八年级数学下册第20章数据的整理与初步处理检测题新版华东师大版

合集下载

华师大版八年级下册数学第20章 数据的整理与初步处理含答案

华师大版八年级下册数学第20章 数据的整理与初步处理含答案

华师大版八年级下册数学第20章数据的整理与初步处理含答案一、单选题(共15题,共计45分)1、某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25B.24.5,25C.25,24.5D.24.5,24.52、对于两组数据A,B,如果,且,则()A.这两组数据的波动相同B.数据B的波动小一些C.它们的平均水平不相同D.数据A的波动小一些3、在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数1 2 8 13 14 41004、数据1、5、7、4、8的中位数是()A.4B.5C.6D.75、某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6B.2,6,6C.5,5,6D.5,6,56、若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2B.3C.5D.77、下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A. B. C.D.8、某班15名同学为灾区捐款,他们捐款数额统计如下:捐款数额5 10 20 50 100(元)人数(名) 2 4 5 3 1下列说法正确的是( ).A.众数是100B.平均数是20C.中位数是20D.极差是209、数据7、7、5、5、6、5、6的众数是()A.0B.7C.6D.510、已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是()A.9B.9.5C.3D.1211、甲、乙两名学生在参加今年体育考试前各做了5次立定跳远测试,两人的平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20 m,2.30 m,2.30 m,2.40 m,2.30 m,那么甲、乙的成绩比较()A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定 D.不能确定谁的成绩更稳定12、甲乙丙丁四支足球队在全国甲级联赛中进球数分别为:9,9,x , 7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10B.9C.8D.713、为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小0 1 2 3 4时)人数(人) 2 2 3 1 1A.3,2.5B.1,2C.3,3D.2,214、甲,乙,丙,丁四名跳远运动员选拔塞成绩的平均数与方差如下表所示:甲乙丙丁平均数561 561 560 560方差 3.5 15.5 3.5 16.5根据表中数据,要从中选一名成绩好又发挥稳定的运动员参赛,应该选择()A.甲B.乙C.丙D.丁15、下列说法正确的是()A.为检测某市正在销售的酸奶质量,应采用抽样调查的方式B.两名同学连续六次的数学测试平均分相同,那么方差较大的同学的数学成绩更稳定 C.抛掷一个正方体骰子,点数为奇数的概率是 D.“打开电视,正在播放动画片”是必然事件二、填空题(共10题,共计30分)16、一组数据3,5,7,8,4,7的中位数是________.17、某招聘考试分笔试和面试两项,其中笔试按60%、面试按40%计算加权平均数,作为总成绩,李红笔试成绩为90分,面试成绩为85分,那么李红的总成绩是________分.18、一组数据8,6,10,7,9的方差为________.19、已知一组数据1,3,5,x,y的平均数是3,则另一组数据-1,1,3,x-2,y-2的平均数是________。

华东师大版八年级下册章节基础检测第20章《数据的整理与初步处理》(手写答案)

华东师大版八年级下册章节基础检测第20章《数据的整理与初步处理》(手写答案)

知识像烛光,能照亮一个人,也能照亮无数的人。

--培根华东师大版八年级下册章节基础检测数据的整理与初步处理(满分100分,考试时间60分钟)学校班级姓名一、选择题(每小题 3 分,共30 分)1.某市测得一周PM2.5 的日均值(单位:微克/立方米)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50 和50 B.50 和40 C.40 和50 D.40 和40 2.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86 分的同学最多”,小英说:“我们组的7 位同学成绩排在最中间的恰好也是86 分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表:如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁4.已知一组数据3,a,4,5 的中位数为4,则这组数据的平均数为()A.3 B.4 C.5 D.65.数名射击运动员第一轮比赛成绩如下表所示:6.考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)分别为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.937.已知一组数据10,8,9,x,5 的众数是8,那么这组数据的方差是()A.2.8 B.143C.2 D.518.如图是某商场一天的运动鞋销售量情况统计图.这些运动鞋的尺码组成的一组数据中,众数和中位数分别为()A.25,25 B.25,24.5 C.24.5,25 D.24.5,24.5第8 题图第10 题图9.某校八年级有13 名同学参加百米竞赛,预赛成绩各不相同,要取前6 名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13 名同学成绩的()A.中位数B.众数C.平均数D.方差10.如图是甲、乙两名射击运动员的10 次射击训练成绩的折线统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定二、填空题(每小题 3 分,共15 分)11.商店某天销售了11 件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2 则这件衬衫领口尺寸的众数是cm,中位数是cm.12.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.13. 若x1,x2,x3,x4 的平均数是a,则3x1-5,3x2-8,3x3-6,3x4-1 的平均数为.14. 甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150 个为优秀);2⎨ ③甲班成绩的波动比乙班大.上述结论正确的是.(填序号)15. 现有一组数据:9,11,11,7,10,8,12,中位数是 m ,众数是 n ,则关于x ,y 的方程组⎧mx -10 y = 10的解是 .⎩10x - ny = 6三、解答题(本大题共 5 小题,满分 55 分)16.(10 分)一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班 48 名学生的平均分为 85 分,二班 52 名学生的平均分为 80 分,三班 50 名学生的平均分为 86 分,四班 50 名学生的平均分为 82 分.小 明这样计算该校八年级数学测试的平均成绩:小明的算法正确吗?为什么?若不正确,请写出正确的计算过程.17.(10 分)一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果 =5:4:1 的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:318.(10 分)下表是某校八年级(1)班20 名学生某次体育测验的成绩统计表:成绩(分)60 70 80 90 100人数(人) 1 5 x y 2(1)(2)这20 名学生的本次测验成绩的众数和中位数分别是多少?19.(12 分)6 月5 日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A,B,C,D 四个等级,其中相应等级的得分依次记为100 分、90 分、80 分、70 分,学校将某年级的一班和二班的成绩整理并绘制成统计图.平均数(分)中位数(分)众数(分)一班 a b 90二班 d 80 c(1)把一班竞赛成绩统计图补充完整;(2)求出表中a,b,c,d 的值:(3)请从平均数和中位数方面比较一班和二班的成绩,对这次竞赛成绩的结果进行分析.420.(13 分)某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.5参考答案:1-5ADBBC 6-10BABAB19、。

第20章 数据的整理与初步处理 华东师大版数学八年级下册综合检测(含解析)

第20章 数据的整理与初步处理 华东师大版数学八年级下册综合检测(含解析)

