新人教版八年级下册数学第十九章一次函数知识点总结

合集下载

人教版八年级下册数学册第十九章 一次函数的图像和性质

人教版八年级下册数学册第十九章 一次函数的图像和性质

2)、描点
y=2x+1
3)、连线
因为一次函数的图象是 一条直线,所以只要取 两个点就能画出函数的
图象
练习
选取适当的两点在坐标系中画出下面函数的图象 (同桌各画一组)
1)、y =2x 2)、y =-2x
y =2x+2 y =-2x+2
y =2x-2 y =-2x-2
练习
选取适当的两点在坐标系中画出下面函数的图象 (同桌各画一组)
1)、y =2x 2)、y =-2x
y =2x+2 y =-2x+2
y =2x-2 y =-2x-2
y=2x+2
y=-2x
y=2x-2
y=-2x+2
y=-2x-2
y=-2x
自学提示二
自学内容:
观察第一组函数的图象,根据你的观察完成导学 案中的3、4、5题。
自学方法:
阅读课本,利用数形结合、类比的数学思想 方法。
自学要求: 先独立思考后小组交流完成。
自学互帮
自学内容:
观察第一组函数的图象,根据你的观察完成导学 案中的问题。
自学方法:
阅读课本,利用数形结合、类比的数学思想 方法。
自学要求: 先独立思考后小组交流完成。
释疑
自学内容:1、 观察第一组函数的图象,根据你 的观察回答下列问题:
(1)这三个函数的图象形状都 是直线,并且倾斜程度 相同 ;
量x 可以是任意的实数,
解:1)、列表
列表表示几组对应值
x
. . . -2
-1 0 1
2
...
y=2x+1 . . .
-3 -1
1
3
5 ...

