数学史与数学教育
(完整版)数学史与数学教育答案

数学史与数学教育绪言(一)1【单选题】(A)于1758年出版的著作《数学史》是世界上第一部数学史经典著作。
A、蒙蒂克拉B、阿尔弗斯C、爱尔特希D、傅立叶2【单选题】首次使用幂的人是(C)。
A、欧拉B、费马C、笛卡尔D、莱布尼兹3【单选题】康托于(B)年起开始出版的《数学史讲义》标志着数学史成了一门独立的学科。
A、1870B、1880C、1890D、19004【判断题】历史上最早的数学史专业刊物是1755年起开始出版的《数学历史、传记与文献通报》。
X5【判断题】公元前5世纪的《希腊选集》中记载了关于丢番图年龄的诗文。
(X)数学史与数学教育绪言(二)1【单选题】卡约黎的著作《数学的历史》出版于(B)年。
A、1890B、1894C、1898D、19022【单选题】史密斯的著作《初等数学的教学》出版于(A)。
A、1900B、1906C、1911D、19133【单选题】(D)数学史教授卡约黎倡导为教育而研究数学史。
A、德国B、法国C、英国D、美国4【判断题】四等分角以及倍立方问题同属于三大几何难题,是被证明无法用尺规做出的。
(X)5【判断题】史密斯倡导建立了ICMI。
(V)数学史与数学教育绪言(三)1【单选题】Haeckel的生物发生定律应用于数学史中即为(C)。
A、基础重复原理B、往复创新原理C、历史发生原理D、重构升华原理2【单选题】史密斯的数学史课程最早开设于(C)年。
A、1889B、1890C、1891D、18923【单选题】《如何解题》、《数学发现》的作者是(C)。
A、庞加莱B、弗赖登塔尔C、波利亚D、克莱因4【判断题】M.克莱因认为学生学习中遇到的困难也是数学家历史上遇到的困难,数学史可以作为数学教育的指南。
(V)5【判断题】18世纪欧洲主流学术观点不承认负数为数。
(V)数学史与数学教育绪言(四)1【单选题】HPM的研究内容不包括(D)。
A、数学教育取向的数学史研究B、基于数学史的教学设计C、历史相似性研究D、数学史融入数学科研的行动研究2【单选题】HPM的主要目标是促进三方面的国际交流与合作,其中不包括。
数学史与数学教育

方形的边长为 2 x 10 ,故只需解二次方程
3
x2 ( 2 x 10)2 1000 3
• 古巴比伦人将这一解法所需的步骤简单地叙述为“平方10,得100;1000 减去100,就得900,开平方得30”,求得该正方形的边长为30,另一个 正方形边长为10.这就是说,古巴比伦人那时可能已经知道某些类型的 一元二次方程的求根公式.由于他们没有负数的概念,二次方程的负根 不予考虑.至于他们是如何得到上述这些解法的,泥板书上没有具体说 明.他们还讨论了某些三次方程和双二次方程的解法.在一块泥板上, 他们给出这样的数表,它不仅包含了从1到30的整数的平方和立方,还包
16,8和4相加得28,取6的三分之一为2,取28的二倍为56,则它的体积 就是这个数.由此我们可以看出,古埃及人是通过具体问题说明了高为h、 底边长为a和b的正四棱台的体积公式是
V 1 (a2 ab b2 )h 3
古巴比伦的数学
• 古巴比伦,又称美索波达米亚,位于亚洲西部的幼发拉底与底格 里斯两河流域,大体上相当于今天的伊拉克。大约是在公元前 3000年左右,古巴比伦人在这里建立起了自己的奴隶制王国。在 过去相当长的一段时间内,人们对于古巴比伦数学的认识是通过 古希腊文化中的零星资料得到的。
古巴比伦的天文学
• 在公元前5000年到公元前4000年间,古巴比伦人就已开始使用年、 月、日的天文历法,他们的年历是从春分开始的,一年有12个月, 第一个月是以“金牛座”命名的,每月有30天,每6年加上第13 个月作为闰月.一个星期有7天,这7天是以太阳、月亮和金、木、 水、火、土七星来命名的,每个星神主管一天,如太阳神主管星 期日.因此,所谓“星期”也就是指星的日期,我们现在的“星 期制”就是在古巴比伦时代所创立的,这种表示方法在今天的英 语单词中还能找到一些痕迹.此外,圆周分为360度,每度60分, 每分60秒,1小时60分,1分60秒的记法,也是来自古巴比伦.