第20章数据的整理与初步处理综合检测满分100分,限时60分钟一、选择题(每小题3分,共30分)1.(2022山东聊城实验中学期末)一组数据:-3,-2,1,4,5,这组数据的平均数是( ) A.-1 B.0C.1D.22.【跨学科·体育】(2022黑龙江鹤岗中考)学校举办跳绳比赛,九年级(2)班参加比赛的6名同学每分钟跳绳的次数分别是172,169,180,182,175,176,这6个数据的中位数是( )A.181B.175C.176D.175.53.(2022吉林长春汽开区期中)某市评选优秀班主任,从“事迹材料”“班会设计”“演讲”“答辩”四个方面考核,各项成绩满分均为100分,所占权重分别为20%,20%,30%,30%,某位候选人的各项得分(单位:分)依次为90,85,92,86,则该候选人的综合得分为( ) A.92.6 B.88.4C.88.6D.84.84.(2022吉林长春农安一中月考)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁5.(2022湖北武汉武昌期末)5名同学周末户外运动时间的统计结果如表,说法正确的是( )户外运动时间(小时)33.544.5人数1121A.中位数是2小时,平均数是3.75小时B.中位数是4小时,平均数是3.75小时C.众数是4小时,平均数是3.8小时D.众数是2小时,平均数是3.8小时6.某校将举办小合唱比赛,七个参赛小组的人数如下:5,5,6,7,x,7,8.已知这组数据的平均数是6,则这组数据的中位数是( ) A.5 B.5.5C.6D.77.(2022吉林长春八十七中月考)某玩具厂质检员对A,B,C,D,E这5个玩具进行称重,实际质量(单位:克)分别为90,87,92,92,91.在统计时,不小心将B玩具的质量写成了90克,则计算结果不受影响的是( ) A.平均数 B.众数 C.中位数 D.方差8.【新素材·航天】(2022辽宁大连庄河期末)2022年6月5日,神舟十四号载人飞船在酒泉卫星发射中心成功发射,为了弘扬航天精神,激发初中生的爱国热情,某校开展航天知识竞赛,30名参赛同学的得分情况如下表所示:成绩(分)84889296100人数249105则这30名参赛同学成绩的众数是( )A.88B.92C.96D.1009.(2022福建泉州泉港期末)淘气统计一组数据142,140,143,136,149,139,得到它们的方差为s2.奇思将这组数据中的每一个数都减去140,得到一组新数据2,0,3,-4,9,-1,计算得出这组新数据的方差为s21.则s2与s21的关系为( )A.s20>s21B.s20<s21C.s20=s21D.s20+s21=110.(2022河南安阳期末)x1,x2,…,x20的平均数为m,x21,x22,…,x66的平均数为n,则x1,x2,…,x66的平均数为( )A.m+nB.m+n2C.10m+33n43D.10m+23n33二、填空题(每小题3分,共18分)11.【跨学科·英语】【新独家原创】“新冠病毒”的英语单词“Novel coronavirus”中共有16个字母,其中n、o、v、e、l、c、r、a、i、u、s出现的次数分别是2、3、2、1、1、1、2、1、1、1、1,这组数据的众数是 .12.如果一组数据5、8、a、7、4的平均数是a,那么这组数据的方差为 .13.(2022福建厦门六中期中)已知一组数据7、a、6、5、5、7的众数为7,则这组数据的中位数是 .14.(2022湖南长沙麓山国际实验学校期中)某商场试销一种新款衬衫,一周内的销售情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是 .(填“平均数”“中位数”或“众数”)15.某中学组织全校师生参加诗词大赛,25名参赛同学的得分情况如图所示,这些成绩的中位数是 ,众数是 .16.某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如表所示:汽车型号安全性能省油效能外观吸引力内部配备A3123B3222(得分说明:3分——极佳,2分——良好,1分——尚可接受)技术员将安全性能、省油效能、外观吸引力、内部配备这四项指标的占比分别设为30%,20%,x%,y%(注:每一项的占比大于0,各项占比的和为100%),并由此计算两款汽车的综合得分.(1)当x=25时,B型汽车的综合得分为 ;(2)若技术员要设计一种四项指标的占比方案,使得A型汽车的综合得分高于B型汽车的综合得分,则x的取值范围是 .三、解答题(共52分)17.(7分)某校为了培养学生学习数学的兴趣,举办“我爱数学”比赛,现有甲、乙、丙三个小组进入决赛.评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:比赛成绩/分比赛项目甲乙丙研究报告908379小组展示857982答辩748491(1)如果根据三个方面的平均成绩确定名次,那么哪个小组会获得此次比赛的冠军?(2)如果将研究报告、小组展示、答辩三项得分按4∶3∶3的比例确定各小组的成绩,此时哪个小组会获得此次比赛的冠军?18.(2022浙江嘉兴期末)(8分)甲、乙两人加工同一种直径为10.0 mm 的零件,现从他们加工好的零件中各抽取5个,量得它们的直径如下(单位:mm):甲:10.0,10.3,9.7,10.1,9.9;乙:9.9,10.1,10.0,9.8,10.2.(1)求甲被抽取的5个零件直径的方差.(2)已知乙被抽取的5个零件直径的方差是0.02(mm2),则从抽取的零件来看,甲、乙两人中谁的加工质量较好?请简述理由.19.(8分)车间有20名工人,某天他们生产的零件个数统计如下表:生产零件个数1011121315161920工人人数24632111 (1)直接写出这一天20名工人生产零件个数的众数为 ,中位数为 .(2)求这一天20名工人生产零件的平均个数.(3)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施,并将每天每名工人生产零件的个数定额为13个,你认为合理吗?为什么?如果不合理,请你制订一个较为合理的“定额”,并说明理由.20.【主题教育·革命文化】(2022福建泉州科技中学期中)(9分)某中学开展“唱红歌”比赛活动,九年级(1)(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.班级平均数(分)中位数(分)众数(分)九(1)班 85 九(2)班85 100(1)根据图示填写表格;(2)结合两班复赛成绩的平均数和中位数,分析哪个班的复赛成绩较好;(3)计算九(2)班复赛成绩的方差.21.【主题教育·革命文化】(2022山东聊城中考)(10分)为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制订了取整数的计分方式,满分10分.竞赛成绩如图所示.众数中位数方差八年级竞赛成绩781.88九年级竞赛成绩a8b(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明.(2)请根据图表中的信息,回答下列问题.①表中的a= ,b= ;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩为10分的获一等奖,9分的获二等奖,8分的获三等奖,则哪个年级的获奖率较高?22.(2022河南安阳滑县期末)(10分)某校在2022年4月23日举办了“以声献礼世界读书日,好书分享”演讲比赛活动,满分10分,成绩达到6分为合格,达到9分为优秀.这次比赛中,甲、乙两组分别有10名学生参赛,他们成绩分布的统计图如下.(1)直接写出下列成绩统计分析表中a 、b 的值.平均分中位数方差合格率优秀率甲组a 7.52.4180%20%乙组7b3.890%30%(2)小明同学说:“这次比赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小明是哪个组的学生.(3)乙组同学说他们组的合格率、优秀率均高于甲组,所以他们组的成绩好于甲组.但甲组同学不同意乙组同学的说法,认为他们组的成绩要好于乙组.请你至少写出两条支持甲组同学观点的理由.答案全解全析1.C 根据题意得,这组数据的平均数是―3―2+1+4+55=1.故选C. 2.D 将这组数据按从小到大的顺序排列为169,172,175,176,180,182,中位数=175+1762=175.5,故选D.3.B 该候选人的综合得分为90×20%+85×20%+92×30%+86×30%= 88.4,故选B.4.A ∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一个参加比赛,∵s2甲<s2丙,∴选择甲参赛.5.C 户外运动4小时的最多,有2人,所以众数为4小时,共5名同学,将户外运动时间按从小到大的顺序排列后,位于第3个的是4小时,所以中位数为4小时,平均数为3+3.5+4+4+4.55=3.8(小时),故选C.6.C ∵5,5,6,7,x,7,8的平均数是6,∴(5+5+6+7+x+7+8)÷7=6,解得x=4,将这组数据按从小到大的顺序排列为4,5,5,6,7,7,8,第4个数是6,则这组数据的中位数是6,故选C.7.C 90,87,92,92,91这组数据的中位数是91,B玩具的质量写成了90克,不影响数据的中位数,故选C.8.C 数据96出现了10次,出现的次数最多,则众数是96.故选C.9.C 一组数据中的每一个数据都加上(或都减去)同一个常数后,其平均数都加上(或都减去)这一个常数,方差不变,∴s20=s21.故选C.10.D ∵x1,x2,…,x20的平均数为m,x21,x22,…,x66的平均数为n,∴x 1,x 2,…,x 20的和为20m ,x 21,x 22,…,x 66的和为46n ,∴x 1,x 2,…,x 66的平均数为20m +46n 66=10m +23n 33.故选D.11.答案 1解析 这组数据中,数据1出现了7次,出现的次数最多,故这组数据的众数是1.12.答案 2解析 根据题意知5+8+a +7+45=a ,解得a =6,所以这组数据为5、8、6、7、4,则这组数据的方差为15×[(5-6)2+(8-6)2+(6-6)2+(7-6)2+(4-6)2]=2.13.答案 6.5解析 ∵一组数据7、a 、6、5、5、7的众数为7,∴a =7,则这组数据按照从小到大的顺序排列为5,5,6,7,7,7,∴这组数据的中位数为6+72=6.5.14.答案 众数解析 对商场经理来说,最有意义的是销售数量最多的衬衫的型号,即众数.15.答案 96分;98分解析 共有25个数据,按从小到大的顺序排列后最中间的数为第13个数,是96,所以中位数是96分;数据98出现了9次,出现的次数最多,所以众数是98分.16.答案 (1)2.3 (2)0<x <30解析 (1)当x =25时,y =100-30-20-25=25,则B 型汽车的综合得分为3×30%+2×20%+2×25%+2×25%=2.3.(2)A型汽车的综合得分为3×30%+1×20%+2×x%+3×y%=1.1+0.02x+ 0.03y,B型汽车的综合得分为3×30%+2×20%+2×x%+2×y%=1.3+ 0.02x+0.02y,要使A型汽车的综合得分高于B型汽车的综合得分,则1.1+0.02x+0.03y>1.3+0.02x+0.02y,∴y>20,∴x的取值范围是0<x<30.17.解析 (1)x甲=13×(90+85+74)=83(分),x乙=13×(83+79+84)=82(分),x丙=13×(79+82+91)=84(分),由于丙小组的平均成绩最高,所以丙小组会获得此次比赛的冠军.(2)根据题意,三个小组的比赛成绩如下:甲小组的比赛成绩为90×4+85×3+74×34+3+3=83.7(分),乙小组的比赛成绩为83×4+79×3+84×34+3+3=82.1(分),丙小组的比赛成绩为79×4+82×3+91×34+3+3=83.5(分),此时甲小组的成绩最高,所以甲小组会获得此次比赛的冠军.18.解析 (1)x甲=15×(10.0+10.3+9.7+10.1+9.9)=10.0(mm),s2甲=15×[(10.0-10.0)2+(10.3-10.0)2+(9.7-10.0)2+(10.1-10.0)2+(9.9-10.0)2]=0.04(mm2).(2)乙的加工质量较好.理由如下:s2甲=0.04(mm2),s2乙=0.02(mm2),s2甲>s2乙,∴乙的方差比甲的方差小,又x甲=x乙=10 mm,∴乙的加工质量较好.19.解析 (1)12;12.(2)1×(10×2+11×4+12×6+13×3+15×2+16×1+19×1+20×1)=13.20答:这一天20名工人生产零件的平均个数为13.(3)不合理.理由:当定额为13个时,仅有8人达标,5人获奖,不利于提高工人的积极性.当定额为12个时,有14人达标,8人获奖,不利于提高大多数工人的积极性.当定额为11个时,有18人达标,14人获奖,有利于提高大多数工人的积极性.因此,定额为11个时,有利于提高大多数工人的积极性.20.解析 (1)填表如下:班级平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100 (2)九(1)班的平均数和九(2)班的平均数相同,九(1)班的中位数比九(2)班的高,所以九(1)班的复赛成绩较好.(3)九(2)班复赛成绩的方差是1×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160(分2).521.解析 (1)由题意得,八年级竞赛成绩的平均数是(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级竞赛成绩的平均数是(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判断哪个年级的成绩比较好.(2)①九年级竞赛成绩中,8分出现的次数最多,故众数是8分,故a=8,九年级竞赛成绩的方差为1×[8×(6-8)2+9×(7-8)2+14×(8-8)2+13×(9-8)2+6×(10-8)2]=1.56,故b=1.56, 50故答案为8;1.56.②从众数角度看,八年级竞赛成绩的众数为7分,九年级竞赛成绩的众数为8分,所以应该给九年级颁奖;从方差角度看,八年级竞赛成绩的方差为1.88,九年级竞赛成绩的方差为1.56,因为两个年级的平均数相同,九年级的竞赛成绩的波动较小,所以应该给九年级颁奖.综上所述,应该给九年级颁奖.(3)八年级的获奖率为(10+7+11)÷50×100%=56%,九年级的获奖率为(14+13+6)÷50×100%=66%,∵66%>56%,∴九年级的获奖率较高.22.解析 (1)甲组学生成绩的平均分为5×2+6+7×2+8×3+9+1010=7.3(分).根据扇形统计图,乙组学生得6分的人数为4,得7分的人数为1,得8分的人数为1,得9分的人数为2,得10分的人数为1,得3分的人数为1,可将乙组学生成绩按从小到大的顺序排列为=6.5(分).∴3,6,6,6,6,7,8,9,9,10,∴乙组学生成绩的中位数是6+72a=7.3,b=6.5.(2)甲组成绩的中位数为7.5(分),乙组成绩的中位数为6.5(分),而小明的成绩(7分)位于小组中游略偏上,所以小明是乙组的学生.(3)①甲组的平均分高于乙组,即甲组的总体平均水平更高;②甲组的方差比乙组小,即甲组的成绩比乙组的成绩更稳定.(答案不唯一)。

华东师大版八年级数学下册 第20章 数据的整理与初步处理 单元检测试题(有答案)

华东师大版八年级数学下册  第20章 数据的整理与初步处理 单元检测试题(有答案)

