是真命题.其中正确的结论序号是______(填上所有正确结论的序号).15.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,且x 1+x 2=5,则这样的直线有______条.16.平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,11120A AD A AB ∠=∠=︒,则对角线BD 1的长度为__________.三、解答题:本大题共6道题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.己知圆C 的圆心的坐标为(4,0),C -半径为4,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221(t 为参数) (1)求圆C 的极坐标方程,直线l 的普通方程; (2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长.18.(本小题满分12分)求适合下列条件的圆锥曲线的标准方程:(1)以直线x y 3±=为渐近线,焦点是(-4,0),(4,0)的双曲线;(2)离心率为35,短轴长为8的椭圆.19.(本小题满分12分)已知命题:p x R ∀∈,230ax x -+>,命题:[1,2]q x ∃∈,x a 21≥. (1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.20.(本小题满分12分)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 、F 分别为棱AB 、AA 1的中点. (1)求证:A 1C ⊥平面BC 1D ;(2)求:EF 与平面BC 1D 所成角的正弦值.21.(本小题满分12分)已知动圆C 过定点F (2,0),且与直线x =-2相切,圆心C 的轨迹为E , (1)求圆心C 的轨迹E 的方程;(2)若直线l 交E 于P ,Q 两点,且线段PQ 的中点坐标为(1,1),求直线l 的方程.22.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,PD ⊥底面ABCD ,E 是PC 的中点. (1)证明:P A //平面BDE ;(2)若PD =DC ,求二面角B -DE -C 的余弦值.四、选做题:23.(本小题满分10分)已知椭圆C :22221x y a b+=(0a b >>)的左右焦点分别为)0,3(1-F 、)0,3(2F ,经过F 2的直线l 与椭圆C 交于A 、B 两点,且△F 1AB 的周长为8. (1)则椭圆C 的方程为__________;(2)斜率为2的直线m 与椭圆C 交于P 、Q 两点,O 为坐标原点,且OP ⊥OQ ,则直线m 的方程为_________;(3)若在x 轴上存在一点E ,使得过点E 的任一直线与椭圆两个交点M 、N ,都有2211||||EM EN +为定值,则此定值为___________.高二数学试卷(理科)参考答案一、选择题:DADAC BDBAB BC二、填空题:13. 2;14. ①④;15. 2;16. 2 三、解答题17.【解】(1)圆C 的圆心的坐标为()4,0,C-半径为4,得到圆的一般方程为:()22416,x y ++=化为极坐标得到8cos 0ρθ+=.直线l 的参数方程为21:2x t l y t ⎧=+⎪⎪⎨⎪=⎪⎩,可得到直线的斜率为1,过点(1,0),由点斜式得到方程为:1y x =-.(2)圆心为(-4,0),圆心到直线的距离为d=5 2.22=半径为4,由勾股定理得到弦长为2252414.2⎛⎫-= ⎪⎝⎭18.【答案】(1)x 24-y 212=1;(2)2212516x y +=或2212516y x +=.19.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a >. 综上所述:112a >. (2)[]1,2x ∃∈,21xa ⋅≥,则14a ≥. 因为p q ∨为真命题,且q q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩,即11124a <<;当p 假q 真,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩,则a 无解.综上所述,11124a <<. 20.解:建立坐标系如图,则()2,0,0A 、()2,2,0B ,()0,2,0C ,()12,0,2A ,()12,2,2B ,)2,2,0(1C ,()10,0,2D ,()2,1,0E ,F (2,0,1),)1,1,0(-=EF ,)0,2,2(=DB ,)2,2,0(1=DC ,()12,2,2A C =--.(1)∵01=•DB C A ,011=•DC C A , ∴D DC DB DC C A DB C A =⊥⊥1111,, ∴A 1C ⊥平面BC 1D(2)由(1)知,1A C 为平面BC 1D 的法向量, 设EF与平面BC 1D所成的角为θ.∴sin θ=|||||11C A EF =3621.解:(1)由题设知,点C 到点F 的距离等于它到直线x =-2的距离,所以点C 的轨迹是以F 为焦点x =-2为基准线的抛物线,所以所求E 的轨迹方程为y 2=8x . (2)由题意已知,直线l 的斜率显然存在,设直线l 的斜率为k ,11P x y (,), 22Q x y (,),则有22112288y x y x ==,,两式作差得2212128y y x x ()即得128k y y =+,因为线段PQ 的中点的坐标为(1,1),所以k =4, 则直线l 的方程为y -1=4(x -1),即4x-y -3=0,22.【详解】∵四边形ABCD 是正方形,∴AD DC =. ∵PD ⊥平面ABCD .建立如图所示的空间直角坐标系D xyz -.设PD DC a ==,则()0,0,0D、(),0,0A a 、()0,0,P a 、(),,0B a a 、0,,22a aE ⎛⎫⎪⎝⎭、()0,,0C a .∴(),0,AP a a =-、(),,0DB a a =、0,,22a a DE ⎛⎫= ⎪⎝⎭、()0,,0DC a =. (1)设平面BDE 的一个法向量为()1111,,n x y z =,则有110,0,n DB n DE ⎧⋅=⎪⎨⋅=⎪⎩即11110,022ax ay a ay z +=⎧⎪⎨+=⎪⎩.∴1111,1,1x y z =⎧⎪=-⎨⎪=⎩,∴()11,1,1n =-.100AP n a a ⋅=-++=,∴1AP n ⊥, 又∵AP ⊄平面BDE ,∴AP 平面BDE .(2)设平面CDE 的一个法向量为()21,0,0n =.12,3cosn n ==⨯∴二面角B DE C --3选做题:23.【答案】(1)2214x y +=(2)220x y -±=(3)5【详解】(1)由已知,1122c ab a ==,又222a b c =+,解得2,1,a b c === ∴椭圆的方程为2214x y +=。
高二上学期期末考试数学(理科)试卷(含参考答案)
高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。
莞生一日,长一尺。
蒲生日自半。
莞生日自倍。
问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。
高二第一学期数学(理)期末试卷及答案5套
高二第一学期数学(理)期末试卷及答案5套(时间:120分钟 总分:150分,交答题纸)第Ⅰ卷(12题:共60分)一、选择题(包括12小题,每小题5分,共60分) 1.某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .100 B .40 C .75 D .252.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为 ( ) A.40%B.30%C.20%D. 10%3.对于空间的两条直线n m ,和一个平面α,下列命题中的真命题是 ( ) A.n m n m //,////则,若αα B.n m n m //,则,若αα⊥⊥ C.n m n m //,//则,若αα⊥ D.n m n m //,//则,若αα⊂4.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为 ( )A.911B.811C.89D.255.甲、乙两名学生六次数学测验成绩如右图所示。
①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差。
上面说法正确的是( )A.②④B.①②④C.③④D.①③ 6.下图是把二进制数11111(2)化成十进制数的一个程序框图, 则判断框内应填入的条件是( )A.?5>iB.?4≤iC.?4>iD.?5≤i7.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为8165,则事件A 在1次试验中发生的概率为( ) A.32 B.31 C.95 D.94 8.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点与圆01022=-+x y x 的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.120522=-y x B.1202522=-y x C.152022=-y x D.1252022=-y x 9.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A.34B. 35C.13D.1210.命题“设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ”是一个真命题; 若“q p ∨”为真命题,则q p ,均为真命题;命题“)1(2,,22--≥+∈∀b a b a R b a ”的否定是“)1(2,,22--≤+∈∃b a b a R b a ”; ④“)(2Z k k ∈+=ππϕ”是函数)2sin(ϕ+=x y 为偶函数的充要条件。