数学史在数学教育中的作用

数学史在数学教育中的作用首先,数学史可以帮助学生更好地理解数学的概念和原理。
通过学习数学史,学生可以了解到不同数学概念和原理是如何逐步发展起来的,以及它们的应用范围和意义。
例如,学生通过学习古希腊数学史,可以了解到欧几里德的《几何原本》是如何建立起几何学的基本原理和证明方法的。
这样一来,学生就能更好地理解几何学的基本概念和原理,并能够更灵活地运用它们解决实际问题。
其次,数学史可以帮助学生更好地理解数学知识的应用。
数学史中有许多数学理论和方法的实际应用实例。
通过学习这些实例,学生可以看到数学知识是如何应用到实际生活和不同学科中的。
例如,学习微积分的历史,学生可以了解到微积分的应用在物理学、经济学和工程学等领域中的重要性和价值。
这样一来,学生就能更好地理解为什么要学习和掌握微积分,并且能够对微积分在实际问题中的应用有更深入的认识。
此外,数学史可以激发学生对数学的兴趣和热爱。
数学史中有很多有趣和有启发性的故事。
通过学习这些故事,学生可以感受到数学的美和魅力,激发对数学的兴趣和热爱。
例如,学生通过学习费马大定理的故事,可以了解到数学家费马在17世纪提出了这个问题,并留下了一个证明的承诺,而这个问题一直到数百年后才被解决。
这样的故事能够激发学生对数学问题的探索和解决的兴趣,让他们愿意去发现和解决数学中的难题。
最后,数学史可以帮助学生更好地理解数学的现代发展。
数学史中介绍了很多数学领域的重要里程碑和主要发展方向。
通过学习这些发展过程,学生可以了解到数学是一个不断发展和演变的学科,知道数学中的不同分支和领域的发展历程。
这样一来,学生就能更好地理解现代数学的研究和应用,也能更加有针对性地选择自己感兴趣的数学领域进行深入学习。
综上所述,数学史在数学教育中起着非常重要的作用。
通过学习数学史,学生可以更好地理解数学的概念和原理,更好地应用数学知识,激发对数学的兴趣和热爱,以及更好地理解数学的现代发展。
因此,数学教育中应该加强对数学史的教学,让学生深入了解数学的演变过程和发展轨迹。
数学学习中的常见数学教育和数学史问题解析

数学学习中的常见数学教育和数学史问题解析数学学习是学生在学校时经历的一个重要环节,它不仅仅是一门学科,更是培养学生逻辑思维和解决问题能力的关键。
然而,在数学学习的过程中,常常会面临一些与数学教育和数学史相关的问题。
本文将对一些常见的数学教育和数学史问题进行分析和解析。
1. 数学教育问题1.1 数学学习的抽象性难以理解数学是一门抽象的学科,对于一些学生来说,抽象的概念可能会给他们带来困扰。
为了解决这个问题,教师可以采用一些具体的例子和实际应用,让学生更好地理解和运用数学的概念。
此外,教师还可以通过游戏和趣味的数学问题激发学生的学习兴趣,提高他们对数学的理解和接受度。
1.2 数学学习的过程缺乏动手实践在传统的数学教育中,学生大多是被动地接受知识的灌输,缺乏实际的动手实践。
然而,数学学习应该是一种主动参与的过程。
教师可以引导学生进行数学建模和实际问题的解决,通过实践来巩固和应用所学知识,提高学生的数学思维和解决问题的能力。
1.3 数学学习的高分低能现象在现实生活中,有很多学生能够取得较高的数学成绩,但却在实际应用中出现困难。
这是因为他们过多地注重记忆和机械计算,缺乏对数学概念的深入理解和灵活运用能力。
为了解决这个问题,教师可以引导学生进行探究性学习,注重培养学生的数学思维和解决问题的能力,让他们在学习中真正理解和掌握数学的本质。