第20章数据的整理与初步处理单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数2. 某同学用计算器计算30个数据时,错将其中一个数据105输入15,那么由此求出的平均数与实际平均数的差是()A.3.5B.3C.−3D.0.53. 路旁有一鱼塘,旁边竖着的牌子写明此塘的平均水深为1.5m,小明身高为1.7m,不会游泳,小明跳入鱼塘后的结果是()A.一定有危险B.一定没有危险C.可能有危险也可能没有危险D.以上答案都不对4. 某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A.80分B.82分C.84分D.86分5. 用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.206. 九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A.68分,68分B.68分,65分C.67分,66.5分D.70分,65分7. 已知一组数据:62,63,66,67,66.这组数据的众数和中位数分别是()A.66,62B.66,66C.67,62D.67,668. 某校八年级有两个班,在一次数学考试中,一班参加考试人数为52人,平均成绩为75分,二班参加考试人数为50人,平均成绩为76.65分,则该次考试中,两个班的平均成绩为()分.A.78.58B.75.81C.75.76D.75.759. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25B.24.5,25C.25,24.5D.24.5,24.510. 我校举办了校园歌手大赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的()A.众数B.平均数C.方差D.中位数二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 一组数据3,4,1,2,2,5的众数是________.12. 有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是________(填众数或方差或中位数或平均数)2 13. 甲、乙两名同学在射击选拔比赛中,各射击10次,平均成绩都是7.5环,方差分别是S甲2=3.45,则在本次测试中,成绩更稳定的同学是________(填“甲”或“乙”).=2.25,S乙14. 若一组数据1,2,3,x的平均数是2,则这组数据的方差是________.15. 我们进入中学以来,已经学习过不少有关数据的统计量,例如________等,它们分别从不同的侧面描述了一组数据的特征.16. 一组数据1,x,4,y,5的中位数和平均数都是3(x<y),则x=________.这组数据的方差是________.17. 学校规定学生的平时作业、期中、期末成绩按照50%,20%,30%的比例计算总评成绩,小红的三项评分分别是90分,85分,90分,那么她这学期总评成绩是________分.18. 我市某中学九(1)班为“阳光体育运动”自筹资金购买体育器材,全班40名同学筹款情况如下表,则该班同学筹款金额的众数是________元.三、解答题(本题共计7 小题,共计66分,)19. 服装厂试做一批服装,已经做了5天,平均每天做75套,剩下的要求3天完成,平均每天应做95套.这样,完成这批服装平均每天生产多少套?20. 某同学在报纸上查阅了5月1日−5月15日某地最高气温的一组数据,列成下表:(1)求前10天最高气温的众数;(2)求后10天最高气温的众数.21. 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是哪个队?22. 某校八年级师生为了响应“绿水青山就是金山银山”的号召,在今年3月的植树月活动中到某荒山植树,如图是抽查了其中20名师生植树棵数的统计图.(1)求这20名师生种树棵数的平均数、众数、中位数;(2)如果该校八年级共有师生500名,所植树的存活率是90%,估计所植的树共有多少棵存活?23. 某酒店共有6名员工,所有员工的工资如下表所示(1)酒店所有员工的平均月工资是多少元?(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由;若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.24. 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)计算两班比赛数据的方差.(3)根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.25. 甲、乙两名同学进行射击练习,在相同条件下各射靶10次,将射击结果作统计如下:(1)请你填上表中乙同学的有关数据;(2)根据你所学的统计知识,利用上述某些数据评价甲、乙两人的射击水平.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】45出现了三次是众数,按从小到大的顺序排列得到第五,六个数分别为35,45,所以中位数为40;由平均数的公式解得平均数为40;所以40不但是平均数也是中位数.2.【答案】C【解答】解:求30个数据的平均数时,错将其中的一个数据105输入成15,即少加了90;则由此求出的平均数与实际平均数的差是:=−3.−9030故选:C.3.【答案】C【解答】解:平均水深为1.5m,只说明此塘平均深浅,有可能有的地方比1.7m还要深,也有可能都没有1.7m 深,所以小明跳入鱼塘后的结果是可能有危险也可能没有危险.故选C .4.【答案】D【解答】解:由加权平均数的公式可知x ¯=80×40%+90×60%40%+60%=32+541=86.故选D .5.【答案】B【解答】 解:借助计算器,先按MOOE 按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC 键,再按sℎift 再按1,然后按5,就会出现平均数的数值.故选B .6.【答案】A【解答】解:将数据从小到大排列为:63,64,65,68,68,69,70,众数是出现次数最多的数,是68,中位数是第4个数,是68.故选A.7.【答案】B【解答】解:把这组数据按照从小到大的顺序排列为:62,63,66,66,67,第3个数是66,所以中位数是66,在这组数据中出现次数最多的是66,即众数是66.故选B.8.【答案】B【解答】=75.81.解:两个班的平均成绩为:75×52+76.65×5052+509.【答案】A【解答】从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.10.【答案】D【解答】解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故必须清楚这7名同学成绩的中位数,故选:D.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】2【解答】解:在3,4,1,2,2,5中,2出现了两次,次数最多,故众数为2.故答案为:2.12.【答案】中位数【解答】解:因为7位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.13.【答案】甲【解答】∵ S 甲2=2.25,S 乙2=3.45,∵ S 甲2<S 乙2,∵ 在本次测试中,成绩更稳定的同学是甲,14.【答案】12【解答】解:∵ 数据 1,2,3,x 的平均数是2,∵ (1+2+3+x)÷4=2,∵ x =2,∵ 这组数据的方差是:14[(1−2)2+(2−2)2+(3−2)2+(2−2)2]=12. 故答案为:12.15.【答案】平均数、众数、中位数、极差、方差、标准差【解答】解:所学的统计量:平均数、众数、中位数、极差、方差、标准差共有6个.故填平均数、众数、中位数、极差、方差、标准差.16.【答案】2,2【解答】解:∵ 一组数据1,x,4,y,5的中位数和平均数都是3(x<y),∵ 这组数据按照从小到大排列是:1,x,y,4,5,=3,∵ y=3,1+x+3+4+55解得,x=2,=2,∵ 这组数据的方差是:(1−3)2+(2−3)2+(3−3)2+(4−3)2+(5−3)25故答案为:2,2.17.【答案】89【解答】解:∵ 小红的三项评分分别是90分,85分,90分,学期总评成绩分别按50%、20%和30%的比例计算,∵ 她的学期总评成绩是90×50%+85×20%+90×30%=89(分);故答案为:89.18.【答案】15【解答】由表可知15出现的次数最多,即众数为15,三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】完成这批服装平均每天生产82.5套.【解答】解:根据题意得:(75×5+95×3)÷(5+3)=660÷8=82.5(套).20.【答案】前10天的最高气温分别为:20,24,23,26,23,21,18,19,22,23,在这10个数中,23出现的次数最多,因此最高气温的众数是23;后10天的最高气温分别为:21,18,19,22,23,26,27,26,28,29,在这10个数中,出现次数最多的是26,因此后10天的最高气温的众数是26.【解答】前10天的最高气温分别为:20,24,23,26,23,21,18,19,22,23,在这10个数中,23出现的次数最多,因此最高气温的众数是23;后10天的最高气温分别为:21,18,19,22,23,26,27,26,28,29,在这10个数中,出现次数最多的是26,因此后10天的最高气温的众数是26.21.【答案】9.5,10(2)乙队的平均成绩=1(10+8+7+9+8+10+10+9+10+9)=9(分),10[(10−9)2+(8−9)2+(7−9)2+(9−9)2+乙队的方差=110(8−9)2+(10−9)2+(10−9)2+(9−9)2+(10−9)2+(9−9)2]=1.(3)甲队成绩的方差是1.4,乙队成绩的方差是1,∵ 1<1.4,∵ 乙队成绩较为整齐.【解答】解:(1)甲队成绩的按从小到大排列为7,7,8,9,9,10,10,10,10,10,×(9+10)=9.5分;所以中位数是12乙队成绩从小到大排列为7,8,8,9,9,9,10,10,10,10,所以众数是10分.故答案为:9.5;10.(10+8+7+9+8+10+10+9+10+9)=9(分),(2)乙队的平均成绩=110[(10−9)2+(8−9)2+(7−9)2+(9−9)2+乙队的方差=110(8−9)2+(10−9)2+(10−9)2+(9−9)2+(10−9)2+(9−9)2]=1.(3)甲队成绩的方差是1.4,乙队成绩的方差是1,∵ 1<1.4,∵ 乙队成绩较为整齐.22.【答案】(2×4+3×6+4×8+5×2)=3.4(棵),这20名师生种树棵数的平均数是120这组数据的众数是4棵;把这些数从小到大排列,最中间的数是第10、11个数的平均数,=3.5(棵);则中位数是3+42根据题意得:3.4×90%×500=1530(棵),答:估计所植的树共有1530棵存活.【解答】(2×4+3×6+4×8+5×2)=3.4(棵),这20名师生种树棵数的平均数是120这组数据的众数是4棵;把这些数从小到大排列,最中间的数是第10、11个数的平均数,=3.5(棵);则中位数是3+42根据题意得:3.4×90%×500=1530(棵),答:估计所植的树共有1530棵存活.23.【答案】解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵ 能达到这个工资水平的只有1人,∵ 平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.【解答】解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵ 能达到这个工资水平的只有1人,∵ 平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.24.【答案】=0.4=40%,解:(1)甲班的优秀率:25乙班的优秀率:35=0.6=60%; (2)甲班的平均数=89+100+96+118+975=100(个), 甲班的方差S 甲2=15[(89−100)2+(100−100)2+(96−100)2+(118−100)2+(97−100)2]=94;乙班的平均数=100+95+110+91+1045=100(个), 乙班的方差S 乙2=15[(100−100)2+(95−100)2+(110−100)2+(91−100)2+(104−100)2]=44.4;(3)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,方差比甲班小,综合评定乙班踢毽子水平较好.【解答】解:(1)甲班的优秀率:25=0.4=40%,乙班的优秀率:35=0.6=60%;(2)甲班的平均数=89+100+96+118+975=100(个), 甲班的方差S 甲2=15[(89−100)2+(100−100)2+(96−100)2+(118−100)2+(97−100)2]=94;乙班的平均数=100+95+110+91+1045=100(个), 乙班的方差S 乙2=15[(100−100)2+(95−100)2+(110−100)2+(91−100)2+(104−100)2]=44.4;(3)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,方差比甲班小,综合评定乙班踢毽子水平较好.25.【答案】解:(1)乙学生相关的数据为:平均数为:110(5×1+6×2+7×4+8×2+9×1)=7;∵ 7出现的次数最多,故众数为7;方差为:110[(5−7)2+(6−7)2+(6−7)2+...+(9−7)2]=1.2.(2)从平均水平看,甲、乙两名学生射击的环数平均数均为7环,水平相当;从集中趋势看,乙的众数比甲大,乙的成绩比甲的好些;从稳定性看,s乙2<s甲2,所以乙的成绩比甲稳定.【解答】解:(1)乙学生相关的数据为:平均数为:110(5×1+6×2+7×4+8×2+9×1)=7;∵ 7出现的次数最多,故众数为7;方差为:110[(5−7)2+(6−7)2+(6−7)2+...+(9−7)2]=1.2.(2)从平均水平看,甲、乙两名学生射击的环数平均数均为7环,水平相当;从集中趋势看,乙的众数比甲大,乙的成绩比甲的好些;从稳定性看,s乙2<s甲2,所以乙的成绩比甲稳定。