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版单选题1、已知函数y=2x−1x+2,当x=a时的函数值为1,则a的值为()A.3B.-1C.-3D.1答案:A分析:当x=a时的函数值为1,把x=a代入函数式中,得2a−1a+2=1求解a=3.∵函数y=2x−1x+2中,当x=a时的函数值为1,∴2a−1a+2=1,∴2a−1=a+2,∴a=3.故答案为A小提示:此题考查函数值, 令y=1,解分式方程,即可求出2、在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=4答案:A分析:过点D作DE⊥x轴于点E,先证明△ABO≅△DAE(AAS),再由全等三角形对应边相等的性质解得D(7,3),最后由待定系数法求解即可.解:正方形ABCD中,过点D作DE⊥x轴于点E,∵∠ABO+∠BAO=∠BAO+∠DAE=90°∴∠ABO=∠DAE∵∠BOA=∠AED=90°,AB=AD∴△ABO≅△DAE(AAS)∴AO=DE=3,OB=AE=4∴D(7,3)设直线BD所在的直线解析式为y=kx+b(k≠0),代入B(0,4),D(7,3)得{b=47k+b=3∴{k=−1 7b=4∴y=−17x+4,故选:A.小提示:本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=−m(x−1)−n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)答案:B分析:直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n的图象与x轴的交点为(2,0),进而得到一次函数y=-mx-n的图象与x轴的交点为(2,0),由于一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,即可求得一次函数y=-m(x-1)-n的图象与x轴的交点坐标.解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=-mx-n的图象与x轴的交点为(2,0),∵一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,∴一次函数y=-m(x-1)-n的图象与x轴的交点坐标是(3,0),故选:B.小提示:本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.4、如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定答案:C分析:将点P(3,2)代入直线解析式,然后与方程对比即可得出方程的解.解:一次函数y=kx+b(k≠0)的图象经过点P(3,2),∴2=3k+b,∴x=3为方程2=kx+b的解,故选:C.小提示:题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5、现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y的值为()A.3.2米B.4米C.4.2米D.4.8米答案:A分析:先利用待定系数法求出两个蓄水池的函数解析式,再联立求出交点坐标即可得.解:设甲蓄水池的函数解析式为y=kx+b,由题意,将点(3,0),(0,4)代入得:{3k+b=0b=4,解得{k=−43b=4,则甲蓄水池的函数解析式为y=−43x+4,同理可得:乙蓄水池的函数解析式为y=2x+2,联立{y=−43x+4y=2x+2,解得{x=0.6y=3.2,即当甲、乙两池中水的深度相同时,y的值为3.2米,故选:A.小提示:本题考查了一次函数的实际应用,熟练掌握待定系数法是解题关键.6、在函数y=2x−3中,当自变量x=5时,函数值等于()A.1B.4C.7D.13答案:C分析:把x=5代入y=2x−3求解即可.解:把x=5代入y=2x−3得y=2×5-3=7,故选:C.小提示:本题考查求函数值,属基础题目,难度不大.7、若y=(m﹣1)x+m2﹣1是y关于x的正比例函数,则该函数图象经过的象限是()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限答案:D分析:根据正比例函数的定义知,m2−1=0且m−1≠0,由此可求得m的值,从而可知正比例函数图象所经过的象限.由题意知:m2−1=0且m−1≠0由m2−1=0得:m=±1由m−1≠0得:m≠1∴m=-1此时正比例函数解析式为y=-2x∵-2<0∴函数图象经过第二、四象限故选:D.小提示:本题考查了正比例函数的概念,把形如y=kx(k≠0)的函数称为正比例函数,掌握正比例函数概念是解题关键.特别注意一次项系数不为零.8、在平面直角坐标系中,直线l1与l2关于直线y=1对称,若直线l1的表达式为y=−2x+3,则直线l2与y轴的交点坐标为()A.(0,12)B.(0,23)C.(0,0)D.(0,−1)答案:D分析:先求解y=−2x+3与x,y轴的交点B,A坐标,再求解A关于y=1的对称点A′的坐标即可得到答案.解:如图,∵y=−2x+3,令x=0,y=3,令y=0,x=32,∴A(0,3),B(3,0),2作A,B关于直线y=1对称的点A′,B′,∵直线l1与l2关于直线y=1对称,即上图中的直线AB与直线A′B′关于直线y=1对称,∴x A=x A′=0,y A−1=1−y A′,∴y A′=−1,∴A′(0,−1),所以直线l2与y轴的交点坐标为:(0,−1).故选:D.小提示:本题考查的是求解一次函数与坐标轴的交点的坐标,坐标与图形,轴对称的坐标变化,掌握数形结合的方法是解题的关键.9、直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.﹣1D.24答案:A分析:由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k的一元一次方程,解之即可得出k值.解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.小提示:本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题的关键.10、如图,已知A(1,3),B(5,1),若直线y=kx+1与线段AB有公共点,则k的取值范围是()A.k≠0B.k>1C.0≤k≤1D.0≤k≤2答案:D分析:先求出直线过点A、B的k值,再结合图象即可求得k的取值范围.解:当直线y=kx+1过点A(1,3)时,则k+1=3,解得:k=2,当直线y=kx+1过点B(5,1)时,则5k+1=1,解得:k=0,当x=0时,y=1,则直线经过定点(0,1),∵直线y=kx+1与线段AB有公共点,∴0≤k≤2,故选:D.小提示:本题考查一次函数的图象与性质,熟练掌握一次函数的性质是解答的关键.填空题11、如图,A(−2,1),B(2,3)是平面直角坐标系中的两点,若一次函数y=kx−1的图象与线段AB有交点,则k 的取值范围是_______.答案:k<-1或k>2分析:将A、B点坐标分别代入计算出对应的k值,然后利用一次函数图象与系数的关系确定k的范围.解:当直线y=kx-1过点A时,得-2k-1=1,解得k=-1,当直线y=kx-1过点B时,得2k-1=3,解得k=2,∵一次函数y=kx−1的图象与线段AB有交点,∴k<-1或k>2,所以答案是:k<-1或k>2.小提示:此题考查了一次函数图象与系数的关系:当k>0时,图象过第一、三象限,y随x的增大而增大,越靠近y轴正半轴k值越大;当k<0时,图象过二、四象限,y随x的增大而减小越靠近y轴正半轴k值越小.12、某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为______.答案: 3 y=4x+2##y=2+4x分析:根据题意列出一元一次方程,函数解析式即可求解.解:∵14>10,∴超过2千克,设购买了a千克,则2×5+(a−2)×0.8×5=14,解得a=3,设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为:y=2×5+(x−2)×5×0.8=10+4x−8=4x+2,所以答案是:3,y=4x+2.小提示:本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.13、张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.答案: 10+5x(x为正整数), 235分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.根据题意可知y=5x+10.当x=45时,y=45×5+10=235元.故答案为5x+10;235.小提示:解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.14、已知一次函数y =(2m +1)x +m ﹣3的图象不经过第二象限,则m 的取值范围为______.答案:−12<m ⩽3 分析:根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 解:∵一次函数y =(2m +1)x +m −3的图象不经过第二象限,∴该图象经过第一、三象限或第一、三、四象限,{2m +1>0m −3≤0,解得:﹣12<m ≤3. 所以答案是:﹣12<m ≤3.小提示:本题考查了一次函数的性质及解不等式组,解题的关键是熟知一次函数的性质并正确的应用.15、正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .答案:y =23x 或y =-23x分析:根据题意确定A 点纵坐标是2或者-2,设出正比例函数解析式,然后分情况将A 点坐标代入解析式即可求出.根据题意可得A 点坐标(3,2)或(3,-2),设正比例函数解析式为:y=kx ,代入解析式可得:k=23或-23,∴函数解析式是y =23x 或y =-23x .所以答案是:y =23x 或y =-23x .小提示:本题主要考查了正比例函数解析式,根据题意确定点A 的坐标是解题的关键.解答题16、已知函数y=(5m−3)x2−n+(m+n),(1)当m、n为何值时,此函数是一次函数?(2)当m、n为何值时,此函数是正比例函数?答案:(1)n=1,m≠35(2)n=1,m=-1分析:(1)根据一次函数的定义知2−n=1,且5m−3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2−n=1,m+n=0,据此可以求得m、n的值.(1)解:当函数y=(5m−3)x2−n+(m+n)是一次函数时,2−n=1,且5m−3≠0,解得,n=1,m≠35;(2)解:当函数y=(5m−3)x2−n+(m+n)是正比例函数时,{2−n=1 m+n=05m−3≠0,解得,n=1,m=−1.小提示:本题考查了一次函数、正比例函数的定义,解题的关键是掌握正比例函数是一次函数的一种特殊形式.17、今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.答案:(1)这一批树苗平均每棵的价格是20元;(2)购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.分析:(1)设这一批树苗平均每棵的价格是x元,分别表示出两种树苗的数量,根据“每捆A种树苗比每捆B种树苗多10棵”列方程即可求解;(2)设购进A种树苗t棵,这批树苗的费用为w,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.解:(1)设这一批树苗平均每棵的价格是x元,根据题意,得6300.9x −6001.2x=10,解之,得x=20.经检验知,x=20是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A种树苗每棵价格为20×0.9=18元,种树苗每棵价格为20×1.2=24元,设购进A种树苗t棵,这批树苗的费用为w,则w=18t+24(5500−t)=−6t+132000.∵w是t的一次函数,k=−6<0,w随着t的增大而减小,t≤3500,∴当t=3500棵时,w最小.此时,B种树苗有5500−3500=2000棵,w=−6×3500+132000=111000.答:购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.小提示:本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.18、某市出租车的计费标准如下:行驶路程不超过5 km时,收费8元,行驶路程超过5 km的部分,按每千米1.5元计费.(1)求出租车收费y(元)与行驶路程x(km)之间的函数关系式;(2)若某人一次乘出租车付出了车费11元,求他这次乘坐了多少千米的路程?答案:(1)y={8(0<x≤5)1.5x+0.5(x>5);(2)若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程.分析:(1)要先根据行驶路程的距离是否超出5千米来进行分类讨论,然后分别列出函数解析式即可;(2)先根据车费判断出此人的大概行驶路程,然后根据(1)中得出的不同的函数,看符合哪种情况,然后代入其中求出此人乘坐的路程.解:(1)由题意得:当0<x≤5时,y=8当x>5时,y=8+1.5(x-5)=1.5x+0.5∴出租车收费y元与行驶路程x(km)之间的函数关系式为y={8(0<x≤5)1.5x+0.5(x>5)(2) ∵11元>8元.∴y=11时,1.5x+0.5=11,解得x=7,∴若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程..小提示:本题主要考查一次函数关系式的应用问题.注意自变量的取值范围不能遗漏,不同的取值要进行分类讨论.。