2. 数学史问题2.1 数学史的教育价值被低估数学是一门源远流长的学科,它的发展与人类文明的进程密不可分。
然而,在数学教育中,很少有关于数学史的内容。
数学史不仅可以帮助学生了解数学的起源和发展,还可以激发学生对数学的兴趣和好奇心。
因此,应该将数学史纳入数学教育的内容范围中,让学生了解数学的历史背景,增强他们对数学学习的主动性和积极性。
2.2 数学史中女性数学家的被忽视在数学史中,有许多杰出的女性数学家,她们为数学的发展做出了巨大贡献。
然而,这些女性数学家经常被忽视或被较少提及。
数学史对数学教育的启示

数学史对数学教育的启示数学教育作为教育体系中的重要组成部分,一直以来都备受关注。
数学史作为数学教育的重要背景,对数学教育的发展和改革具有深远的影响。
本文将从数学史的角度出发,探讨其对数学教育的启示,并提出一些可行的改进措施。
一、数学史与数学教育的关系数学史是一门研究数学发展过程及其规律的学科,它通过追溯数学知识的起源、演变和发展,揭示了数学知识的本质和价值。
数学教育则是培养和提高人们数学素养和运用数学知识解决实际问题的教育活动。
数学史与数学教育的关系密切,数学史为数学教育提供了丰富的素材和背景知识,有助于提高数学教育的质量和效果。
二、数学史对数学教育的启示1.尊重历史,传承文化数学史是数学文化的重要组成部分,它记录了数学知识的起源、演变和发展过程。
在数学教育中,我们应该尊重历史,传承数学文化,引导学生了解数学知识的发展历程,体会数学家的思维方式和探索精神。
这有助于培养学生的数学素养和独立思考能力,增强学生的综合素质。
2.树立正确的数学观数学不仅仅是数字、公式和图形,更是一种思维方式和解决问题的工具。
在数学教育中,我们应该树立正确的数学观,让学生了解数学的广泛应用和实际价值,激发学生对数学的兴趣和热爱。
同时,我们应该注重培养学生的数学思维能力和解决问题的能力,让学生学会用数学的眼光看待问题,用数学的方法解决问题。
3.关注历史人物和事件数学史中有很多著名的人物和事件,它们对数学的发展产生了深远的影响。
在数学教育中,我们应该关注这些历史人物和事件,让学生了解他们的贡献和影响,激发学生的探索精神和创新精神。
同时,我们应该注重培养学生的团队合作精神和交流能力,让学生学会与他人合作、交流和分享数学知识。
三、改进措施与建议1.加强数学史教育在数学教育中,我们应该加强数学史教育,让学生了解数学知识的发展历程和重要人物和事件。
可以通过开设数学史课程、组织专题讲座等形式,让学生深入了解数学史知识。
同时,在教材编写和课堂教学过程中,也应该注重融入数学史知识,提高学生的学习兴趣和综合素质。
数学史在数学教育中的重要性

数学史在数学教育中的重要性长期以来,数学学科在教学过程中的“缺人”现象一直存在.所谓的“缺人”现象就是对人文素养的缺失与忽视.而实际上,教学过程中适当的融入数学史的做法便是很好的人文渗透.以人文渗透的方式丰富数学学习的内容与形式,可以让学生喜欢数学、会学数学、进而学好数学.从数学史的内容分布来看,在数学教育中渗透数学史的元素可以从以下几个方面人手.一、数学史之数学概念的发生、发展过程数学概念就是数学中最基本的元素之一,对数学概念的历史发掘可以更好的使学生对概念的本质产生直观印象,从源头协助学生努力学习科学知识,学透科学知识.正数与负数的历史发展正数与负数的产生就是人类思维演化的大飞跃.在完整时期,人们没数的概念,在计数的时候往往采用手指计数,当手指数量比较用的时候,人们就可以利用结绳、棍棒、石子的方式计数.随着社会的发展,尤其就是经济的发展.