八年级数学下册第20章数据的整理与初步处理单元综合测试4新版华东师大版

八年级数学下册第20章数据的整理与初步处理单元综合测试4新版华东师大版

第20章数据的整理与初步处理单元测试一、精挑细选一锤定音(本大题共10小题,每小题3分,共30分)1、一组数据:-3、-1、2、6、6、8、16、99,这组数据的中位数和众数分别是()A.6和6B.8和6C.6和8D.8和162、一组数据:2、7、10、8、、6、0、5的平均数是6,那么的值应为()A.12B.10C.8D.63、在某次歌手大奖赛中,8位评委给某歌手的评分如下:9.8、9.5、9.7、9.8、9.8、9.7、9.5、9.8;按规定去掉一个最高分,去掉一个最低分,其余分数的平均数作为该选手的最后得分,该选手的最后得分(精确到0.01)是()A.9.70B.9.71C.9.72D.9.734、某天上午8:00小李从家中出发,以2米/秒的速度于8:15到了商店,然后以2.5米/秒的速度于8:20到达书店,则小李从家到书店的平均速度为()A.2.25B.2.125C.2.175D.2.2255、某商店选用28元/千克的A型糖3千克,20元/千克的B型糖2千克,12元/千克的C型糖5千克混合成杂拌糖后出售,这种杂拌糖平均每千克的售价应为()A.20元B.18元C.19.6元D.18.4元6、某班主任想了解本班学生平均每月有多少零用钱,随机抽取了10位同学进行调查,他们每月的零用钱数目是(单位:元):10、20、20、30、20、30、10、10、50、100,则该班学生每月平均零用钱约为()A.10元B.20元C.30元D.40元;7、某青年足球队12名队员的年龄情况如右表:则这个球队队员年龄的众数和中位数是()A.19,20B.19,19C.19,20.5D.20,198、某班在一次数学测试后,成绩统计如右表:该班这次数学测试的平均成绩是()A.82B.75C.65D.629、班主任为了解学生星期六、日在家的学习情况,家访了班内的六位同学,了解到他们在家的学习时间如右表所示:那么这六位学生学习时间的众数和中位数分别是()A.4小时和4.5小时B.4.5小时和4小时;C.4小时和3.5小时D.3.5小时和4小时;10、某校四个绿化小组一天植树棵数分别为10,10,,8,已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8B.9C.10D.12二、慎思妙解画龙点睛(本大题共10小题,每小题3分,共30分)11、某校初二年级有4个班级,在一次测试中,一班40人,平均成绩81分;二班41人,平均成绩78分;三班42人,平均成绩80分;四班40人,平均成绩82分;则这四个班级的平均成绩(保留两位小数)为分12、一超市备有某种绿色蔬菜100千克,上午按每千克1.2元的价格售出50千克,中午按每千克1元的价格售出30千克,下午按每千克0.8元的价格将剩下的蔬菜全部售完,那么这批蔬菜售出的平均价格是每千克元13、一组数据:6、、2、4,的平均数是5,则中位数为14、有6个数,它们的平均数是12,再添一个数5后,则这7个数的平均数为15、某班共有学生50名,平均身高为165cm,其中30名男生的平均身高为168 cm,则20名女生的平均身高为 cm16、某校八(2)班期中考试的数学成绩如下: 100分3人,95分5人,90分6人,80分12人,70分16人,60分5人,50分6人,则该班学生这次考试的平均成绩(精确到0.01)为分17、一组数据:23、27、20、18、、16,它们的中位数是21,则平均数为18、期末考试,小军的6门功课成绩为:85、79、88、88、95、95,则其众数为,中位数是19、在环保知识竞赛中,包括小明同学在内的6名同学的平均分为74分,其中小明同学考了89分,则除小明以外的5名同学的平均分为分.20、一组数据5,7,7,的中位数与平均数相等,则的值为三、过关斩将胜利在望(本大题6道题,共60分)21、(8分)学期末,某班评选优秀学生干部,下面是班长、学习委员和团支部书记的得分情况,假设三个方面的权重分别为30%、30%和40%,则谁会当选?22、(8分)某家电商场三、四月份出售同一种品牌各种规格的空调,销售台数如下表,根据下表回答下列问题:(1)商场平均每月销售空调多少台?(2)商场出售的各种规格的空调中,众数落在哪个规格内?(3)在研究六月份的进货方案时,你认为哪种规格的空调要多进,哪种规格的空调要少进;23、(10分)已知数据:10、10、、8的中位数与平均数相等,求这组数据的中位数24、(10分)小林在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分,期中考试得82分,期末考试得90分,如果按照平时、期中、期末的权重分别为10%,30%,60%计算,那么小林该学期的数学书面测验的总平成绩应为多少分?25、(12分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱”赈灾捐款活动。

华东师大版八年级数学下册第二十章数据的整理与初步处理单元测试卷(包含答案卷)

华东师大版八年级数学下册第二十章数据的整理与初步处理单元测试卷(包含答案卷)

华师大版八年级数学下册第20章《数据的整理与初步处理》单元测试卷整理:键盘手一、选择题1. 一组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,232.为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是1.2,1.1,0.6,0.9,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁4.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3B.4C.5D.65.已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A.3B.4.5C.5.2D.66.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如图a的折线统计图.下列关于这组数据的结论正确的是()图aA.最大值与最小值的差是6B.众数是7C.中位数是5D.方差是87.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,28.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题9.一组数据2,1,2,5,3,2的众数是.10.下表是某养殖户的500只鸡出售时质量的统计数据.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为.11.已知一组数据1,3,5,7,9,则这组数据的方差是.12.一组数据4,3,x,1,5的众数是5,则x=.13.已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.三、解答题14.某校欲招聘一名教师,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试.他们各自的成绩(单位:分)如下表所示:专业知讲课答辩应聘者识甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?15.为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395;乙:403,404,396,399,402,402,405,397,402,398.整理数据:表一质量频数(g) 种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30013乙0150分析数据:表二种类平均数(g)中位数(g)众数(g)方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填“甲”或“乙”),说明你的理由.16.车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件91011121315161920的个数(个)工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?华师大版八年级数学下册第20章《数据的整理与初步处理》单元测试答案卷整理:键盘手一、选择题1.一组数据20,21,22,23,23的中位数和众数分别是(D)A.20,23B.21,23C.21,22D.22,232.为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是(B)年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是1.2,1.1,0.6,0.9,则射击成绩最稳定的是(C)A.甲B.乙C.丙D.丁4.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是(B)A.3B.4C.5D.65.已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为(C)A.3B.4.5C.5.2D.66.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如图a的折线统计图.下列关于这组数据的结论正确的是(D)图aA.最大值与最小值的差是6B.众数是7C.中位数是5D.方差是87.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是(A)A.80,80B.81,80C.80,2D.81,28.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高(A)A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题9.一组数据2,1,2,5,3,2的众数是2.10.下表是某养殖户的500只鸡出售时质量的统计数据.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为 1.4.11.已知一组数据1,3,5,7,9,则这组数据的方差是8.12.一组数据4,3,x,1,5的众数是5,则x=5.13.已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为18.三、解答题14.某校欲招聘一名教师,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试.他们各自的成绩(单位:分)如下表所示:应聘者专业知讲课答辩识甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?解:甲的平均成绩为77分,乙的平均成绩为86.5分,丙的平均成绩为84.5分应录取乙15.为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395;乙:403,404,396,399,402,402,405,397,402,398.整理数据:表一质量频数(g) 种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30013乙0150分析数据:表二种类平均数(g)中位数(g)众数(g)方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填“甲”或“乙”),说明你的理由.解:整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400.∵乙组数据中402出现的次数最多,有3次,∴乙组数据的众数为402.填表如下:表二众数种类平均数(g)中位数(g)方差(g)甲401.540040036.85乙400.84024028.56得出结论:甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定.从平均数角度说,乙的平均数更接近标准质量400 g.16.车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件91011121315161920的个数(个)工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个).解:(1)x̅=120答:这一天20名工人生产零件的平均个数为13个.=12(个),众数为11个,(2)中位数为12+122当定额为13个时,有8人达标,6人获奖,不利于提高大多数工人的积极性;当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性.∴定额为11个时,有利于提高大多数工人的积极性.。