高二上学期期末数学试卷(理科)含答案
高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.函数:的单调递增区间是 f(x)=3+xlnx ()A. B. C. D. (0,1e ).(e,+∞)(1e ,+∞)(1e ,e)【答案】C【解析】解:由函数得:,f(x)=3+xlnx f(x)=lnx +1令即,根据得到此对数函数为增函数,f'(x)=lnx +1>0lnx >‒1=ln 1e e >1所以得到,即为函数的单调递增区间.x >1e 故选:C .求出的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单f(x)调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2.函数的图象在点处的切线方程为 f(x)=lnx ‒2x x (1,‒2)()A. B. C. D. 2x ‒y ‒4=02x +y =0x ‒y ‒3=0x +y +1=0【答案】C【解析】解:由函数知,f(x)=lnx ‒2x x f'(x)=1‒lnxx 2把代入得到切线的斜率,x =1k =1则切线方程为:,y +2=x ‒1即.x ‒y ‒3=0故选:C .求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.x =1(1,2)本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3.已知,,,则向量与的夹角为 A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)⃗AB ⃗AC ()A. B. C. D. 30∘45∘60∘90∘【答案】C 【解析】解:因为,,,A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)所以,⃗AB =(0,3,3),⃗AC = (‒1,1,0)所以,并且,,⃗AB ⋅⃗AC═0×(‒1)+3×1+3×0=3|⃗AB |=32|⃗AC |=2所以,,cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |=332×2=12的夹角为∴⃗AB 与⃗AC 60∘故选:C .由题意可得:,进而得到与,,再由,可得答⃗AB=(0,3,3),⃗AC = (‒1,1,0)⃗AB ⋅⃗AC |⃗AB ||⃗AC |cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4.已知椭圆的左焦点为,则 x 225+y 2m 2=1(m >0)F 1(‒4,0)m =()A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,∵x 225+y 2m 2=1(m >0)F 1(‒4,0),∴25‒m 2=16,∵m >0,∴m =3故选:B .利用椭圆的左焦点为,可得,即可求出m .x 225+y 2m 2=1(m >0)F 1(‒4,0)25‒m 2=16本题考查椭圆的性质,考查学生的计算能力,比较基础.5.等于 ∫10(e x +2x)dx ()A. 1B. C. e D. e ‒1e +1【答案】C 【解析】解:,∵(e x +x 2)'=e x +2x ,∴∫10(e x +2x)dx ═(e x +x 2)|10=(e +1)‒(1+0)=e故选:C .由,可得,即可得出.(e x +x 2)'=e x +2x ∫10(e x +2x)dx =(e x +2x)|10本题考查了微积分基本定理,属于基础题.6.若函数在处有极大值,则 f(x)=x(x ‒c )2x =3c =()A. 9B. 3C. 3或9D. 以上都不对【答案】A 【解析】解:函数的导数为f(x)=x(x ‒c )2f'(x)=(x ‒c )2+2x(x ‒c),=(x ‒c)(3x ‒c)由在处有极大值,即有,f(x)x =3f'(3)=0解得或3,c =9若时,,解得或,c =9f'(x)=0x =9x =3由在处导数左正右负,取得极大值,f(x)x =3若,,可得或1c =3f'(x)=0x =3由在处导数左负右正,取得极小值.f(x)x =3综上可得.c =9故选:A .由题意可得,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件.f'(3)=0本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数的示意图是 y =e x (2x ‒1)()A. B.C. D.【答案】C【解析】解:由函数,y =e x (2x ‒1)当时,可得,排除A ;D x =0y =‒1当时,可得,时,.x =‒12y =0∴x <12y <0当x 从时,越来越大,递增,可得函数的值变大,排除B ;12→+∞y =e x y =2x ‒1y =e x (2x ‒1)故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8.若AB 过椭圆 中心的弦,为椭圆的焦点,则面积的最大值为 x 225+y 216=1F 1△F 1AB ()A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标则根据对称性得:,(x,y)B(‒x,‒y)则面积.△F 1AB S =12OF ×|2y|=c|y|当最大时,面积最大,∴|y|△F 1AB 由图知,当A 点在椭圆的顶点时,其面积最大,△F 1AB 则面积的最大值为:.△F 1AB cb =25‒16×4=12故选:B .先设A 的坐标则根据对称性得:,再表示出面(x,y)B(‒x,‒y)△F 1AB积,由图知,当A 点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积△F 1AB △F 1AB 的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题..9.设函数的极大值为1,则函数的极小值为 f(x)=13x 3‒x +m f(x)()A. B. C. D. 1‒13‒113【答案】A【解析】解:,∵f(x)=13x 3‒x +m ,∴f'(x)=x 2‒1令,解得,f'(x)=x 2‒1=0x =±1当或时,,x >1x <‒1f'(x)>0当时,;‒1<x <1f'(x)<0故在,上是增函数,在上是减函数;f(x)(‒∞,‒1)(1,+∞)(‒1,1)故在处有极大值,解得f(x)x =‒1f(‒1)=‒13+1+m =1m =13在处有极小值,f(x)x =1f(1)=13‒1+13=‒13故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键..10.设抛物线的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值y 2=4x 范围是 ()A. B. C. D. [‒12,12][‒2,2][‒1,1][‒4,4]【答案】C【解析】解:,∵y 2=4x 为准线与x 轴的交点,设过Q 点的直线l 方程为.∴Q(‒1,0)(Q )y =k(x +1)与抛物线有公共点,∵l 方程组有解,可得有解.∴{y =k(x +1)y 2=4x k 2x 2+(2k 2‒4)x +k 2=0,即.∴△=(2k 2‒4)2‒4k 4≥0k 2≤1,∴‒1≤k ≤1故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定.理或判别式解决问题.11.已知函数 x ,若在区间内恒成立,则实数a 的取值范围是 f(x)=ax ‒ln f(x)>1(1,+∞)()A. B. C. D. (‒∞,1)(‒∞,1](1,+∞)[1,+∞)【答案】D 【解析】解: x ,在内恒成立,∵f(x)=ax ‒ln f(x)>1(1,+∞)在内恒成立.∴a >1+lnx x (1,+∞)设,g(x)=1+lnx x 时,,∴x ∈(1,+∞)g'(x)=‒lnxx 2<0即在上是减少的,,g(x)(1,+∞)∴g(x)<g(1)=1,即a 的取值范围是.∴a ≥1[1,+∞)故选:D .化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求a >1+lnx x (1,+∞).g(x)=1+lnx x 解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12.设双曲线的两条渐近线与直线分别交于A ,B 两点,F 为该双曲线的右焦点若x 2a 2‒y 2b 2=1x =a 2c .,则该双曲线的离心率的取值范围是 60∘<∠AFB <90∘()A. B. C. D. (1,2)(2,2)(1,2)(2,+∞)【答案】B【解析】解:双曲线的两条渐近线方程为,时,,x 2a 2‒y 2b 2=1y =±b a x x =a 2c y =±ab c ,,∴A(a 2c ,ab c )B(a 2c ,‒ab c ),∵60∘<∠AFB <90∘,∴33<k FB <1,∴33<ab c c ‒a 2c <1,∴33<a b <1,∴13<a 2c 2‒a 2<1,∴1<e 2‒1<3.∴2<e <2故选:B .