对计数的建议就逐渐越来越低,于是就存有了自然数的概念,分数的产生.而在生活中则存有了比0度还高的温度……这些情景的发生就建议人类已经开始考量数字的两极,多少两个层面的含义,于是就问世了负数的概念.这种正负数产生的过程就可以使学生深刻的认知负数问世的历史背景和社会生态,有助于学生将正负数的科学知识搬迁运用至生活当中.二、数学史之定理的发现与证明过程传统课堂中对定理的证明和了解往往就是将证明过程展开展现,学生对定理的出处和证明过程的完整记述并并无掌控,无法较好的构成对所学科学知识的深刻印象.将定理证明的来源及其在相同国家的历史发展了解给学生将有利于深化对定理的认知,自学了不起数学家看待证明的方法,并体悟数学思想的魅力.勾股定理的证明在中国,勾股定理的证明最早可以追溯到年前.在《周髀算是经》的结尾就存有关于勾股定理的有关内容;而在西方存有文字记述的最早得出勾股定理证明的则就是毕达哥拉斯.据说就是毕达哥拉斯在朋友家做客时,无意中看见朋友家地板的形状,于是便在大脑中发生了一系列的假设和悖论,并随后给与了论证.当毕达哥拉斯证明了勾股定理以后,欣喜若狂,于是杀死牛百头当众祝贺.现在,数学家已经从相同的角度对勾股定理展开了证明,证明方法多达几十种.三、数学史之数学历史中较为有名的难题解析在数学的发展史中,存有一些流传下来的被后人津津乐道的数学难题,这些题目的答疑中往往蕴含着多样的数学解题思想和独有的思维方式,同时也可以使学生感受到数学问题的奥秘并从中赢得救赎.哥尼斯堡七桥问题在18世纪的时候,存有一个小城角哥尼斯堡,城中存有一条河,河上矗立着七座桥,这七座桥将河中间的两个小岛与岸边相连.在那里生活的居民就明确提出了一个问题,如何在既不重复,也不落的情况下踏遍七座桥,并在最后返回出发点?这个问题所苦了大家很长,但始终都没获得化解.直至一位名为欧拉的数学家通过将问题精简和抽象化最终得出结论了问题的解决办法.这就是后人常提及的“一笔画”问题.四、数学史之数学家的故事数学家的'故事往往蕴藏了多样的人生哲理,不仅教会学生如何看待工作,看待生活,看待工作中的每个细节,还在侧面影响了学生专门从事数学工作的意愿.教师可以在教学之余加插了解一些中外数学家的故事,重点了解其看待数学事业的态度以及在工作上优良的品质,以引导所有学生在数学自学过程中不断的自学数学家的品质与风貌.高斯的故事五、数学史之中国古代的数学成就中国自古以来就有很多闻名于世的数学成就,这些数学成就不仅为后世所利用,同时也在很大程度上提升了中国在数学领域的地位.将中国古代的数学成就介绍给学生可以帮助学生了解中国古代或近现代的数学发展史,同时也可以增强学生的爰国主义情怀,提升学生投身于祖国数学事业的决心和毅力.中国古代主要的数学成就中国的数学起源于本土,并在独立发展的同时形成了自身的风格.古代有三个中国数学发展的巅峰时期,分别是两汉时期、魏晋南北朝时期以及宋元时期.两汉时期有著名的《九章算术》和《周髀算经》,到了魏晋南北朝时期则在这两本著作的基础上产生了其他的注释和推导.最有名的莫过于刘辉“圆周率”的得出、此外例如《夏侯阳算经》等数学著作也相继诞生;宋元时期的中国数学则达到了顶峰,李冶等一大批中国著名的数学家的诞生为当时中国的数学事业贡献了大批成果.如“解高次方程的数值”、“杨辉三角”等.除此之外,对于数学史中的一些关键成就在现当代的应用领域等都就是可以用以传授的材料,教师必须在材料的征选和表达方式上多下工夫,使学生更好的领会到数学中蕴含的人文价值和美学价值,以强化自我提高意识和爰国情怀.。
数学史与数学教育的关系及发展措施

