人教版初中数学二次根式知识点总复习附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:由题意得 ,
解得 ,

即 .
故选:B.
【点睛】
本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.
19.下列运算正确的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的混合运算的相关知识即可解答.
【详解】
A. ,故错误;
B. ,正确;
C. ,故错误;
【答案】B
【解析】
解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.
13.下列各式成立的是( )
A. B. =3
C. D. =3
【答案】D
【解析】
分析:各项分别计算得到结果,即可做出判断.
详解:A.原式= ,不符合题意;
B.原式不能合并,不符合题意;
D. ,故错误;
故选B.
【点睛】
此题考查二次根式的性质与化简,解题关键在于掌握运算法则.
20.在下列各组根式中,是同类二次根式的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】
【分析】
根据二次根式的性质化简,根据同类二次根式的概念判断即可.
【详解】
A、 , 与 不是同类二次根式;
B、 , 与 是同类二次根式;
故选C.
【点睛】
本题考查了绝对值的意义、二次根式有意义的条件,求出a的取值范围是解答本题的关键.
3.已知n是一个正整数, 是整数,则n的最小值是().
A.3B.5C.15D.25
【答案】C
【解析】
【分析】
【详解】
解: ,若 是整数,则 也是整数,
∴n的最小正整数值是15,故选C.
4.计算 的结果为()
【详解】
解:原式=
=
故选:C.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
故选:D.
【点睛】
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
18.当实数 的取值使得 有意义时,函数 中 的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据二次根式有意义易得x的取值范围,代入所给函数可得y的取值范围.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
C.原式= ,不符合题意;
D.原式=|﹣3|=3,符合题意.
故选D.
点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.
14.若二次根式 在实数范围内有意义,则a的取值范围是( )
A.a>1B.a≥1C.a=1D.a≤1
【答案】B
【解析】
【分析】
根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.
【答案】C
【解析】
试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:
∵由数轴可知,b>0>a,且|a|>|b|,
∴ .
故选C.
考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.
8.如果 ,那么x的取值范围是()
A.x≥1B.x>1C.x≤1D.x<16
【答案】A
【解析】
【详解】
由题意得:a﹣1≥0,
解得:a≥1,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
15.下列计算正确的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的加减乘除运算法则逐一计算可得.
【详解】
A、 与 不是同类二次根式,不能合并,此选项错误;
2.已知实数a满足 ,那么 的值是()
A.2005B.2006C.2007D.2008
【答案】C
【解析】
【分析】
先根据二次根式有意义的条件求出a的取值范围,然后去绝对值符号化简,再两边平方求出 的值.
【详解】
∵a-2007≥0,
∴a≥2007,
∴ 可化为 ,
∴ ,
∴a-2007=20062,
∴ =2007.
【答案】A
【解析】
【分析】
先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.
【详解】
解:



∴估计 值应在 到 之间.
故选:A
【点睛】
本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.
12.当 有意义时,a的取值范围是()
A.a≥2B.a>2C.a≠2D.a≠-2
【详解】
由题意得

解得:x≥2,
故选B.
【点睛】
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
6.下列二次根式: 、 、 、 、 中,是最简二次根式的有( )
A.2个B.3个C.4个D.5个
【答案】A
【解析】
试题解析: ,是最简二次根式;
= ,不是最简二次根式;
= ,不是最简二次根式;
【详解】
解:A. ,正确;
B. ,正确;
C. ,原式错误;
D. ,正确;
故选:C.
【点睛】
本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.
10.下列各式中,是最简二次根式的是( )
A. B. C. D.
【答案】B
【解析】
【分析】
判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.
C、 , 与 不是同类二次根式;
D、 与 不是同类二次根式;
故选:B.
【点睛】
本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
A.±3B.-3C.3D.9
【答案】C
【解析】
【分析】
根据 =|a|进行计算即可.
【详解】
=|-3|=3,
故选:C.
【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
5.若代数式 有意义,则实数x的取值范围是( )
A.x≥1B.x≥2C.x>1D.x>2
【答案】B
【解析】
【分析】
根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.
【分析】
根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.
【详解】
由于二次根式的结果为非负数可知:x-1≥0,
解得,x≥1,
故选A.
【点睛】
本题利用了二次根式的结果为非负数求x的取值范围.
9.下列计算错误的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据二次根式的运算法则逐项判断即可.
人教版初中数学二次根式知识点总复习附解析
一、选择题
1.估算 在哪两个整数之间()
A.4和5B.5和6C.6和7D.7和8
【答案】C
【解析】
【分析】
由 ,先估算 ,即可解答.
【详解】
解:∵ , ,
∴ ,即介于6和7,
故选:C.
【点睛】
本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 .
B、 = = = ,此选项正确;
C、 =(5 - )÷ =5- ,此选项错误;
D、 = ,此选项错误;
故选B
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.
16.计算 的结果是( )
A. B. C. D.
【答案】C
【解析】
【分析】
先利用积的乘方得到原式= ,然后根据平方差公式和完全平方公式计算.
【详解】
(1)A被开方数含分母,错误.
(2)B满足条件,正确.
(3) C被开方数含能开的尽方的因数或因式,错误.
(4) D被开方数含能开的尽方的因数或因式,错误.
所以答案选B.
【Βιβλιοθήκη Baidu睛】
本题考查最简二次根式的定义,掌握相关知识是解题关键.
11.估计 值应在()
A.3到4之间B.4到5之间C.5到6之间D.6到7之间
=2|a| ,不是最简二次根式;
,是最简二次根式.
共有2个最简二次根式.故选A.
点睛:最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式.
7.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简 的结果为()
A.2a+bB.-2a+bC.bD.2a-b
相关文档
最新文档