确定双曲线的两条渐近线方程,求得A ,B 的坐标,利用,可得,由x 2a 2‒y 2b 2=160∘<∠AFB <90∘33<k FB <1此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线的顶点到其渐近线的距离等于______.x 2‒y 2=1【答案】22【解析】解:双曲线的,x 2‒y 2=1a =b =1可得顶点为,(±1,0)渐近线方程为,y =±x 即有顶点到渐近线的距离为d =11+1=22故答案为:.22求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.a =b =1本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14.已知函数的导函数为,且满足,则______.f(x)f'(x)f(x)=3x 2+2xf'(2)f'(5)=【答案】6【解析】解:f'(x)=6x +2f'(2)令得x =2f'(2)=‒12∴f'(x)=6x ‒24∴f'(5)=30‒24=6故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.f'(2)f'(x)x =2f'(2)f'(x)x =5f'(5)本题考查导数的运算法则、考查通过赋值求出导函数值.15.已知向量5,,1,,若平面ABC ,则x 的值是______.⃗AB=(1,‒2)⃗BC =(3,2)⃗DE =(x,‒3,6).DE//【答案】‒23【解析】解:平面ABC ,∵DE//存在事实m ,n ,使得,∴⃗DE =m ⃗AB +n ⃗BC ,解得.∴{x =m +3n ‒3=5m +n 6=‒2m +2n x =‒23故答案为:.‒23由平面ABC ,可得存在事实m ,n ,使得,利用平面向量基本定理即可得出.DE//⃗DE =m ⃗AB +n ⃗BC 本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16.已知抛物线C :的焦点F ,,则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为y 2=‒4x A(‒1,1)______.【答案】2【解析】解:抛物线方程为,∵y 2=‒4x ,可得焦点为,准线为∴2p =4F(‒1,0)x =1设P 在抛物线准线l 上的射影点为Q 点,A(‒1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点的距离与P 到该抛物线焦点的距离之和(‒1,1)最小,最小值为.∴1+1=2故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数.f(x)=x 3+x ‒16求曲线在点处的切线的方程;(I)y =f(x)(2,‒6)Ⅱ直线L 为曲线的切线,且经过原点,求直线L 的方程及切点坐标.()y =f(x)【答案】解:函数的导数为,(I)f(x)=x 3+x ‒16f'(x)=3x 2+1可得曲线在点处的切线的斜率为,y =f(x)(2,‒6)3×4+1=13即有曲线在点处的切线的方程为,y =f(x)(2,‒6)y ‒(‒6)=13(x ‒2)即为;13x ‒y ‒32=0Ⅱ的导数为,()f(x)f'(x)=3x 2+1设切点为,可得切线的斜率为,(m,n)3m 2+1即有,3m 2+1=n m =m 3+m ‒16m 即为,2m 3+16=0解得,m =‒2,n =‒8‒2‒16=‒26可得直线L 的方程为及切点坐标为.y =13x (‒2,‒26)【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(I)f(x)Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m 的方程,()f(x)f'(x)=3x 2+1(m,n)解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.S‒ABCD SD⊥18.如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且SD=AD=2AB,E是SA的中点.(1)BED⊥求证:平面平面SAB;(2)()求平面BED与平面SBC所成二面角锐角的大小.(1)∵SD⊥SD⊂【答案】证明:底面ABCD,平面SAD,∴SAD⊥ABCD (2)平面平面分∵AB⊥AD SAD∩,平面平面ABCDAD,∴AB⊥平面SAD,DE⊂又平面SAD,∴DE⊥AB (4),分∵SD=AD∴DE⊥SA,E是SA的中点,,∵AB∩SA=A DE⊥AB DE⊥SA,,,∴DE⊥平面SAB,∵DE⊂平面BED,∴BED⊥SAB (6)平面平面分(2)D‒xyz AD=2解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,D(0,0)A(2,0)B(2,2,0)C(0,2,0)S(0,2)E(1,1),,,分∴⃗DB=(2,2,0)⃗DE=(1,0,1)⃗CB=(2,0,0)⃗CS=(0,‒2,2)…(8)设是平面BED 的法向量,则,即,⃗m =(x 1,y 1,z 1){⃗m ⋅⃗DB =0⃗m ⋅⃗DE=0{2x 1+2y 1=0x 1+z 1=0令,则,x 1=‒1y 1=2,z 1=1是平面BED 的一个法向量.∴⃗m=(‒1,2,1)设是平面SBC 的法向量,则,即,⃗n=(x 2,y 2,z 2){⃗n ⋅⃗CB =0⃗n ⋅⃗CS=0{2x 2=0‒2y 2+2z 2=0解得,令,则,x 2=0y 2=2z 2=1是平面SBC 的一个法向量分∴⃗n=(0,2,1) (10),∵cos〈⃗m ,⃗n>=⃗m ⋅⃗n|⃗m|⋅|⃗n|=323=32平面BED 与平面SBC所成锐二面角的大小为分∴π6 (12)【解析】证明平面平面SAB ,利用面面垂直的判定定理,证明平面SAB 即可;(1)BED ⊥DE ⊥建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平(2)面SBC 所成二面角锐角的大小.()本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19.如图所示,斜率为1的直线过抛物线的焦点F ,与抛物线交y 2=2px(p >0)于A ,B 两点且,M 为抛物线弧AB 上的动点.|AB|=8求抛物线的方程;(1)求的最大值.(2)S △ABM 【答案】解 由条件知:,(1)l AB y =x ‒p2与联立,消去y ,得,y 2=2px x 2‒3px +14p 2=0则由抛物线定义得.x 1+x 2=3p.|AB|=x 1+x 2+p =4p 又因为,即,|AB|=8p =2则抛物线的方程为;y 2=4x 由知,且:,(2)(1)|AB|=4p l AB y =x ‒p2设与直线AB 平行且与抛物线相切的直线方程为,y =x +m 代入抛物线方程,得.x 2+2(m ‒p)x +m 2=0由,得.△=4(m ‒p )2‒4m 2=0m =p 2与直线AB 平行且与抛物线相切的直线方程为y =x +p2两直线间的距离为,d =22p故的最大值为.S △ABM 12×4p ×22p =2p 2=42【解析】根据题意,分析易得直线AB 的方程,将其与联立,得,由根与系数的(1)y 2=2px x 2‒3px +14p 2=0关系可得,结合抛物线的定义可得,解可得p 的值,即可得抛物线的x 1+x 2=3p |AB|=x 1+x 2+p =4p =8方程;设与直线AB 平行且与抛物线相切的直线方程为,代入抛物线方程,得,(2)y =x +m x 2+2(m ‒p)x +m 2=0进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数在处取得极值.f(x)=ax +xlnx x =1Ⅰ求的单调区间;()f(x)Ⅱ若在定义域内有两个不同的零点,求实数m 的取值范围.()y =f(x)‒m ‒1【答案】解:Ⅰ,分( (1),解得,当时,,分a =‒1a =‒1f(x)=‒x +xlnx (2)即,令0'/>,解得;分x >1 (3)令,解得;分0<x <1 (4)在处取得极小值,的增区间为,减区间为分∴f(x)x =1f(x)(1,+∞)(0,1)…(6)Ⅱ在内有两个不同的零点,()y =f(x)‒m ‒1(0,+∞)可转化为在内有两个不同的根,f(x)=m +1(0,+∞)也可转化为与图象上有两个不同的交点,分y =f(x)y =m +1...(7)由Ⅰ知,在上单调递减,在上单调递增,()f(x)(0,1)(1,+∞),分f(x )min =f(1)=‒1 (8)由题意得,即分m +1>‒1m >‒2①…(10)当时,;0<x <1f(x)=x(‒1+lnx)<0当且时,;x >0x→0f(x)→0当时,显然或者举例:当,;x→+∞f(x)→+∞(x =e 2f(e 2)=e 2>0)由图象可知,,即分m +1<0m <‒1②...(11)由可得分①②‒2<m <‒1 (12)【解析】Ⅰ求出函数的导数,计算,求出a 的值,从而求出函数的单调区间即可;()f'(1)Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m 的范围即可.()f(x)=m +1(0,+∞)本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21.已知椭圆,已知定点,若直线与椭圆交于C 、D 两点问:是否存在x 23+y 2=1E(‒1,0)y =kx +2(k ≠0).k 的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由得.{y =kx +2x 2+3y 2‒3=0(1+3k 2)x 2+12kx +9=0 ∴△=(12k )2‒36(1+3k 2)>0.