华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷(含答案解析

华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷(含答案解析

华师大新版八年级下学期《第20章数据的整理与初步处理》单元测试卷一.选择题(共15小题)1.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染.根据表中数据,可得此日的体温是()A.36.6℃B.36.7℃C.36.8℃D.37.0℃2.在黑板上从1开始,写出一组相继的正整数,然后擦去一个数,其余数的平均值为35,擦去的数是()A.5B.6C.7D.83.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元D.一定有一半员工的月工资高于1500元4.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.5.已知数据:x1+3,x2+3,x3+3,x4+3的平均数是9,则数据x1,x2,x3,x4的平均数是()A.5B.6C.7D.86.某同学使用计算器计算30个数据的平均数时,错将其中一个数据15输入为150,那么由此求出的平均数与实际相差()A.5B.4.5C.﹣5D.﹣4.57.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A.B.C.D.8.综合实践活动中,同学们做泥塑工艺制作.小明将各同学的作品完成情况绘成了如图的条形统计图.根据图表,我们可以知道平均每个学生完成作品()A.12件B.8.625件C.8.5件D.9件9.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b 颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=3410.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A.82,76B.76,82C.82,79D.82,8211.漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注已售出服装型号的()A.中位数B.众数C.平均数D.方差12.鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数13.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④14.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是()A.1B.2C.3D.415.数据8,10,12,9,11的平均数和方差分别是()A.10和B.10和2C.50和D.50和2二.填空题(共12小题)16.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为小时.17.如果一组数据:2,4,6,x,y的平均数为4.8,那么x,y的平均数为.18.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款元.19.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=(用只含有k的代数式表示).20.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的平均数是.21.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”、“众数”或“中位数”).22.一组数据:1、﹣1、0、4的方差是.23.学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则三年后这五名队员年龄的方差为.24.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1)25.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为.26.小明同学5次数学单元测试成绩(分数取整数)的平均分是90分,且每次测试都没有低于80分得成绩,中位数是93分,唯一众数是96分,则最低的一次成绩可能是分.27.在一次中学生田径运动会上,参加男子跳高的14名运动员的成绩如下表:这些运动员跳高成绩的中位数是,众数是.三.解答题(共7小题)28.某开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.29.荆州古城是闻名遐迩的历史文化名城,下表图是荆州古城某历史景点一周的抽样统计参观人数和门票价格.(1)把上表中一周的参观人数作为一个样本,直接指出这个样本的中位数,众数和平均数,分析表中数据还可得到一些信息,如双休日参观人数远远高于平时等,请你尝试再写出两条相关信息;(2)若“五•一”黄金周有甲,乙两个旅行团到该景点参观,两团人数之和恰为上述样本数据的中位数,乙团不超过50人,设两团分别购票共付W元,甲团人数x人,①求W与x的函数关系式;②若甲团人数不超过100人,请说明两团合起来购票比分开购票最多可节约多少元?30.某私立中学准备招聘教职员工60名,所有员工的月工资情况如下:请根据上表提供的信息,回答下列问题:(1)如果学校准备招聘“高级教师”和“中级教师”共40名(其他员工人数不变),其中高级教师至少要招聘13人,而且学校对高级、中级教师的月支付工资不超过83000元,按学校要求,对高级、中级教师有几种招聘方案?(2)(1)中的哪种方案对学校所支付的月工资最少?并说明理由;(3)在学校所支付的月工资最少时,将上表补充完整,并求所有员工月工资的中位数和众数.31.一个公司的所有员工的月收入情况如下:(1)该公司所有员工月收入的平均数是元,中位数是元,众数是元.(2)你觉得用以上三个数据中的哪一个来描述该公司员工的月收入水平更为恰当?说明理由.(3)某天,一个员工辞职了,若其他员工的月收入不变,但平均收入下降了,你认为辞职的可能是哪个岗位上的员工?说明理由.32.小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量:金键学生奶,金键酸牛奶,金键原味奶;根据计算结果分析,你认为哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定.金键学生奶,金键酸牛奶,金键原味奶;(3)根据计算结果分析,你认为哪种牛奶销量最稳定.33.我市今年体育中考于5月18日开始,考试前,九(2)班的王茜和夏洁两位同学进行了8次50m短跑训练测试,她们的成绩分别如下:(单位:秒)(1)王茜和夏洁这8次训练的平均成绩分别是多少?(2)按规定,女同学50m短跑达到8.3秒就可得到该项目满分15分,如果按她们目前的水平参加考试,你认为王茜和夏洁在该项目上谁得15分的可能性更大些?请说明理由.34.某校七年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定的时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛数据(单位:个)统计发现两班总分相等,S,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)根椐以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.华师大新版八年级下学期《第20章数据的整理与初步处理》单元测试卷参考答案与试题解析一.选择题(共15小题)1.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染.根据表中数据,可得此日的体温是()A.36.6℃B.36.7℃C.36.8℃D.37.0℃【分析】设星期四的体温是x℃,根据平均数的概念列出方程求解.【解答】解:设星期四的体温是x℃,依题意可得:(36.6+36.7+37.0+37.3+x+36.9+37.1)÷7=36.9,解得,x=36.7(℃).故选:B.【点评】本题考查了平均数的概念和一元一次方程的解法.熟记公式:是解决本题的关键.2.在黑板上从1开始,写出一组相继的正整数,然后擦去一个数,其余数的平均值为35,擦去的数是()A.5B.6C.7D.8【分析】设n个数,因为其余数的平均值为35,所以n﹣1是17的倍数,确定n个数的取值范围,计算求解.【解答】解:设一共有n个数,∵擦去一个其余数的平均值为35,∴n﹣1是17的倍数,即17个,34个,51个,68个,85个等,显然只有68个时所得平均数与35相差无几,∴n=69,则1+2+…+69==2415,那么n﹣1=68,则其他数的和是68×35=2408,∵2415﹣2408=7,∴擦去的数是7.故选:C.【点评】本题考查了平均数的综合运用,正确运用分类讨论的思想是解答本题的关键.3.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元D.一定有一半员工的月工资高于1500元【分析】算术平均数:对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数,依此即可作出选择.【解答】解:∵某单位有1名经理、2名主任、2名助理和11名普通职员,普通职员的人数占多数,该单位员工的月平均工资是1500元,∴至少有一名员工的月工资高于1500元是正确的.故选:C.【点评】考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.【分析】由题意知,设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则关键时间的计算公式求得T1及T2,再关键平均速度的计算公式即可求得平均速度.【解答】解:设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则有T1=,T2=;∴平均速度===;故选:D.【点评】本题考查了平均数实际中的运用.平均速度=总路程÷总时间.5.已知数据:x1+3,x2+3,x3+3,x4+3的平均数是9,则数据x1,x2,x3,x4的平均数是()A.5B.6C.7D.8【分析】根据平均数的计算公式即可求解.先求出数据x1+3,x2+3,x3+3,x4+3的和,然后利用平均数的计算公式表示数据x1,x2,x3,x4的平均数,经过代数式的变形可得答案.【解答】解:∵x1+3,x2+3,x3+3,x4+3的平均数是9.∴x1+3,x2+3,x3+3,x4+3的和是4×9=36.∴x1,x2,x3,x4的平均数是:(x1+x2+x3+x4)=[(x1+3)+(x2+3)+(x3+3)+(x4+3)﹣3×4]=(36﹣12)=×24=6.故选:B.【点评】本题主要考查了平均数的计算.正确理解公式是解题的关键,在计算中正确使用整体代入的思想.6.某同学使用计算器计算30个数据的平均数时,错将其中一个数据15输入为150,那么由此求出的平均数与实际相差()A.5B.4.5C.﹣5D.﹣4.5【分析】因为错将其中一个数据15输入为150,可求出多加了的数,进而即可求出答案.【解答】解:由题意知,错将其中一个数据15输入为150,则多加了150﹣15=9135,所以平均数多了135÷30=4.5.故选:B.【点评】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.7.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A.B.C.D.【分析】可设男生人数为x人,根据平均数公式即可求出男生所报的数之和为x;由于男生所报的数之和与女生所报的数之和相等,则女生人数可求,再根据平均数公式即可求出全班同学所报数的平均值.【解答】解:设男生人数为x人,则女生人数为:x÷()=x.全班同学所报数的平均值为:x×2÷(x+x)=.故选:C.【点评】本题考查了平均数的求法.解题关键是先设男生人数为x人,再用x表示女生人数,从而得出全班同学的人数.8.综合实践活动中,同学们做泥塑工艺制作.小明将各同学的作品完成情况绘成了如图的条形统计图.根据图表,我们可以知道平均每个学生完成作品()A.12件B.8.625件C.8.5件D.9件【分析】根据加权平均数的计算方法,用作品的总件数除以总人数,计算即可得解.【解答】解:==8.625(件).故选:B.【点评】本题考查了加权平均数的计算,要注意作品件数相应的权重.9.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b 颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=34【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.【解答】解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选:D.【点评】此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A.82,76B.76,82C.82,79D.82,82【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中82是出现次数最多的,故众数是82;而将这组数据从小到大的顺序排列(76,76,82,82,82,95),处于中间位置的两个数的平均数是,那么由中位数的定义可知,这组数据的中位数是82.故选:D.【点评】此题考查了中位数、众数的意义,解题的关键是正确理解各概念的含义.11.漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注已售出服装型号的()A.中位数B.众数C.平均数D.方差【分析】们应该最关注的是哪种服装售出的最多,因而最关心的是众数.【解答】解:漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注的是哪种服装售出的最多,因而最关心的是众数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.12.鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数【分析】根据众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量进行解答即可.【解答】解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数.故选:B.【点评】本题考查统计量的选择,关键是根据众数就是出现次数最多的数,反映了一组数据的集中程度.13.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案.【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是()A.1B.2C.3D.4【分析】根据方差的意义分析,数据都加3,方差不变,原数据都乘2,则方差是原来的4倍.【解答】解:设样本x1,x2,x3,…,x n的平均数为m,则其方差为S12=[(x1﹣m)2+(x2﹣m)2+…+(x n﹣m)2]=1,则样本2x1+3,2x2+3,2x3+3,…,2x n+3的平均数为2m+3,其方差为S22=4S12=4.故选:D.【点评】本题考查方差的计算公式及其运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.数据8,10,12,9,11的平均数和方差分别是()A.10和B.10和2C.50和D.50和2【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】解:平均数=(8+10+12+9+11)=10,方差是S2=[(8﹣10)2+(10﹣10)2+(12﹣10)2+(9﹣10)2+(11﹣10)2]=×10=2.故选:B.【点评】正确理解平均数和方差的概念.掌握求平均数和方差的公式,是解决本题的关键.二.填空题(共12小题)16.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为50小时.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:本组数据分别为:47,49,50,51,50,53,故平均数==50(小时).故答案为50.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.17.如果一组数据:2,4,6,x,y的平均数为4.8,那么x,y的平均数为6.【分析】首先运用求平均数公式:得出x与y的和,再运用此公式求出x,y的平均数.【解答】解:由题意知,(2+4+6+x+y)=4.8,∴x+y=24﹣2﹣4﹣6=12,∴x,y的平均数=×12=6.故答案为6.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.18.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款31.2元.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2元.故答案为:31.2.【点评】本题主要考查扇形统计图的定义.统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.19.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=2k2﹣k(用只含有k的代数式表示).【分析】由于已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),所以这组数据的中位数与平均数相等,即可求出这组数据的各数之和s的值.【解答】解:∵一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),∴这组数据的中位数与平均数相等,∵这组数据的各数之和是s,中位数是k,∴s=nk.∵=k,∴n=2k﹣1,∴s=nk=(2k﹣1)k=2k2﹣k,故答案为:2k2﹣k.【点评】本题考查了中位数与平均数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是所有数据的和除以数据的个数.20.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的平均数是3.【分析】先根据众数的定义求出x的值,再根据平均数的计算公式列式计算即可.【解答】解:∵0,2,x,4,5的众数是4,∴x=4,∴这组数据的平均数是(0+2+4+4+5)÷5=3;故答案为:3;【点评】此题考查了众数和平均数,根据众数的定义求出x的值是本题的关键,众数是一组数据中出现次数最多的数.21.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”、“众数”或“中位数”).【分析】由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数及中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.22.一组数据:1、﹣1、0、4的方差是.【分析】先求出该组数据的平均数,再根据方差公式求出其方差.【解答】解:∵=(1﹣1+0+4)=1,∴S2=[(1﹣1)2+(1+1)2+(0﹣1)2+(4﹣1)2]=(4+1+9)=,故答案为.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则三年后这五名队员年龄的方差为0.8.【分析】方差是用来衡量一组数据波动大小的量,每个数都加了3所以波动不会变,方差不变.【解答】解:由题意知,原来的平均年龄为,每位同学的年龄三年后都变大了3岁,则平均年龄变为+3,则每个人的年龄相当于加了3岁,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=0.8,现在的方差s22=[(x1+3﹣﹣3)2+(x2+3﹣﹣3)2+…+(x n+3﹣﹣3)2]=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=0.8,方差不变.故填0.8.【点评】本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.24.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.25.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为17或18或19.【分析】将五个正整数从小到大重新排列后,有5个数,中位数一定也是数组中的数,根据中位数与众数就可以确定数组中的后三个数.而另外两个不相等且是正整数,就可以确定这两个数,进而得到这五个数.【解答】解:将五个正整数从小到大重新排列后,最中间的那个数是这组数据的中位数,即4;唯一的众数是5,最多出现两次,即第四、五两个数都是5.第一二两个数不能相等,可以为1与2或1与3或2与3;则这五个正整数的和为17或18或19.【点评】本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数。

