初中数学概率技巧及练习题附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,(1)(4)为必然事件,
故答案为A.
【点睛】
本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握:
必然事件:事先肯定它一定会发生的事件;
不确定事件:无法确定它会不会发生的事件;
不可能事件:一定不会发生的事件.
16.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()
【详解】
检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;
一年有366天所以367个人中必然有2人同月同日生,B对;
可能性是1%的事件在一次试验中有可能发生,故C错;
3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.
故选B.
【点睛】
区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
10.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是 ,乙组数据的方差是 ,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
【详解】
画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为 ;
故选:B.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
5.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()
A. B. C. D.
【答案】C
【解析】
【分析】
从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.
【详解】
解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,
从转盘中找出蓝色区域的扇形有4份,
又因为转盘总的等分成了16份,
因此,获得签字笔的概率为: ,
求出使得一次函数y=(-m+1)x+11-m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的数,然后直接利用概率公式求解即可求得答案.
【详解】
解:∵一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限,﹣m+1<0,11﹣m>0,
∴1<m<11,
∴符合条件的有:2,5,7,8,
把分式方程 =3x+ 去分母,整理得:3x2﹣16x﹣mx=0,
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次
【答案】C
【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;
B. “概率为0.0001的事件”是不可能事件,错误;
C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.
A. B. C. D.
【答案】A
【解析】
【分析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为 ,
故选A.
15.下列问题中是必然事件的有()个
(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3) (其中 、 都是实数);(4)水往低处流.
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.
【详解】
(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3) (其中 、 都是实数),故 为不可能事件;(4)水往低处流是必然事件;
3.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.
【详解】
∵正方体骰子共6个面,
每个面上的点数分别为1、2、3、4、5、6,
∴与点数2的差不大于1的有1、2、3.
故答案为C.
【点睛】
本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.
17.下列说法:
本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.
2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
A. B. C. D.
【答案】A
【解析】
【分析】
画树状图得出所有的情况,根据概率的求法计算概率即可.
【详解】
画树状图得:
∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,
∴两次摸出的小球标号之和等于6的概率
故选A.
【点睛】
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
【详解】
A.向量 与向量 是平行向量,是随机事件,故该选项错误;
B.方程 有实数根,是确定事件,故该选项正确;
C.直线 与直线 相交,是随机事件,故该选项错误;
D.一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;
故选:B.
【点睛】
本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.
A.20B.15C.10D.5
【答案】B
【解析】
【分析】
由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.
【详解】
白色球的个数是 15个,
故选:B.
【点睛】
此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键.
6.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()
B.易建联罚球投篮2次,不一定全部命中
C.易建联罚球投篮1次,命中的可能性较大
D.易建联罚球投篮1次,不命中的可能性较小
【答案】A
【解析】
【分析】
根据概率的意义对各选项分析判断后利用排除法求解.
【详解】
解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;
B、易建联罚球投篮2次,不一定全部命中,故本选项正确;
13.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】
解得:x=0,或x= ,
∵x≠8,
∴ ≠8,
∴m≠8,
∵分式方程 =3x+ 的解为整数,
∴m=2,5,
∴使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的整数有2,5,
∴使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的概率为 = ;
故选C.
12.下列说法正确的是( )
A.检测某批次灯泡的使用寿命,适宜用全面调查
B.“367人中有2人同月同日生”为然事件C.可能性是1%的事件在一次试验中一定不会犮生
D.数据3,5,4,1,﹣2的中位数是4
【答案】B
【解析】
【分析】
根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.
A. 个B. 个C. 个D. 个
【答案】A
【解析】
【分析】
根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.
【详解】
一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.
由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)
=4( ﹣1)=2π﹣4,
∴米粒落在阴影部分的概率为 ,
故选A.
【点睛】
本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.
8.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
A.易建联罚球投篮2次,一定全部命中
故选:B.
【点睛】
本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.
14.下列事件中,确定事件是()
A.向量 与向量 是平行向量B.方程 有实数根;
C.直线 与直线 相交D.一组对边平行,另一组对边相等的四边形是等腰梯形
【答案】B
【解析】
【分析】
根据“必然事件和不可能事件统称确定事件”逐一判断即可.
【点睛】
本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.
11.下列说法正确的是( ).
A.“购买1张彩票就中奖”是不可能事件
B.“概率为0.0001的事件”是不可能事件
C.“任意画一个三角形,它的内角和等于180°”是必然事件
初中数学概率技巧及练习题附答案解析
一、选择题
1.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()
A.大于 B.等于 C.小于 D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义解答即可.
【详解】
∵硬币由正面朝上和朝下两种情况,并且是等可能,
∴第3次正面朝上的概率是 .
故选:B.
【点睛】
∴与点数2的差不大于1的概率是 .
故选:A.
【点睛】
此题考查求概率的方法,解题的关键是理解题意.
4.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】
可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
7.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为( )
A. B. C. D.
【答案】A
【解析】
【分析】
求得阴影部分的面积后除以正方形的面积即可求得概率.
【详解】
解:如图,连接PA、PB、OP,
则S半圆O= ,S△ABP= ×2×1=1,
【详解】
∵总面积为3×3=9,其中阴影部分面积为4× ×1×2=4,
∴飞镖落在阴影部分的概率是 .
故答案选:C.
【点睛】
本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
相关文档
最新文档