①设、,则C(x 1,y 1)D(x 2,y 2){x 1+x 2=‒12k1+3k 2x 1⋅x 2=91+3k 2②而.y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4要使以CD 为直径的圆过点,当且仅当时,则,即E(‒1,0)CE ⊥DE y 1x 1+1⋅y 2x2+1=‒1.y 1y 2+(x 1+1)(x 2+1)=0 ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0.③将式代入整理解得经验证,,使成立.②③k =76.k =76①综上可知,存在,使得以CD 为直径的圆过点E .k =76【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E 点,则,将它们联立消去,即可得出k 的值.CE ⊥DE x 1x 2本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22.设函数.f(x)=x ‒ae x ‒1求函数的单调区间;(1)f(x)若对恒成立,求实数a 的取值范围.(2)f(x)≤0x ∈R 【答案】解:(1)f'(x)=1‒ae x ‒1当时,,在R 上是增函数;a ≤0f'(x)>0f(x)当时,令得a >0f'(x)=0x =1‒lna 若,则,从而在区间上是增函数;x <1‒lna f'(x)>0f(x)(‒∞,1‒lna)若,则,从而在区间上是减函数.x >1‒lna f'(x)<0f(x)(1‒lna,+∞由可知:当时,不恒成立,(2)(1)a ≤0f(x)≤0又当时,在点处取最大值,a >0f(x)x =1‒lna 且,f(1‒lna)=1‒lna ‒ae‒lna=‒lna 令得,‒lna <0a ≥1故若对恒成立,则a 的取值范围是.f(x)≤0x ∈R [1,+∞)【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函(1)数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在(2)a ≤0f(x)≤0a >0f(x)点处取最大值,求出a 的范围.x =1‒lna 本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。
高二理科数学第一学期期末考试试卷(含参考答案)
第一学期期末教学质量检测高二理科数学试卷参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,b a 计算公式: 1221ˆˆˆb,ni ii ni i x y nx yay bx x nx==-==--∑∑ 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“双色球”彩票中有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数3开始,从左向右读数,则依次选出来的第3个红色球的编号为( )A . 21B . 32C . 09D .202. 13x -≤≤是220x x -≤成立的( )条件.A .充分不必要B . 必要不充分C .充要D .既不充分也不必要 3. 命题“若A B ≠∅ ,则A ≠∅或B ≠∅”的逆否命题是( )A .若 AB =∅ ,则A =∅或B =∅ B .若A B =∅ ,则A =∅且B =∅C .若A =∅或B =∅,则A B A ≠D . 若A =∅且B =∅,则A B =∅4.如图是甲、乙两位学生在高一至高二七次重大考试中,数学科的考试成绩(单位:分)的茎叶图,若8,,6x 的平均数是x ,乙的众数是81,设甲7次数学成绩的中位数是a ,则ay的值为 ( )A .856 B .876C. 85 D .87 5. 三国时期吴国的数学家赵爽创制了一幅“弦图”,给出了迄今为止对勾股定理最早、最简洁的证明.如图所示的“弦图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角6πα=,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )A.12-B.2C. 44-.46.若下图,给出的是计算11112462016++++ 值的程序框图,其中判断框内可填入的条件是( )A . 2015?i >B . 2017?i > C. 2017?i ≤ D .2015?i ≤7. 命题“如果一个四边形是正方形,那么这个四边形一定是矩形”及其逆命题、否命题、逆否命题,这四个命题中假命题的个数( )A .0B .2 C. 3 D .48.设变量x y 、满足约束条件0220x y x y y x y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若满足条件的点(),P x y 表示的平面区域为一个三角形,则a 的取值范围是 ( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1 C. 41,3⎡⎤⎢⎥⎣⎦ D .(]40,1,3⎡⎫⋃+∞⎪⎢⎣⎭9. 若()()122,0,2,0F F -,124PF PF a a+=+(常数0a >),则点P 的轨迹是( ) A . 椭圆 B . 线段 C. 椭圆或线段 D .椭圆或直线10. 已知直线m ⊄平面α,直线n ⊂平面α,且点A ∈直线m ,点A ∈平面α,则直线m n 、的位置关系不可能是( )A .垂直B . 相交 C. 异面 D .平行11.若中心在原点,焦点在x 轴上的双曲线C 的渐近线与抛物线21y x =-相切,则双曲线C 的离心率为 ( ) A .5 B .54.212. 在ABC ∆中,D 为AB 的中点,点F 在线段CD (不含端点)上,且满足AF xAB yAC =+,若不等式212a at x y+≥+对[]2,2t ∈-恒成立,则a 的最小值为( ) A . -4 B . -2 C. 2 D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.某单位有员工300人,其中女员工有160人,为做某项调查,拟采用分层抽样抽取容量为15的样本,则男员工应选取的人数是 .14.已知抛物线()220y px p =>的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 . 15.先后抛掷质地均匀的硬币三次,则恰好出现一次正面朝上的概率是 .16.已知实数,x y 满足103040x y x y y -+≤⎧⎪+-≥⎨⎪-≤⎩,存在,x y 使得2x y a +≤成立,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?18. 某中学有初中学生1800人,高中学生1200人.为了解全校学生本学期开学以来的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”,按学生的课外阅读时间(单位:小时)各分为5组:[)[)[)[)[]0101020203030404050,,,,,,,,,,得其频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[)30,40小时内的总人数约是多少;(2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求抽出的3人中至少有1个高中生的概率.19.在如图所示的几何体中,正方形ABEF 所在的平面与正三角形ABC 所在的平面互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点. (1)求证://AD 平面BFM ;(2)求面EDF 与面ADB 所成锐二面角的大小.20.设命题:p 关于x 的不等式21xa +<的解集为∅;命题:q 函数()2lg y ax x a =-+的定义域是R .(1)若命题“p q ∧”是真命题,求实数a 的取值范围;(2)设命题:m 函数2y x bx a =++的图像与x 轴有公共点,若p ⌝是m ⌝的充分不必要条件,求实数b 的取值范围.21. 已知椭圆()2222:10x y C a b a b +=>>,直线:20l x y -+=与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切. (1)求椭圆C 的方程;(2)是否存在直线与椭圆C 交于,A B 两点,交y 轴于点()0,M m ,使22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围;若不存在,请说明理由. 22.已知()1xf x e x a=-+. (1)若0a >,对任意()0,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (2)若203a <≤,证明:函数()y f x =在(),a -+∞有唯一的零点.试卷答案一、选择题1-5:CBDCA 6-10: CBDCD 11、12:DB二、填空题13. 7 14. 4 15.3816. [)2,+∞ 三、解答题17.解:(1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得271534ˆˆ1.1,4 1.130.75553ba-⨯⨯===-⨯=-⨯, 故所求回归直线的方程为ˆ 1.10.7yx =+; (3)令8x =,得到预测值ˆ 1.180.79.5y=⨯+=(百万元) 答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元. 18.解:(1)由直方图可知,初中生中课外阅读时间在[)30,40小时内的学生人数的频率为()10.00520.030.04100.2-⨯++⨯=,则学生人数为18000.2360⨯=,高中生中课外阅读时间在[)30,40小时内的学生人数的频率为()10.00520.0250.035100.3-⨯++⨯=,则学生人数为12000.3360⨯=,估计全校学生中课外阅读时间在[)30,40小时内的总人数约是720人; (2)因为抽样比例为10011800120030=+,则初中生应抽取60人,高中生应抽取40人,所以在课外阅读时间不足10小时的样本学生中,初中生有0.00510603⨯⨯=人,记为123,,a a a ;高中生有0.00510402⨯⨯=人,记为12,b b .