第20章 数据的整理与初步处理自我评估 2023—2024学年华东师大版数学八年级下册

第20章  数据的整理与初步处理自我评估  2023—2024学年华东师大版数学八年级下册

第20章 数据的整理与初步处理自我评估(本试卷满分100分)一、选择题(本大题共10小题,每题3分,共30分)1. 某校开展“文明伴成长”画展,参展的彩铅、水墨、水彩、速写四个类别作品的数量(单位:幅)分别为:58,52,58,60,这组数据的平均数为( ) A. 55 B. 56 C. 57D. 582. 某高速公路(限速120 km/h )的车速监测仪监测到连续6辆车的车速分别为:118,107,109,120,118,116(单位:km/h ),这组数据的众数为( ) A. 107 B. 109 C. 116D. 1183. 分析一组数据时,圆圆列出了方差的计算公式S 2=()()()()22221234x x x xn-+-+-+-,由公式提供的信息,可得出n 的值是( ) A. 1 B. 2 C. 3D. 44. 甲、乙两位射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数x 和方差2S 的描述中,能说明甲射击运动员成绩较好且发挥更稳定的是( )A. x x =乙甲,且22S S <乙甲B. x x >乙甲,且22S S <乙甲C. x x >乙甲,且22S S >乙甲D. x x <乙甲,且22S S >乙甲5. 学校食堂有15元,18元,20元三种盒饭供学生选择(每人购一份).某天盒饭销售情况如图1所示,则当天学生购买盒饭费用的平均数是( ) A. 15元 B. 16元 C. 17元D. 18元6. 某次数学考试后,小明和小英在议论他们所在小组同学的数学成绩,小明说:“我们组成绩是87分的同学最多.”小英说:“我们组的7位同学成绩排在最中间的恰好也是87分.”两位同学的对话分别反映的统计量是( ) A. 众数和平均数 B. 平均数和中位数 C. 众数和方差D. 众数和中位数7. 某公司职工的月工资(单位:元)情况如下表所示: 职 务 经理 副经理 职工 人 数118图1嘉嘉和淇淇对该公司月工资的集中趋势有不同的观点,嘉嘉认为平均数是数据的代表值,应该用平均数描述该公司月工资的集中趋势;淇淇认为众数出现的次数最多,应该用众数描述该公司月工资的集中趋势.关于他们的观点,下列判断正确的是()A. 嘉嘉更合理B. 淇淇更合理C. 两人都合理D. 两人都不合理8. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图2所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是()A. 平均数为70分钟B. 众数为67分钟C. 中位数为67分钟D. 方差为0图29. 在某次捐款活动中,五名同学的捐款数分别为5,3,6,5,10(单位:元),捐3元的同学后来又追加了a 元.追加后的5个数据与之前的5个数据相比,中位数和众数均没有发生变化,则a的值为()A. 1B. 2C. 1或2D. 310. 已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A. 2,13B. 2,1C. 4,23D. 4,3二、填空题(本大题共6小题,每题3分,共18分)11. 已知一组数据:2024,2024,2024,2024,2024,2024,则这组数据的方差为. 月工资12 000 8000 300012. 一组数据40,35,x,50的平均数是46,则x的值是.13. 某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图3所示,则甲、乙两名选手发挥较为稳定的是选手.(填“甲”或“乙”)图314. 若数据2,3,4,5,6,x存在唯一众数,且该组数据的平均数等于众数,则x的值为.15. 为培养学生爱国主义情怀,某班级举办了主题为“捍卫和平,让历史照亮未来”的演讲比赛,下表是全班50名同学的得分情况,其中有两个数据被遮盖.成绩(分)91 92 93 94 95 96 97 98 99 100人数■■ 1 2 3 5 6 8 10 12关于得分的统计量中,与被遮盖的数据无关的统计量是.16. 垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革.甲、乙两班参加了学校组织的“生活垃圾分类回收”的考试,考试规定成绩大于等于86分为优异,两个班成绩的平均数、中位数、方差如下表所示:参加人数平均数中位数方差甲50 85 83 5.1乙50 85 85 4.6根据表格有下列说法:①甲班的成绩比乙班的成绩稳定;②小明得84分将排在甲班的前25名;③甲、乙两班竞赛成绩的众数相同;④甲班成绩优异的人数比乙班多.其中错误的是.(填序号)三、解答题(本大题共7小题,共52分)17. (5分)下表是八年级(1)班20名学生某次测验的成绩统计表:成绩(分)60 70 80 90 100人数(人) 1 5 x y 2(1)若这20名学生成绩的平均成绩为82分,求x,y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.18. (6分)某校组织学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类型的人数绘制成如图4所示的条形统计图,在求这20名学生每人平均植树量时,小明的分析如下: 第一步:求平均数的公式是x =12...nx x x n+++;第二步:n =4,x 1=4,x 2=5,x 3=6,x 4=7; 第三步:x =45674+++=5.5(棵).(1)小明的分析是从第 步开始出现错误的? (2)请你帮他计算出正确的平均植树量.19. (6分)某商店销售5种领口尺码(单位:cm )分别为38,39,40,41,42的衬衫.为了调查各种领口大小衬衫的销售情况,商店统计了某天的销售量,并绘制了如图5所示的扇形统计图. (1)衬衫领口尺码的众数、中位数分别是多少? (2)请你为这家商店提出进货建议.图5 20. (8分)某中学举行“中国梦”校园好声音歌手比赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛.根据10名选手的决赛成绩(满分为100分),绘制了如图6所示的统计图. (1)根据统计图提供的数据填空:平均数 中位数 众 数 方 差 初中部 * 85 b 70 高中部85a100*a 的值是 ,b 的值是 ;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)根据(1)中的数据,试通过计算说明哪个代表队的成绩比较稳定.图621. (8分)某公司出租A,B,C三种型号电动汽车,每辆车每天费用分别为300元,380元,500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210 km,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图7所示.(1)阳阳对B,C型号汽车的各项数据统计如下表,请你求出A型号汽车的平均里程、中位数和众数;型号平均里程(km)中位数(km)众数(km)B 216 215 220C 227.5 225 225(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.图722. (9分)质量检测部门对甲、乙、丙三家公司销售同一款产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15;乙公司:6,6,8,8,8,9,10,12,14,15;丙公司:4,4,4,6,7,9,13,15,16,16.根据以上数据,请回答下列问题:(1)甲、乙、丙三家公司在该产品的销售中都声称该产品的使用寿命是8年,你如何理解他们的宣传?请用已学的统计量加以说明.(2)如果你是顾客,你将选购哪家公司销售的产品,为什么?(3)如果你是丙公司的推销员,结合上述数据,你将如何对本公司的产品进行推销?23. (10分)为了解八年级男生排球垫球成绩和掷实心球成绩的情况,班主任随机抽取了40名男生进行测试,并对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩(单位:个)如图8所示(成绩用x表示,分成六组:A. x<10;B. 10≤x<15;C. 15≤x<20;D. 20≤x<25;E. 25≤x<30;F. x≥30);图8信息二:排球垫球成绩在D. 20≤x <25这一组的是:20,20,21,21,21,22,22,23,24,24; 信息三:掷实心球成绩(成绩用y 表示,单位:米)的人数分布表如下: 分 组 y <6.0 6.0≤y <6.8 6.8≤y <7.6 7.6≤y <8.4 8.4≤y <9.2y ≥9.2 人 数2m10962信息四:这次抽样测试中6名男生两项成绩的部分数据如下表: 学 生 学生1 学生2 学生3 学生4 学生5 学生6 排球垫球 26 25 23 22 22 15 掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题: (1)填空:m = ;(2)下列结论正确的是 ;(填序号)①排球垫球成绩不少于10个的人数占抽取人数的百分比低于80%; ②若掷实心球成绩的中位数记为n ,则6.8≤n <7.6;③若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好都为优秀的有4名,那么学生3掷实心球的成绩是优秀;(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请计算抽取男生排球垫球成绩达到优秀的百分比.题报第16期 第20章 数据的整理与初步处理自我评估参考答案答案速览一、1. C 2. D 3. D 4. B 5. C 6. D 7. B 8. B 9. C 10. D 二、11. 0 12. 59 13. 乙 14. 4 15. 中位数和众数 16. ①③④答案详解三、17. 解:(1)根据题意,得607058090100220820.5221x y x y +=--+⨯+++⨯÷=-⎧⎨⎩(),解得7.5x y ==⎧⎨⎩,(2)a =90,b =(80+80)÷2=80. 18. 解:(1)二(2)这20名学生每人平均植树量为x =4458667220⨯+⨯+⨯+⨯=5.3(棵).19. 解:(1)根据扇形统计图可知,领口尺码为40 cm的衬衫所占比例最大,所以众数为40 cm;将数据按照从小到大的顺序排列后可知第50,51个数据据均为40 cm,所以中位数为40 cm.(2)由(1)可知众数为40 cm,所以购买该尺码的人数最多.所以进货时要多进领口尺码为40 cm的衬衫.(合理即可)20. 解:(1)80 85(2)初中代表队成绩的平均数为15×(80+75+85+85+100)=85(分).初中代表队和高中代表队的平均数相同,但是初中代表队的中位数高于高中代表队,所以初中代表队的决赛成绩更好.(3)高中代表队成绩的方差为15×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160.因为两队成绩的平均数相同,且70<160,所以初中代表队的成绩比较稳定.21. 解:(1)A型号汽车的平均里程为1903195420052056210234562⨯+⨯+⨯+⨯+⨯++++=200(km).将20个数据按从小到大的顺序排列,第10,11个数据均为200 km,所以中位数为200 km;20个数据中205 km出现了六次,出现的次数最多,所以众数为205 km.(2)选择B型号汽车.理由如下:A型号汽车的平均里程、中位数和众数均低于210 km,且只有10%的车辆能达到行程要求,故不建议选择;B,C型号汽车的平均里程、中位数和众数都超过210 km,其中B型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B型号汽车比C型号汽车更经济实惠,故建议选择B型号汽车.22. 解:(1)甲公司:平均数为110(4+5×4+7+9+12+13+15)=8(年),众数为5年,中位数为572+=6(年);乙公司:平均数为110(6×2+8×3+9+10+12+14+15)=9.6,众数为8年,中位数为892+=8.5(年);丙公司:平均数为110(4×3+6+7+9+13+15+16×2)=9.4,众数为4年,中位数为792+=8(年).所以甲公司宣传中的使用寿命用的是平均数,乙公司用的是众数,丙公司用的是中位数.(2)乙公司.因为乙公司该产品使用寿命的平均数、众数和中位数都比其他两家公司大,所以乙公司的产品质量更有保障.(3)从产品寿命的最高年限考虑,购买丙公司的该产品,其使用寿命可能比其他两家公司都长.(合理即可)23. 解:(1)11(2)②③解析:由条形统计图可得,排球垫球成绩不少于10个的人数占抽取人数的百分比为40440-×100%≥80%,故①错误;因为共有40名男生,m=11,所以处于最中间的两名男生是第20,21名,其成绩y位于6.8≤y <7.6,故②正确;假设学生3掷实心球的成绩未到达优秀,那么只有学生1,4,5,6有可能两项测试成绩都达到优秀,这与“恰好都为优秀的有4名”矛盾,故③正确.(3)23540++×100%=25%.答:抽取男生排球垫球成绩达到优秀的百分比为25%.。

八年级数学下册20数据的整理与初步处理综合能力检测题新版[华东师大版]

八年级数学下册20数据的整理与初步处理综合能力检测题新版[华东师大版]

第20章综合能力检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16,则这组数据的中位数是( B)A.13 B.14 C.16 D.172.已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是( D)A.90 B.90.3 C.91 D.923.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( B) A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同 D.无法确定谁的成绩更稳定4.四名运动员参加了射击比赛,他们成绩的平均成绩x与方差s2如下表所示,如果要选择一个成绩好且状态稳定的人去参赛,那么应选( B)甲乙丙丁x 7887s211 1.2 1.8A.甲 B.乙 C.丙 D.丁5.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( C)A.平均数 B.众数 C.中位数 D.方差6.某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名同节水量(吨) 0.5 1 1.5 2同学数(人) 2 3 4 1请你估计这200)A.180吨 B.200吨 C.240吨 D.360吨7.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员组别 1 2 3 4 5 6 7分值90 95 90 88 x 92 85A.88 B.95 C.90 D.928.某中学初三(1)班的一次数学测试的平均成绩为80分,男生的平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为( C)A.1∶2 B.2∶1 C.3∶2 D.2∶39.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示),设他们生产零件的平均数为a,中位数为b,众数为c,则有( A)A.b>a>c B.c>a>bC.a>b>c D.b>c>a10.小明等五位同学以他们的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差将( B)A.增大 B.保持不变 C.减小 D.无法确定二、填空题(每小题3分,共24分)11.有10个数据的平均数是12,另有20个数据的平均数为15,那么这30个数的平均数是__14__.12.某小组在体育课的体能测试成绩是:45分3人,44分3人,43分2人,41分2人(满分为45分),则小组体能测试的中位数是__44__分.13.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是__86__分. 14.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是__小明__.(填“小明”或“小华”),第14题图) ,第16题图) ,第18题图)15.一组数据5,4,7,2,2,7,y ,x 的众数是5,则x =__5__,y =__5__,中位数是__5__.16.(2015·成都)为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是__1__小时,众数是__1__小时.17.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数如下表:植树株数(株) 5 6 7小组个数 3 4 3则这10个小组植树株数的方差是__0.6__.18.在一次捐款活动中,某班50名同学捐出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同的捐款数的人数比例,那么该班同学平均每人捐款__31.2__元.三、解答题(共66分)19.(7分)设一组数据x 1,x 2,…,x n 的平均数为m ,求下列各组数据的平均数:(1)x 1+3,x 2+3,…,x n +3;(2)2x 1,2x 2,…,2x n .解:设一组数据x 1,x 2,…,x n 的平均数是m ,即x =x 1+x 2+…+x n n=m ,则x 1+x 2+…+x n =mn.(1)∵x 1+x 2+…+x n =mn ,∴x 1+3+x 2+3+…+x n +3=mn +3n ,∴x 1+3,x 2+3,…,x n +3的平均数是mn +3n n=m +3 (2)∵x 1+x 2+…+x n =mn ,∴2x 1+2x 2+…+2x n =2mn ,∴2x 1,2x 2,…,2x n 的平均数是2mn n=2m 20.(8分)(2015·厦门)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)应聘者 面试 笔试甲 87 90乙 91 82若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?解:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取21.(9分)(2015·淄博)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表: 序号 一 二 三 四 五 六 七甲命中的环数(环) 7 8 8 6 9 8 10乙命中的环数(环) 5 10 6 7 8 10 10根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得x 甲=8,s 甲2≈1.43,试比较甲、乙两人谁的成绩更稳定?解:(1)由题意可知:甲的众数为8,乙的众数为10 (2)乙的平均数=5+6+7+8+10+10+107=8,乙的方差为:s 乙2=17[(5-8)2+(10-8)2+…+(10-8)2]=267≈3.71.∵得x 甲=8,S 甲2≈1.43,∴甲、乙的平均成绩一样,而甲的方差小于乙的方差,∴甲的成绩更稳定22.(9分)(2015·大庆)已知一组数据x 1,x 2,…x 6的平均数为1,方差为53. (1)求:x 12+x 22+…+x 62;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6,又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[x 12+x 22+…+x 62-2(x 1+x 2+…+x 6)+6]=16(x 12+x 22+…+x 62-2×6+6)=16(x 12+x 22+…+x 62)-1=53,∴x 12+x 22+…+x 62=16 (2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7,∵x 1+x 2+…+x 6=6,∴x 7=1,∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107职务 董事长 副董事长 董事 总经理 经理 管理员 职员 人数 1 1 2 1 5 3 20工资 5500 5000 3500 3000 2500 2000 1500(2)假设副董事长工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又各是多少?(精确到个位)(3)你认为哪个统计量更能反映这个公司职工的工资水平,并说明理由.解:(1)平均数:2091元,中位数:1500元,众数:1500元 (2)平均数:3288元,中位数:1500元,众数1500元 (3)中位数和众数均能反映该公司职工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数偏差较大,所以平均数不能反映公司职工的工资水平24.(12分)(2015·河北)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整,营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图.第一次 第二次 第三次 A 产品单价(元/件) 6 5.2 6.5B 产品单价(元/件) 3.5 4 3并求得了x A =5.9,s A 2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150.(1)补全如图中B 产品单价变化的折线图,B 产品第三次的单价比上一次的单价降低了____%;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m %(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.解:(1)如图所示:B 产品第三次的单价比上一次的单价降低了4-34=25% (2)x B =13(3.5+4+3)=3.5,s n 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)23=16,∵B 产品的方差小,∴B 产品的单价波动小 (3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;对于B 产品,∵m >0,∴第四次单价大于3,∵3.5+42×2-1>254,∴第四次单价小于4,∴3(1+m%)+3.52×2-1=254,∴m =25 25.(12分)在学校组织的知识竞赛中,每班参加比赛的人数相同,成绩分为A ,B ,C ,D 四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图,请你根据统计图提供的信息解答下列问题:(1)此次竞赛中二班的成绩在C 级以上(包括C 级)的人数为__21__人;(2)平均数(分) 中位数(分) 众数(分) 一班 87.6 90二班 87.6100 (3)①从平均数和中位数的角度来比较一班和二班的成绩;②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩.解:(1)21人 (2)一班的众数为90,二班的中位数为80 (3)①从平均数的角度看两班成绩一样,从中位数的角度看,一班比二班的成绩好,所以一班的成绩好;②从平均数的角度看两班的成绩一样,从众数的角度看二班比一班的成绩好,所以二班的成绩好;③从B 级以上(包括B 级的人数的角度看,一班有18人,二班有12人,所以一班的成绩好。