数学史与数学教育的关系及发展措施摘要:作为自然科学的一个枝干,数学一直扮演着重要的角色,它在科学技术、工程和生活中都有广泛的应用。
而数学教育,则是促进数学知识和技能传承和发展的重要手段,与数学史有着密不可分的关系。
在数学教育中,数学史被视为一门“应用历史”,可以帮助学生更好地了解数学知识的发展历程、掌握数学思想的演变、培养数学兴趣和创造力等方面发挥着积极的作用。
本文将就数学史与数学教育之间的关系进行探讨,并对数学教育的发展提出一些建议和措施。
关键词:数学史;数学教育;关系;发展措施一、引言数学史是人类思维发展的产物,是人类智慧的结晶。
数学史是研究数学知识、思想和方法的发展及其实践应用的历史,并探索它们和社会、文化、科技、哲学、艺术等方面的关系。
数学教育则是以数学知识、技能、思想为主要内容,以培养学生数学能力为主要目标的教育活动,是人类数学思想的传承和发展的重要手段。
本文将就数学史与数学教育之间的关系进行探讨,并对数学教育的发展提出一些建议和措施。
二、数学史与数学教育的关系数学史对数学教育的影响是多方面的。
首先,数学史可以帮助学生更好地了解数学知识的发展历程。
在数学教育中,教师可以引导学生通过学习数学史,了解数学知识的发展和演变过程,掌握数学发展的脉络和发展规律,从而更深刻地理解数学知识的内涵和本质。
其次,数学史可以帮助学生掌握数学思想的演变。
在数学史中,可以发现许多数学思想是在一代代数学家的实践中逐渐成熟的。
通过对这些数学思想的追溯和探究,学生可以更深入地了解数学思想的本质和演变过程,提高数学思维能力和创造力。
另外,数学史还可以对学生的数学兴趣和热情产生积极影响。
通过数学史的学习,可以让学生更深入地了解数学的奥秘和魅力,从而激发他们的数学兴趣和热情,提高他们的学习积极性和主动性。
三、数学教育发展的措施1.强化教师培训,提升教师水平。
教师是数学教育的关键环节,他们的水平不仅影响着学生的学习效果,也影响着数学教育的发展。
数学史融入数学教学:意义与方式-教育文档资料

数学史融入数学教学:意义与方式将数学史融入数学教学,是对传统教学理念的一次革新,同时也是一次考验,如果做得好,选择的方式恰当并且合理,不仅能提高学生对数学的了解程度,同时还有利于培养民族自豪感,因此必须明确数学史对于数学教学的意义,才能更好的指导教育者的教学,必须选择合适的方式,才能达到预期的教学目标。
一、数学史的概念数学史,换言之就是数学这门学科从古至今经历了什么,这些经历的事情聚集起来称为史,一门学科的产生必然离不开当时的社会背景,人们的思想境界,一门学科的发展必然也伴随坎坷才能延续至今。
数学也不例外,而数学史就是研究探寻这些坎坷的一门学科,主要内容有数学学科对人类不同时期的发展所做出的贡献,具体的数学内容,以及对整个社会文明带来的影响,这其中涉及了文学、哲学、历史等方面的内容,所以数学史又是一个综合多方面得领域。
就是数学史既归属于科学领域又归属于文学领域。
通过这一鲜明的特征,经过思考不难发现,站在现代科学的角度,运用数理分析可以做到对历史的重新拼凑,还原历史真相,同时也就引出了?笛?史的第二个特征,联系古今。
二、数学史融入数学教学的意义1.提高数学教育影响力作为数学教学中教育者的角色:老师对学生影响力的大小直接影响着学生对数学这门学科接收程度,而接收程度的高低决定着学生对数学理解和应用,青少年是祖国未来的中流砥柱,最终反馈到社会国家就是建设能力,这一能力无疑就是数学教育影响力的体现,在教育教学中,老师同过合理的方式引入数学史,可以大大提高自身影响力,进一步提高数学教育影响力,如前文所述,数学史的综合性极强,知识覆盖面广,是古今的联系,将数学史融入数学教育有利于学生更好的了解祖国的发展,培养学生的民族自豪感,更好的学习数学。