从这5人中任取3人的所有可能结果为:{}{}{}{}{}123121122131132,,,,,b ,,,,,,,,,a a a a a a a b a a b a a b ,{}{}{}{}{}112231232212312,,,,,,,,,,,,,,a b b a a b a a b a b b a b b ,共10个.其中至少有1个高中生的结果有:{}{}{}{}{}{}121122131132112231,,,,,,,,,,,,,,,,,a a b a a b a a b a a b a b b a a b ,{}{}{}232212312,,,,,,,,a a b a b b a b b ,共9个.所以至少有1个高中生的概率910P =.(注:用对立事件做也可) 19.解:(1)证明:连接AE 交BF 于点N ,连接MN ,因为ABEF 是正方形,所以N 是AE 的中点, 又M 是ED 的中点,所以//MN AD , 因为AD ⊄平面,BFM MN ⊂平面BFM , 所以//AD 平面BFM ; (2)解法一:因为ABEF 是正方形,所以BE AB ⊥,因为平面ABEF ⊥平面ABC ,平面ABEF 平面ABC AB =,所以BE ⊥平面ABC ,因为//CD BE ,所以取BC 的中点O .连接OM ,则OM ⊥平面ABC ,因为ABC∆是正三角形,所以OA BC ⊥,所以以O 为坐标原点,OA OB OM 、、所在直线为x y z 、、轴建立如图所示的空间直角坐标系:设1CD =,则)()()()),0,1,0,0,1,2,0,1,1,AB E D F-,()))()0,2,1,1,0,1,0,2,1DE EF DA DB ==-=-=-,设面EDF 的法向量为()111,,n x y z =,则111100200n EF y y z n DE ⎧=-=⎪⇒⎨+==⎪⎪⎩⎩, 令11z =,则111,2y x =-=∴1,12n ⎛⎫=- ⎪ ⎪⎝⎭,设面ADB 的法向量为(),,m x y z =,则00200m DA y z y z m DB ⎧=+-=⎪⇒⎨-=⎪=⎪⎩⎩, 令1z =-,则1,26y x =-=-,∴1,12m ⎛⎫=-- ⎪ ⎪⎝⎭, 213cos ,423n m n m n m-===- ,因为求面EDF 与面ADB 所成锐二面角, ∴平面EDF 与平面ADB 所成二面角的平面角为60°.(2)解法二:因为直线//EF AB ,所以面EDF 与面ADB 的交线l 与之平行,即////EF AB l , 分别取AB EF 、的中点G H 、,连q ,因为AC BC =,且//EF AB ,根据射影定理,所以,ED DF DB AD ==, 所以,DH EF DG AB ⊥⊥, 所以,DN l CH l ⊥⊥, 所以为所求锐二面角的平面角,设2AB =,则2,1,GH CD CG ==, 所以2HD DG ==,所以DGH ∆为正三角形,所以060HDG ∠=, 所以为所示锐二面角为60°.20.解:(1)由题意得p 和q 均是真命题, 由不等式21xa +<的解集为∅,得1a ≤,由函数()2lg y ax x a =-+的定义域是R 得x R ∈时20ax x a -+>恒成立,故2011402a a a >⎧⇒>⎨∆=-<⎩, 由题意得命题p 和命题q 均正确,综上,a 的取值范围是1,12⎛⎤ ⎥⎝⎦;(2)由命题m 得2240b a ∆=-≥,解得214a b ≤, 由p ⌝是m ⌝的充分不必要条件得m 是p 的充分非必要条件, ∴(]21,,14b ⎛⎤-∞⊂-∞ ⎥⎝⎦,∴2114b <, ∴()2,2b ∈-.21.解:(1)由已知得222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩,解方程组得a b c ===∴椭圆1C 的方程为22182x y +=, 假设存在这样的直线;(2)由已知可知直线的斜率存在,设直线方程为y kx m =+,由22182y kx mx y =+⎧⎪⎨+=⎪⎩得()()()22222418480,16820*k x kmx m k m +++-=∆=-+>,设()()1122,,,A x y B x y ,则2121222848,4141km m x x x x k k -+=-=++, ()()()2222121212122841m k y y kx m kx m k x x km x x m k -=++=+++=+,由22OA OB OA OB +=- 得OA OB ⊥,即0OA OB =,即12120x x y y +=, 故228580k m =-≥,代入(*)式解得5m >或5m <-. 22.解:(1)∵()0f x ≥对任意[)0,x ∈+∞恒成立,11 ∴x a e x -≥-对任意[)0,x ∈+∞恒成立, 令()x g x e x -=-,∵()x g x e x -=-在[)0,x ∈+∞内单调递减, ∴()()01g x g ≤=, ∴1a ≥,∴a 的取值范围是{}|1a a ≥;(2)∵函数x y e =在(),a -+∞上是增函数, 函数1y x a =+在(),a -+∞上是减函数,∴()1x f x e x a =-+在(),a -+∞上是增函数, 又∵203a <≤, ∴()1010f a =-<,()1101f e a =->+,由零点存在性定理得,在()f x 在()0,1上有零点, ∴函数()y f x =在(),a -+∞有唯一的零点.。
高二上学期期末考试数学(理)试题及答案
N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。
(完整)高二上学期期末理科数学试题及答案,推荐文档
高二年级理科数学卷20161225一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若命题p :0x ∃>,2320x x -+>,则命题p ⌝为A. 0x ∃>,2320x x -+≤B. 0x ∃≤,2320x x -+≤ C. 0x ∀>,2320x x -+≤D. 0x ∀≤,2320x x -+≤2、公比为2的等比数列{n a } 的各项都是正数,且 41016a a =,则6a =A .1B .2C .4D .8 3、在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于 A .ο30 B .ο60 C .ο120 D .ο1504、已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则23z x y =+的取值范围是A. [8,4]-B. [8,2]-C. [4,2]-D. ]4,8[--5、已知双曲线221916x y -=上一点M 到A (5,0)的距离为3,则M 到左焦点的距离等于 A .6 B .7 C .8 D .9 6、已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则=+++821111S S S Λ A. 87B. 98C. 89D. 9107、设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面α的法向量的是A.(-1,-2,5)B.(-1,1,-1)C.(1, 1,1)D.(1,-1,-1)8、空间四点A,B,C,M 互不重合且无三点共线,O 为空间任意一点,则使向量MA u u u r 、MB u u u r 、MC u u uu r 可能成为空间一组基底的关系是A .111333OM OA OB OC =++u u u u r u u u r u u u r u u u rB .MA MB MC =+u u u r u u u r u u u u rC .OM OA OB OC =++u u u u r u u u r u u u r u u u rD .32MA MB MC =-u u u r u u u r u u u u r9、已知直线m 、n 和平面α,则n m //的一个必要不充分条件是A .αα////n m 且B .α//m 且n α⊥C .m 、n 与α成等角D .m α⊥且n α⊥10、如果满足∠ABC=060,AC=12,BC=k 三角形恰有一个,那么k 的取值范围是A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11、已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A .13 B .12C .3D .2212.如果满足方程y tx t y x 322222+=+++的实数对),(y x 一定满足不等式||x y ≥,则常数t 的取值范围是A .]223,223[--- B .]223,223[++- C .]223,223[-+- D .]223,223[+--二、填空题.(本大题共 4小题,每小题 5分,共 20 分 )13、已知向量(5,3,1)a =r ,2(2,,)5b t =--r ,若向量a r 与b r 的夹角为锐角,则t 的取值范围是14、等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = .15、抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则p 的值为_____________16、已知命题p :ABC ∆中, B A >是B A sin sin >的充要条件;命题q : 0>>b a 是ab ba >+2的充分不必要条件。
高二第一学期期末测试卷及答案(理数)