最新华东师大版八年级数学下册第二十章数据的整理与初步处理章节测试试卷(精选含详解)

最新华东师大版八年级数学下册第二十章数据的整理与初步处理章节测试试卷(精选含详解)

八年级数学下册第二十章数据的整理与初步处理章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校在计算学生的数学总评成绩时,规定期中考试成绩占40%,期末考试成绩占60%,林琳同学的期中数学考试成绩为86分,期末数学考试成绩为94分,那么他的数学总评成绩是()A.86分B.88分C.90分D.90.8分2、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为()A.86分B.87分C.88分D.89分3、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A .90B .90.3C .91D .924、甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是92分,方差分别是20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,则这5次测试成绩最稳定的是( )A .甲B .乙C .丙D .丁5、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( )A .甲B .乙C .丙D .无法确定6、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:根据上表中的信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班学生这次考试成绩的众数是48分C .该班学生这次考试成绩的中位数是47分D .该班学生这次考试成绩的平均数是46分7、在今年中小学全面落实“双减”政策后小丽同学某周每天的睡眠时间为(单位:小时):8,9,7,9,7,8,8,则小丽该周每天的平均睡眠时间是( )A .7小时B .7.5小时C .8小时D .9小时8、已知数据x 1,x 2,x 3,x 4,x 5的平均数为k 1;数据x 6,x 7,x 8,x 9,x 10的平均数为k 2;k 1与k 2的平均数是k ;数据x 1,x 2,x 3,…,x 8,x 9,x 10的平均数为m ,那么k 与m 的关系是( )A .k >mB .k =mC .k <mD .不能确定9、如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的( )A .平均数B .众数C .中位数D .方差10、某校“安全知识”比赛有16名同学参加,规定前8名的同学进入决赛.若某同学想知道自己能否晋级,不仅要了解自己的成绩,还需要了解16名参赛同学成绩的( )A .平均数B .中位数C .众数D .方差第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为2S 甲=38,2S 乙=10,则______同学的数学成绩更稳定.2、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是_____.3、一般地,若n 个数x 1,x 2,…,xn 的权分别是w 1,w 2,…,wn ,则:112212n n n x w x w x w w w w ++++++叫做这n 个数的_____.当一组数据中各个数据重要程度不同时,_____能更好地反映这组数据的平均水平.______反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.4、在5个正整数a 、b 、c 、d 、e 中,中位数是4,唯一的众数是6,则这5个数的和最大值是________.5、某校组织一次实验技能竞赛,测试项目有理论知识测试、实验技能操作A 、实验技能操作B ,各项满分均为100分,并将这三项得分分别按4:3:3的比例计算最终成绩.在本次竞赛中张同学的三项测试成绩如下:理论知识测试:80分;实验技能操作A :90分;实验技能操作B :75分;则该同学的最终成绩是______分.6、一组数据:3、4、4、5、5、6、8,这组数据的中位数是 _____.7、小丽的笔试成绩为90分,面试成绩为95分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 _______分.8、若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.9、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm ),计算它们的平均数和方差,结果为:13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).10、小明上学期数学平时成绩、期中成绩、期末成绩分别为93分、87分、90分,若将平时成绩、期中成绩、期末成绩按3:3:4的比例计算综合得分,则小明上学期数学综合得分为_____分.三、解答题(5小题,每小题6分,共计30分)1、甲、乙两台包装机同时分装质量为400g 的奶粉.从它们各自分装的奶粉中各随机抽取了10袋,测得它们的实际质量(单位:g )如下:甲:401,400,408,406,410,409,400,393,394,394;乙:403,404,396,399,402,401,405,397,402,399.哪台包装机包装的奶粉质量比较稳定?2、姚明在2005~2006赛季美国职业篮球联赛常规赛中表现优异,下面是他在这个赛季中,分别与“超音速”和“快船”队各四场比赛中的技术统计.(1)姚明在对阵“超音速”和“快船”两队各四场比赛中,平均每场得分是多少?(2)请你从得分的角度分析:姚明在与“超音速”和“快船”队的比赛中,对阵哪一个队的发挥比较稳定?(3)如果规定“综合得分”为:平均每场得分1+⨯平均每场篮板 1.2⨯+平均每场失误()1⨯-,且综合得分越高表现越好,那么请你利用这种评价方法,比较姚明在对阵哪一个队时表现更好.3、已知一组数据:0,1,3-,6,a ,4.其唯一众数为4,求这组数据的中位数.4、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:(1)填空:a = ;b = ;c = ;(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.5、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.将以上信息整理分析如下:(1)填空:a=_____;b=_____;c=_____;d=_____;(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.-参考答案-一、单选题1、D【解析】【分析】根据加权平均数的计算方法列式计算即可.【详解】⨯+⨯=(分),解:他的数学总评成绩是8640%9460%90.8故选:D.本题主要考查加权平均数算法,熟练掌握加权平均数的算法是解题的关键.2、B【解析】【分析】根据加权平均数的公式计算即可.【详解】解:小明该学期的总评得分=9010%9030%8560%9275187⨯+⨯+⨯=++=分.故选项B.【点睛】本题考查加权平均数,掌握加权平均数公式是解题关键.3、D【解析】【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.4、D【解析】根据方差越大,则数据的离散程度越大,稳定性也越小;反之,则数据的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,∴S 丁2<S 丙2<S 乙2<S 甲2,∴成绩最稳定的是丁.故选:D .【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.5、C【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵2206S =甲,2198S =乙,2156S =丙,∴222S S S >>甲乙丙,∴成绩波动最小的班级是:丙班.故选:C .【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.6、D【解析】【分析】由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.【详解】解:该班一共有:2+5+6+7+8+7+5=40(人),得48分的人数最多,众数是48分,第20和21名同学的成绩的平均值为中位数,中位数为4648472+=(分), 平均数是362405436467484(8507545)4046.⨯+⨯+⨯++÷=⨯⨯+⨯+⨯(分),故A 、B 、C 正确,D 错误,故选:D .【点睛】本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.7、C【解析】【分析】根据平均数的定义列式计算即可求解.【详解】解:(8+9+7+9+7+8+8)÷7=8(小时).故小丽该周平均每天的睡眠时间为8小时.故选:C .【点睛】本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.8、B【解析】【分析】先分别求出数据x1,x2,x3,x4,x5和x6,x7,x8,x9,x10的和,再根据k1与k2的平均数是k,求出k1+k2=2k,再根据平均数的计算公式求出x1,x2,x3,x4,x5,x6,x7,x8,x9,x10的和,最后根据数据x1,x2,x3,…,x8,x9,x10的平均数为m,即可得出k与m的关系.【详解】解:∵数据x1,x2,x3,x4,x5的平均数为k1,∴x1+x2+x3+x4+x5=5k1,∵数据x6,x7,x8,x9,x10的平均数为k2,∴x6+x7+x8+x9+x10=5k2,∵k1与k2的平均数是k,∴k1+k2=2k,∴x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=5k1+5k2=5(k1+k2)=10k,∵数据x1,x2,x3,…,x8,x9,x10的平均数为m,∴x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10m,∴k=m.故选:B.【点睛】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据加权平均数求出总数.9、C【解析】【分析】根据题意可得:由中位数的概念,可知7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,故应知道自己的成绩和中位数.故选:C.【点睛】本题考查的是中位数的含义,以及利用中位数作判断,理解中位数的含义是解本题的关键.10、B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知16人成绩的中位数是第8名和第9名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于16个人中,第8和第9名的成绩的平均数是中位数,故同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这16位同学的成绩的中位数.故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.二、填空题1、乙【解析】【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为238S=甲,210S=乙,22S S∴>乙甲,∴乙同学的数学成绩更稳定,故答案为:乙.【点睛】本题考查方差,解题的关键是明确方差越小越稳定.2、86.5【解析】【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:80×2235+++85×3235+++90×5235++,=16+25.5+45,=86.5(分),故答案为:86.5.本题考查了加权平均数,解题的关键是掌握加权平均数的计算公式.3、加权平均数加权平均数权【解析】略4、21【解析】【分析】根据题意设出五个数,由此求出符合题意的五个数的可能取值,计算其和即可.【详解】设五个数从小到大为a1,a2,a3,a4,a5,依题意得a3=4,a4=a5=6,a1,a2是1,2,3中两个不同的数,符合题意的五个数可能有三种情形:“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,1+2+4+6+6=19,1+3+4+6+6=20,2+3+4+6+6=21,则这5个数的和最大值是21.故答案为21.【点睛】本题考查了根据一组数据的中位数和众数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5、81.5【解析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:该同学的最终成绩是:80490375381.5433⨯+⨯+⨯=++(分).故答案为:81.5.【点睛】此题考查了加权平均数,熟记加权平均数的计算公式是解题的关键.6、5【解析】【分析】根据中位数的定义:将一组数据按从大到小(或从小到大)的顺序进行排列,处在中间的数或者中间两个数的平均数称为这组数据的中位数,据此进行解答即可.【详解】解:把这组数据从小到大排列:3、4、4、5、5、6、8,最中间的数是5,则这组数据的中位数是5.故答案为:5.【点睛】本题考查了中位数的定义,熟记定义是解本题的关键.7、92【解析】【分析】根据加权平均数的定义和计算公式计算可得.【详解】解:小丽的平均成绩是90695464⨯+⨯+=92(分).故答案为:92.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握加权平均数的定义和计算公式.8、 8 9【解析】【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…xn的平均数是2,∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;∵数据x1,x2,…xn的方差为1,∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,∴数据3x1+2,3x2+2,…+3xn+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.9、甲【解析】根据题意可得:22S S <甲乙,即可求解.【详解】 解:∵13x =甲,13x =乙,2=3.6S 甲,215.8S =乙. ∴22S S <甲乙,∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键. 10、90【解析】【分析】由题意直接根据加权平均数的计算方法列式进行计算即可得解.【详解】 解:933873904334⨯+⨯+⨯++ =27926136010++ =90010 =90(分).故小明上学期数学综合得分为90分.故答案为:90.