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版
(1)放入一个小球后水桶中水面升高________ cm; (2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个) 之间的一次函数关系式;(不要求写出自变量的取值范围) (3)水桶中至少放入几个小球时有水溢出?
解:(1)2; (2)因为每放入一个小球后,水面升高 2 cm,所以 y=30+2x; (3)由 2x+30>49,得 x>9.5,即至少放入 10 个小球时有水溢 出.
3.若一次函数 y=kx+b,当 x=-2 时,y=7;当 x=1 时,y
=-11.则 k,b 的值为( C )
A.k=6,b=5
B.k=-1,b=-5
C.k=-6,b=-5
D.k=1,b=5
4.据调查,某地铁自行车存放处某星期天的存车量为 4000 辆 次,其中变速车存车费是每辆一次 0.30 元,普通自行车存车费 是每辆一次 0.20 元,若普通自行车存车数为 x 辆,存车费总收 入为 y 元,则 y 关于 x 的函数关系式为( D ) A.y=0.10x+800(0≤x≤4000) B.y=0.10x+1200(0≤x≤4000) C.y=-0.10x+800(0≤x≤4000) D.y=-0.10x+1200(0≤x≤4000)
(3)某车站规定旅客可以免费携带不超过 20 千克的行李,超过 部分每千克收取 1.5 元的行李费,则旅客需交的行李费 y(元) 与携带行李质量 x(千克)(x>20)的关系.
解:(1)y=0.53x,是; (2)y=10+5x,是; (3)y=1.5x-30,是.
10.某油箱容量为 60 L 的汽车,加满汽油后行驶了 100 km 时,油箱中的汽油大约消耗了15 ,如果加满汽油后汽车行驶 的路程为 x(km),油箱中剩油量为 y(L),则 y 与 x 之间的函数 解析式和自变量取值范围分别是( D ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60-0.12x,0≤x≤500