2.提高学生应用能力通过了解数学在历史上,再到现在,对社会国家做出贡献,了解其中包含的深刻内涵,有助于学生积累相关数学应用的知识,不断积累,从量变到质变,从而提升自身的应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学史与数学教育
一、数学史有它的教育价值:
普及数学史是新课程改革的基本旨趣;学史能够给数学课堂教学添色增彩;中小学教材渗透着丰富有趣的数学史;数学史是认识数学知识本质的催化剂;数学史本身蕴含着当下教材基本知识。
二、数学发展的几个阶段
目前学术界通常将数学发展划分为以下五个时期:
(一、)萌芽数学时期(公元前600年以前);
(二、)常量数学时期(前600年至17世纪中叶);
(三、)变量数学时期(17世纪中叶至19世纪20年代);(四、)近代数学时期(19世纪20年代至第二次世界大战);(五、)现代数学时期(20世纪40年代以来)。
第一阶段有一下两项重要成果:计数制度的产生和使用(如图1)。
测量和
图1
作图(如图2赵爽对勾股定理证明方法,图文结合)。
图2
第二阶段是常量数学时期(初等),那个时期数学发展的两条主线:
1.中国初等数学的辉煌成就、
2.灿烂的古希腊数学。
其中中国初等数学的辉煌成就有三次发展高潮:(1)两汉时期;(2)魏晋南北朝时期;(3)宋元时期。
领先的成就有:
1、计算技术的创用
2、加、减、乘(九九表)、除;分数、小数、近似计算
3、更相减损术、比例算法、盈不足术
4、刘徽的“割圆术”,祖冲之的“圆周率”,祖暅原理,算经十书
宋元四大家:杨辉、秦九韶、李冶、朱世杰。
贾宪三角(杨辉三角);秦九韶《数书九章》之“正负开方术”、“大衍求一术”;朱世杰之《算学启蒙》、《四元玉鉴》的“招差术”、“垛积术”;李冶是的“天元术”
第三时期变量数学时期主要有:几何学的变革;微积分的创立与
发展;多分支的形成:集合论、抽象代数、复变函数等,这几个重要成果。
几何学的变革时期代表人物有费尔玛、高斯、笛卡尔等。
笛卡尔在实际上建立起了历史上第一个倾斜坐标系,把几何和代数达到了完美的统一。
微积分虽然不是牛顿与莱布尼兹发现创造的,但却是他俩大体完成的。
牛顿改变了以往从“和的极限”到“定积分”的老路,开创了从导数到不定积分到定积分的新路。
清楚得表明了他对微分和积分互逆关系的认识。
莱布尼兹认识到求积依赖于在横坐标的无限小区间上的纵坐标之和或无限窄小的矩形之和。
更重要的是他认识的求和(积分)与求差(微分)运算的可逆性。
数学方法:(1)化归的方法、(2)变换的方法、(3)类比的方法、(4)归纳的方法、(5)合情推理的方法、(6)反证法、(7)数形结合的方法、(8)分类讨论的方法、(9)运筹的方法。
数学观点:(1)近似的观点、(2)抽象的观点、(3)一一对应的观点、(4)对称的观点、(5)多样性和统一性的观点、(6)“变中有不变”的观点、(7)偶然性与必然性的观点、(8)运算与结构的观点、(9)博弈的观点、(10)关系、等价关系、序关系、相关关系、比例关系、函数关系的观点
数学思想:(1)“命题需要证明,证明依靠逻辑”的思想、(2)量化的思想、(3)数学建模的思想、(4)最优化的思想、(5)公理化的思想、(6)数学机械化的思想、(7)数据处理与数理统计的
思想、(8)数学审美的思想。
最后两个时期由于和我们小学数学离得较远,所以就不讲解。