本题考查加权平均数的求法,要注意乘以各自的权,直接相加除以3是错误的求法.三、解答题1、乙包装机包装的奶粉质量比较稳定【解析】【分析】先分别求出甲、乙两台包装机分装奶粉质量的平均数,再求甲、乙两台包装机分装奶粉质量的方差.【详解】解:x甲=110(401 +400+ 408 +……+394 +394)= 401.5(g),x乙 =110(403+ 4+39+……+ 402 + 399) =400.8(g),S=110[ (401-401.5)2+(400- 401. 5)2+……+(394- 401.5)2]= 38.05,S=110[(403- 400.8)2 +(404- 400.8)2+……+(399- 400. 8)2]=7. 96,因为S> S,所以乙包装机分装的奶粉质量比较稳定.【点睛】本题考查了平均数、方差的计算以及它们的意义,做题的关键是熟练的计算平均数和方差.2、(1)25.25分,23.25分;(2)姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“快船”的比赛中表现更好.【解析】【分析】(1)根据平均数的计算方法,先求和,再除比赛次数即可得出平均每场的得分;(2)计算并比较得分的方差,根据方差的意义,即可得出结论;(3)根据“综合得分”的规定,分别计算姚明在比赛中的“综合得分”,再进行比较即可.【详解】解:(1)姚明在对阵“超音速”的四场比赛中平均得分为:()22292426425.25+++÷=(分); 在对阵“快船”的四场比赛中平均得分为:()25291722423.25+++÷=(分);(2)姚明在对阵“超音速”队的四场比赛中得分的方差为:2222211 (2222.25)(2922.25)(2422.25)(2622.25) 6.68754S ⎡⎤=-+-+-+-=⎣⎦, 姚明在对阵“快船”队的四场比赛中得分的方差为:2222221 (2523.25)(2923.25)(1723.25)(2223.25)19.18754S ⎡⎤=-+-+-+-=⎣⎦, ∵s 12<s 22,∴从得分的角度看,姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“超音速”的四场比赛中综合分为:()25.251111.2 2.75135.7⨯+⨯+⨯-=(分);在对阵“快船”的四场比赛中综合得分为:()23.25112.75 1.22136.55⨯+⨯+⨯-=(分),从综合得分看,姚明在对阵“快船”的比赛中表现更好.【点睛】本题考查了平均数和方差的计算方法及意义.一般地设n 个数据,x 1,x 2,…xn 的平均数为x ,则方差为(2222121[()())n S x x x x x x n ⎤=-+-++-⎦ ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、2.5【解析】【分析】根据这组数据中的众数为4,求得a ,再求解中位数即可.【详解】解:因为这组数据:0,1,3-,6,a ,4.唯一的众数为4,所以4a =,将这组数据从小到大排列得3-,0,1,4,4,6,最中间的数是1,4, 所以这组数据的中位数是14 2.52+=. 【点睛】此题考查了众数和中位数,解题的关键是根据众数求得参数a 的值,掌握中位数的求解方法.4、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析【解析】【分析】(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c 即可;(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好.【详解】解:(1)甲的平均成绩为()()1115264728195122816971010a =⨯+⨯+⨯+⨯+⨯=++++= 乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10, 所以中位数()1787.52b =+=()()()()()()()222222213747672773879710710c ⎡⎤=-+-+-+-+-+-+-⎣⎦ =[]11691034910++++++ =4.2故答案为:7,7.5,4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,故答案为:乙;(3)选择乙参加比赛,理由:从平均数上看,甲、乙平均成绩相等,总分相等,从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,故应选乙队员参赛.【点睛】本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键.5、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.【解析】【分析】(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.【详解】解:(1)甲公司平均月收入:a=110{5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);乙公司滴滴中位数为b=562=5.5(千元);甲公司众数c=7(千元);甲公司方差:d=110[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;故答案为:7.3,5.5,7,1.41;(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.【点睛】本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A,B,C,D四个选项,其中只有一个是正确的)1.(2018A.2B.4C.6D.82.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表:A.平均数B.中位数C.众数D.方差3.某超市对员工进行三项测试:电脑、语言、商品知识,并将三项测试得分按5∶3∶2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为( )A.78B.76C.77D.794.(2018·泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是( )A.16,15B.16,14C.15,15D.14,155.(2018·恩施州)已知一组数据:1,2,3,x,5,它们的平均数是3,则这一组数据的方差为( )A.1B.2C.3D.46.(2018·河南)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( ) A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是07.(2018·贺州)若一组数据:1,2,x,4,5的众数为5,则这组数据的中位数是( ) A.1B.2C.4D.58.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A.甲B.乙C.丙D.丁9.如图是在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图,对于本次训练,有如下结论:①s2甲>s2乙;②s2甲<s2乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )A.①③B.①④C.②③D.②④,第9题图) ,第10题图)10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分、2分、3分、4分4个等级,将调查结果绘制成如图的条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( )A.2.25B.2.5C.2.95D.3二、填空题(每小题3分,共24分)11.(2018·福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数是________.12.若李老师六个月的手机上网流量(单位:M)分别为526,600,874,480,620,500,则李老师这六个月平均每个月的手机上网流量为________M.13.在“中国梦·我的梦”演讲比赛中,将5个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是________分.14.某校组织八年级三个班学生参加数学竞赛,竞赛结果三个班总平均分为72.5,已知一班参赛人数30人,平均分75分,二班参赛人数30人,平均分为80分,三班参赛人数40人,则三班的平均分为__________.15.(2018·铜仁)小米的爸爸为了了解她的数学成绩情况,现随机抽取他的三次数学考试成绩,分别是87,93,90,则这三次数学成绩的方差是________.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多________分.17.一组数据3,4,9,x的平均数比它的唯一众数大1,则x=________.18.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和最小为________.三、解答题(共66分)19.(8分)(2018·云南)某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7(2)计算该同学所得分数的平均数.20.(10分)(2018·包头)某公司招聘职员两名,对甲、乙、丙、丁四名侯选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算侯选人的综合成绩(满分为100分).他们的各项成绩如下表所示:侯选人笔试成绩/分面试成绩/分甲90 88乙84 92丙x 90丁88 86(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.21.(10分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“家访活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,数据如表:年收入(单位:万元) 2 2.5 3 4 5 9 13家庭个数 1 3 5 2 2 1 1(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.22.(12分)甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是________,乙的中位数是________;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?23.(12分)甲、乙两位同学进行投篮比赛,每人在相同时间内分别投6场,下表是甲、乙两位同学每场投中篮球个数的统计情况.对象一二三四五六甲 6 7 5 9 5 10乙 6 5 6 7 9 9下面是甲、乙两位同学的三句对话:(1)乙:我的投篮成绩比你的稳定;(2)甲:若每一场我多投中一个球,投篮成绩就比你稳定;(3)乙:若每场我投中的个数是原来的3倍,而你每场投中的个数是原来的2倍,那么我的投篮成绩的稳定程度会比你更好.请判断他们说法的正确性,并说明理由.24.(14分)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分) 中位数(分) 众数(分)初中部______ 85 ______高中部85 ______ 100第20章检测题1.B 2.C 3.B 4.A 5.B 6.B 7.C 8.A 9.C10.C 11.120 12.600 13.9 14.65分15.6 16.117.4 [点拨]①当众数是3时,∵众数比平均数小1,∴14(3+4+9+x)=4,解得x =0.这组数据为:3,4,9,0,而数据有唯一众数,∴x ≠0;②当众数是4时,∵众数比平均数小1,∴14(3+4+9+x)=5,解得x =4;③当众数是9时,∵众数比平均数小1,∴14(3+4+9+x)=10,解得x =24,而数据有唯一众数,∴x ≠24.所以x =4 18.17 [点拨]据题意得这组数据有两个为5,另两个为小于4的整数,且不相等,所以最小的两个为1,2.则可得这组数据最小和可能是1+2+4+5+5=1719.(1)众数为8,中位数为7 (2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7 20.(1)这四名候选人面试成绩的中位数为:88+902=89(分) (2)由题意得,x ×60%+90×40%=87.6,解得,x =86 (3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙 21.(1)这15名学生家庭年收入的平均数是:(2+2.5×3+3×5+4×2+5×2+9+13)÷15=4.3(万元);将这15个数据从小到大排列,最中间的数是3,所以中位数是3万元;在这一组数据中3是出现次数最多的,故众数为3万元 (2)众数代表这15名学生家庭年收入的一般水平较为合适,因为3出现的次数最多,所以能代表家庭年收入的一般水平 22.(1)甲的平均数=110(6+10+8+9+8+7+8+10+7+7)=8,乙的中位数是7.5 (2)x 乙=110(7+10+…+7)=8;s 2甲=110[(6-8)2+(10-8)2+…+(7-8)2]=1.6,s 2乙=110[(7-8)2+(10-8)2+…+(7-8)2]=1.2,∵s 2乙<s 2甲,∴乙运动员的射击成绩更稳定 23.(1)甲的平均成绩=(6+7+5+9+5+10)÷6=7,甲的方差s 2甲=[(6-7)2+(7-7)2+(5-7)2+(9-7)2+(5-7)2+(10-7)2]÷6≈3.7,乙的平均成绩=(6+5+6+7+9+9)÷6=7,乙的方差s 2乙=[(6-7)2+(5-7)2+(6-7)2+(7-7)2+(9-7)2+(9-7)2]÷6≈2.3,∴乙的说法正确 (2)甲变化后的成绩为7,8,6,10,6,11,甲变化后的平均成绩=(7+8+6+10+6+11)÷6=8,甲变化后的方差s 2甲=[(7-8)2+(8-8)2+(6-8)2+(10-8)2+(6-8)2+(11-8)2]÷6≈3.7,由于甲的方差不变,故甲的说法是错误的 (3)甲变化后的平均成绩=7×2=14,甲变化后的方差s 2甲=3.7×4=14.8;乙变化后的平均成绩=7×3=21,乙变化后的方差s 2乙=2.3×9=20.7,∴乙的说法是错误的 24.(1)从左向右依次填:85 80 85 (2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些 (3)s 21=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s 22=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160.∵s 21<s 22,∴初中代表队选手成绩较为稳定。

相关文档
最新文档