中学高二期末测试卷(理数)时量:120分钟 总分:150分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=++−i i i 1)21)(1(在复平面内对应的点在( ) A .第一象限,B .第二象限C .第三象限D .第四象限2.特称命题“∃实数x ,使012<+x ”的否定可以写成 A .2,10x x ∀∈+≥R B .2,10x x ∃∈+≥R C .2,10x x ∀∈+<R D .若x ∈R ,则210x +<3.下面的抽样方法是简单随机抽样的是 ( ) A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验解析:A 、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次;D 是简单随机抽样. 答案:D4.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是 A .12 B .13 C .14D .165.如图,1F 和2F 分别是双曲线)0,0(12222>>=−b a by a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为开始A =1k =1B=2A+1A=Bk=k +1k >5?输出A结束是否甲 乙 0 8 5 2 1 3 4 6 5 4 2 3 4 6 9 7 6 6 1 1 3 3 8 9 9 4 4 8 0 5 5 8 A .31+B .5C .25 D . 36.已知下面两个程序:甲: i=1 乙:i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i -1WEND LOOP UNTIL i<1 PRINT S PRINT SEND END对甲、乙两程序和输出结果判断正确的是 ( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同7.抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B .33C .43D .88. 已知()2,0A ,()0,1B ,点()y x C ,是椭圆1422=+x y 上的点,,则使三角形ABC 的面积为21的点C 有( )个 A .4 B .3 C .2 D .1二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡对应题号后的横线上。
人教版高二(上)期末数学试卷(理科)(有解析)
人教版高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)“x>2”是“x>3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(5分)命题“所有能被2整除的数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.(5分)设a,b,c都是实数.已知命题p:若a>b,则a+c>b+c;命题q:若a>b>0,则ac>bc.则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.46.(5分)已知M(﹣2,0),N(2,0),|PM|﹣|PN|=4,则动点P的轨迹是()A.一条射线B.双曲线C.双曲线左支D.双曲线右支7.(5分)若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()A.A>0,且B>0 B.A>0,且B<0 C.A<0,且B>0 D.A<0,且B<08.(5分)在等比数列{a n},a3=2,a7=32,则q=()A.2 B.﹣2 C.±2 D.49.(5分)方程2x2﹣5x+2=0的两个根可分别作为的离心率.()A.椭圆和双曲线B.两条抛物线C.椭圆和抛物线D.两个椭圆10.(5分)已知a<b<0,则下列式子中恒成立的是()A.B.C.a2<b2D.11.(5分)不等式x2﹣ax﹣b<0的解为2<x<3,则a,b值分别为()A.a=2,b=3 B.a=﹣2,b=3 C.a=5,b=﹣6 D.a=﹣5,b=612.(5分)已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30°B.45°C.60°D.90°二.空题(4×5=20).13.(5分)抛物线y=4x2的焦点坐标是.14.(5分)14.已知=(1,2,﹣2),=(1,0,﹣1),求(﹣2))=.15.(5分)在△ABC中,若c2=a2+b2+ab,则∠C=.16.(5分)已知双曲线的一个焦点为F(0,2),则m=.三、解答题(共5小题,满分70分)17.(12分)已知平面π1的法向量为=(1,2,3)平面π2的法向量为=(﹣1,0,2)求两个平面夹角的余弦值.18.(12分)写出适合条件的双曲线的标准方程:(1)a=3,b=4焦点在x轴上;(2)焦点为(0,5),(0,﹣5)经过点(2,).19.(16分)已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求m的取值范围.20.(16分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.21.(14分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC.(1)求角B的大小;(2)当a=3,c=2时,求△ABC的面积.人教版高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)“x>2”是“x>3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当x=时,满足x>2,但x>3不成立,即充分性不成立,若x>3,则x>2,即必要性成立,则“x>2”是“x>3”的必要不充分条件,故选:B.2.(5分)命题“所有能被2整除的数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.(5分)设a,b,c都是实数.已知命题p:若a>b,则a+c>b+c;命题q:若a>b>0,则ac>bc.则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)【解答】解:∵命题p:若a>b,则a+c>b+c是真命题,则¬p为假命题,命题q:若a>b>0,则ac>bc是假命题,¬q是真命题,∴(¬p)∨q为假命题,p∧q为假命题,(¬p)∧(¬q)为假命题,(¬p)∨(¬q)为真命题故选:D.4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:化已知双曲线的方程为标准方程,可知焦点在y轴,且a=3,b=2,故渐近线方程为y==故选A5.(5分)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.4【解答】解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴,故选A.6.(5分)已知M(﹣2,0),N(2,0),|PM|﹣|PN|=4,则动点P的轨迹是()A.一条射线B.双曲线C.双曲线左支D.双曲线右支【解答】解:如果是双曲线,那么|PM|﹣|PN|=4=2aa=2而两个定点M(﹣2,0),N(2,0)为双曲线的焦点c=2而在双曲线中c>a所以把后三个关于双曲线的答案全部排除,故选A.7.(5分)若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()A.A>0,且B>0 B.A>0,且B<0 C.A<0,且B>0 D.A<0,且B<0【解答】解:方程Ax2+By2=1化成:,∵方程Ax2+By2=1表示焦点在y轴上的双曲线,∴即A<0,且B>0故选C.8.(5分)在等比数列{a n},a3=2,a7=32,则q=()A.2 B.﹣2 C.±2 D.4【解答】解:设等比数列的公比为q,首项为a1则由题意可得两式相除可得,即q4=16∴q=±2故选C9.(5分)方程2x2﹣5x+2=0的两个根可分别作为的离心率.()A.椭圆和双曲线B.两条抛物线C.椭圆和抛物线D.两个椭圆【解答】解:∵2x2﹣5x+2=0,∴解得方程的两个根为x1=2,x2=.∵x1=2∈(1,+∞),∴x1可作为双曲线的离心率;∵x2=∈(0,1),∴x2可作为椭圆的离心率.故选:A.10.(5分)已知a<b<0,则下列式子中恒成立的是()A.B.C.a2<b2D.【解答】解:∵a<b<0,不放令a=﹣3,b=﹣2,则﹣>﹣,可排除A;(﹣3)2>(﹣2)2,可排除C;=>1,可排除D;而﹣>﹣,即,B正确.故选B.11.(5分)不等式x2﹣ax﹣b<0的解为2<x<3,则a,b值分别为()A.a=2,b=3 B.a=﹣2,b=3 C.a=5,b=﹣6 D.a=﹣5,b=6【解答】解:[解法一]∵不等式x2﹣ax﹣b<0的解为2<x<3,∴一元二次方程x2﹣ax﹣b=0的根为x1=2,x2=3,根据根与系数的关系可得:,所以a=5,b=﹣6;[解法二]∵不等式x2﹣ax﹣b<0的解为2<x<3,∴不等式x2﹣ax﹣b<0与(x﹣2)(x﹣3)<0解集相同即x2﹣ax﹣b<0与x2﹣5x+6<0解集相同,所以==,可得a=5,b=﹣6故选C12.(5分)已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30°B.45°C.60°D.90°【解答】解:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以,所以═0×(﹣1)+3×1+3×0=3,并且||=3,||=,所以cos<,>==,∴的夹角为60°故选C.二.空题(4×5=20).13.(5分)抛物线y=4x2的焦点坐标是.【解答】解:由题意可知∴p=∴焦点坐标为故答案为14.(5分)14.已知=(1,2,﹣2),=(1,0,﹣1),求(﹣2))=17.【解答】解:∵=(1,2,﹣2),=(1,0,﹣1),∴=(﹣1,2,0),=(3,4,﹣5),∴(﹣2))=﹣3+8+0=5.故答案为:5.15.(5分)在△ABC中,若c2=a2+b2+ab,则∠C=120°.【解答】解:∵c2=a2+b2+ab,可得:﹣ab=a2+b2﹣c2,∴cosC===﹣,∵∠C∈(0°,180°),∴∠C=120°.故答案为:120°.16.(5分)已知双曲线的一个焦点为F(0,2),则m=﹣1.【解答】解:∵双曲线上午一个焦点为(0,2)∴双曲线在y轴上则双曲线方程为:c=2∵c2=a2﹣b 2∴4=﹣3m+(﹣m)解得:m=﹣1故答案为﹣1.三、解答题(共5小题,满分70分)17.(12分)已知平面π1的法向量为=(1,2,3)平面π2的法向量为=(﹣1,0,2)求两个平面夹角的余弦值.【解答】解:∵平面π1的法向量为=(1,2,3)平面π2的法向量为=(﹣1,0,2),∴cos<>===.∴两个平面夹角的余弦值为.18.(12分)写出适合条件的双曲线的标准方程:(1)a=3,b=4焦点在x轴上;(2)焦点为(0,5),(0,﹣5)经过点(2,).【解答】解:(1)根据题意,因为要求双曲线的焦点在x轴上,则可设双曲线的标准方程﹣=1,又因为a=3,b=4,所以其标准方程为﹣=1;(2)根据题意,因为双曲线的焦点为(0,5),(0,﹣5),所以双曲线的焦点在y轴上,又由双曲线经过点(2,),则有2a=|﹣|=6,则a=3,又由c=5,则b==4,则双曲线的标准方程为:﹣=1.19.(16分)已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求m的取值范围.【解答】解:(1)由,得,∴a2=4b2,依题意设椭圆方程为:,把点(4,1)代入得b2=5,∴椭圆方程为;(2)联立,得5x2+8mx+4m2﹣20=0.由△=64m2﹣20(4m2﹣20)=400﹣16m2>0,解得﹣5<m<5.∴m的取值范围是(﹣5,5).20.(16分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.【解答】证明:(1)∵E,F分别是AB,BD的中点.∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD;(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD又EF∩CF=F,∴BD⊥面EFC,∵BD⊂面BCD,∴面EFC⊥面BCD21.(14分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC.(1)求角B的大小;(2)当a=3,c=2时,求△ABC的面积.【解答】.解:(1)(2a﹣c)cosB=bcosC.由正弦定理得:(2sinA﹣sinC)cosB=sinBcosC,即:2sinAcosB=sinA,在△ABC 中,cosB=,解得:B=.(2)直接利用已知条件:=.。
高二上学期期末考试数学(理)试卷及参考答案(共3套)
绝密★启用前第一学期期末考试高二年级(理科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。
2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
不按要求填涂的,答案无效。
3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。
一、选择题:本大题共12小题,每小题5分,满分60分.1.下列说法正确的是(A) 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”(B) 若命题2:,210p x x x ∃∈-->R ,则命题2:,210p x x x ⌝∀∈--<R (C) 命题“若x y =,则sin sin x y =”的逆否命题为真命题 (D) “1x =-”是“2560x x --=”的必要不充分条件2.已知向量(1,1,0)=a ,(1,0,2)=-b ,且(R)k k +∈a b 与2-a b 互相垂直,则k 等于(A) 1 (B)15 (C) 35 (D)753.设ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c ,若3a =,3b =π3A =,则B =(A)π6 (B) 5π6 (C) π6或5π6(D)2π34.若公差为2的等差数列{}n a 的前9项和为81,则9a =(A) 1(B) 9(C) 17(D)195.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是(A)(B) (C) 2 16.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a (2)n a +等于(A) 2)12(-n(B))12(31-n (C) 14-n (D))14(31-n 7.不等式220ax bx ++>的解集是11(,)23-,则a b -等于(A) 10- (B) 10 (C) 14- (D)148.已知0,0>>b a ,且132=+b a ,则23a b+的最小值为(A) 24(B) 25 (C) 26(D)279.若中心在原点,焦点在y(A) y x =± (B) 2y x =±(C) y = (D)12y x =± 10.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是 (A) 30m -<< (B) 32m -<< (C) 34m -<< (D)13m -<<11.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为(A)13(B)3(C)(D)2312.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫ ⎝⎛4,27A ,则|||PA PM +的最小值是(A)211 (B) 4 (C)29 (D)5二、填空题:本大题共4小题,每小题5分,满分20分.13.已知向量1(8,,),(,1,2)2a x xb x ==,其中0x >,若b a //,则x 的值为__________.14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A 、B 两点,则AB =__________. 15.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =__________.16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
高二上学期期末考试(理科)数学试卷-附带答案
高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。
高二上学期期末考试数学理科试题(有答案)
高二上学期期末考试数学理科试题考试时间:120分钟 分数:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.双曲线19422=-y x 的渐近线方程是( )A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 3.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A . 8:27B . 2:3C . 4:9D . 2:9 4.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A . 052=-+y xB .012=-+y xC .052=-+y xD .072=+-y x5.如图,一个水平放置的图形的斜二测直观图是一个底角为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+B .221+ C . 222+ D . 21+ 6.半径为R 的半圆卷成一个圆锥,则它的体积为( )A3R B3R C3R D3R 7.在正方体1111ABCD A BC D -中,若E 是11AC 的中点,则直线CE 垂直于( ) A .AC B . BD C .1A D D .11A D数学试卷第1页(共4页)8.已知F 是抛物线241x y =的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )正视图 侧视图 俯视图A .122-=y xB .16122-=y x C .212-=y x D .222-=y x9.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ) A .90 B .60 C .45 D .30 10.若椭圆)0(122>>=+b a by ax 和双曲线)0,(122>=-n m ny mx 有相同的焦点F 1、F 2,P是两曲线的交点,则21PF PF ⋅的值是( ) A .n b -B .m a - C . n b - D . m a -11.在四面体ABCD 中,已知棱AC 其余各棱长都为1,则二面角A CD B--的余弦值为( )A .12 B .13 C D .312.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 二、填空题13.已知圆C 的方程为03222=--+y y x ,过点(1,2)P -的直线l 与圆C交于,A B 两点,若使AB 最小,则直线l 的方程是________________。
陕西省高二上学期期末理科数学试题 (解析版)
10.
x2 已知双曲线 C: a2
y2 b2
1(a 0,b 0) 的左、右焦点分别为 F1 , F2 ,离心率为 2, P 是双曲线上一
点, PF1 x 轴,则
PF1 F1F2
的值为(
)
3
A.
4
4
B.
5
5
C.
6
2 D.
3
【答案】A
【解析】
【分析】由离心率可得 c 2a ,再根据 a2 b2 c2 可得 b
由余弦定理 2c2 m2 n2 2mn cos 60 ,
即 4c2 m2 n2 mn ,(1)
设 a1 是椭圆的长半轴, a2 为双曲线的实半轴,
由椭圆以及双曲线的定义,可得 m n 2a1 , m n 2a2 ,
m a1 a2 , n a1 a2 ,
代入(1)式,可得 3a22 4c2 a12 0 ,
【详解】设等比数列an 的公比为 q ,
则 q a2 a3 a4 a1 a2 a3 q q 2 ,
a1 a2 a3
a1 a2 a3
所以 S6 S3 a4 a5 a6 q3 a1 a2 a3 8 7 56 .
故选:D
12. 我们把离心率互为倒数且焦点相同的椭圆和双曲线称为一对“优美曲线”.已知 F1 , F2 是一对“优美曲线”
【答案】 3 【解析】 【分析】已知两边及夹角,由余弦定理直接求得结果.
【详解】已知 A 60, c 2, b 1 , 由余弦定理得 a2 b2 c2 bc 12 22 1 2 3 ,解得 a 3 .
故答案为: 3 .
15. “蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上任意两条互相垂直的切线的交点都在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二理科数学上学期期末试卷及答案Last revised by LE LE in 2021安庆一中2007——2008学年度第一学期高二(理科)数学期末考试卷一、 选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或85、已知空间四边形OABC 中,c OC b OB a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .213221+- B .212132++-C .c b a 212121-+D .c b a 213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )或54 或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是( )A .a ≤1B .a ≤3C .a ≥1D .a ≥39、已知),,2(),,1,1(t t t t t =--=,则||-的最小值为 ( )A .55 B .555 C .553 D .51110、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( ) A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21+=4||=,则点P 到该椭圆左准线的距离为( ).4 C D.25安庆一中2007——2008学年度第一学期高二(理科)数学期末考试卷二、 填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是 13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B两点,若|AB|=5,则△AF 2B 的周长是 . 14、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 .15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _________. 三、 解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值。
18、(本题满分8分)(1)已知双曲线的一条渐近线方程是x y 23-=,焦距为132,求此双曲线的标准方程; (2)求以双曲线191622=-x y 的焦点为顶点,顶点为焦点的椭圆标准方程。
AB CA 111NM第19题图19、(本题满分10分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .20、(本题满分10分)如图所示,在直角梯形ABCD 中,|AD |=3,|AB |=4,|BC |= 3 ,曲线段DE 上任一点到A 、B 两点的距离之和都相等. (1)建立适当的直角坐标系,求曲线段DE 的方程; (2)过C 能否作一条直线与曲线段DE 相交,且所得弦以C 为中点,如果能,求该弦所在的直线 的方程;若不能,说明理由.21、(本题满分11分)若直线l :0=++c my x 与抛物线x y 22=交于A 、B 两点,O 点是坐标原点。
(1)当m =-1,c =-2时,求证:OA ⊥OB ;(2)若OA ⊥OB ,求证:直线l 恒过定点;并求出这个定点坐标。
(3)当OA ⊥OB 时,试问△OAB 的外接圆与抛物线的准线位置关系如何证明你的结论。
高二数学(理科)参考答案:第19题1、C2、C3、A4、C5、B6、B7、B8、D9、C 10、A 11、D12、01,2≠+-∈∀x x R x 13、18 14、56 15、②③16、p :0<m <31q :0< m <15 p 真q 假,则空集;p 假q 真,则1531<≤m 故m 的取值范围为1531<≤m17、如图建立空间直角坐标系,11C A =(-1,1,0),A 1=(0,1,-1) 设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由 011=⋅A n 可解得1n =(1,1,1)0111=⋅C A n易知2n =(0,0,1), 所以,212121cos n n n n ⋅⋅=33 所以平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值为33。
18、(1)19422=-y x 或14922=-x y ;(2)125922=+y x . 19、如图,建立空间直角坐标系O —xyz .(1)依题意得B (0,1,0)、N (1,0,1) ∴| |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA =(1,-1,2),1CB =(0,1,2),1BA ·1CB =3,|1BA |=6,|1CB |=5 ∴cos<1BA ,1CB 30101||||1111=⋅CB BA CB BA . (3)证明:依题意,得C 1(0,0,2)、Mz yxD 1A 1D B 1C 1CBA(21,21,2),B A 1=(-1,1,-2), M C 1=(21,21,0).∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M .20、(1)以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系,则A (-2,0),B (2,0),C (2, 3 ),D (-2,3). 依题意,曲线段DE 是以A 、B 为焦点的椭圆的一部分.12,2,4|)||(|212===+=b c BD AD a∴所求方程为)320,42(1121622≤≤≤≤-=+y x y x (2)设这样的弦存在,其方程为:22(2),(2)11612x y y k x y k x =-=-+=即将其代入得2222(34)16)16360k x k x k ++-+--= 设弦的端点为M (x 1,y 1),N (x 2,y 2),则由212122162,4,4,2342x x k x x k k +-=+=∴-==-+知解得∴弦MN 所在直线方程为2y x =-+验证得知,这时(0,(4,0)M N 适合条件.故这样的直线存在,其方程为2y x =-+ 21、解:设A(x 1,y 1)、B(x 2,y 2),由⎩⎨⎧==++202x y c my x 得0222=++c my y可知y 1+y 2=-2m y 1y 2=2c ∴x 1+x 2=2m 2—2c x 1x 2= c 2, (1)当m =-1,c =-2时,x 1x 2 +y 1y 2=0 所以OA ⊥OB.(2)当OA ⊥OB 时,x 1x 2 +y 1y 2=0 于是c 2+2c=0 ∴c=-2(c=0不合题意),此时,直线l :02=-+my x 过定点(2,0).(3)由题意AB 的中点D(就是△OAB 外接圆圆心)到原点的距离就是外接圆的半径。
),(2m c m D --而(m 2—c+21)2-[(m 2—c)2+m 2]=c -41 由(2)知c=-2 ∴圆心到准线的距离大于半径,故△OAB 的外接圆与抛物线的准线相离。