人教八年级数学下册-第十九章一次函数章末复习

人教八年级数学下册-第十九章一次函数章末复习

得:
92k+b=40,
解得:
k= 1 ,
4
100k+b=42,
b=17,
∴y与x之间的函数关系式为y= 1 x+17;
4
号/型 … 170/84 170/88 175/92 175/96 180/100 …
码数 … 38
39
40
41
42

(2)若某人的净胸围为108厘米,则该人应买
多大码数的衬衫?
1.一次函数y=(m-2)x+3m-3的图象经过第 一、二、四象限, 求m得取值范围.
∵一次函数y=(m-2)x+3m-3的图象经过第一、 二、四象限,
m-2<0, ∴ 3m-3>0, 解得: 1 <m< 2, ∴m的取值范围是1 <m< 2.
2.直线y=-2x+a经过(3, y1)和(-2, y2)两点, 则y1和y2的大小关系是( )
∴点B的坐标为(0,±2),
设直线解析式为y=kx±2,
∵直线经过点(-4,0),
B.
∴0=-4k±2,解得k=±
1 2

.
2
A(-4,0) O
x
∴直线的解析式为y=
1 2
x+2或y=-
1 2
x-2.
2.把直线y=2x-1向上平移2各单位,所得
直线的解析式是:
.
分析: 由“上加下减”的原则可知,直线 y=2x-1向上平移2个单位,所得直线解析 式为y=2x-1+2,即y=2x+1.
y=kx+b
b>0 k>0 b=0
b<0 b>0 k<0 b=0 b<0
图象经过的象限

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=

x
2

2(
x

2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.

第十九章一次函数章节复习-2021-2022学年八年级数学下册教材配套教学课件(人教版)

第十九章一次函数章节复习-2021-2022学年八年级数学下册教材配套教学课件(人教版)
图象过原点的是_____;函数y随x的增大而增大的是________;函数y随x的

①②③
增大而减小的是_____;图象在第一、二、三象限的是______.


4.已知一次函数y=-2x+3,当-2<x≤3时,y的取值范围是________.
-3≤x<7
5.点 P1 ( x1 , y1 ), P2 ( x2 , y2 )是一次函数y=-2x-5图象上的两个点,
A
A.y随x的增大而减小
B.y随x的增大而增大
C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小
D.无论x如何变化,y不变
1
2.函数y=2x,y=-3x,y=- x的共同特点是(
2
D

A.图象位于同样的象限
B.y随x的增大而减小
C.y随x的增大而增大
D.图象都过原点

考点三 一次函数的图象与性质
D.图象必经过点(0,5)
【点睛】本题考查了正比例函数的性质:它是经过原点的一条直
线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k
<0时,图象经过二、四象限,y随x的增大而减小.
考点二 正比例函数的图象与性质
【例3】如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③
y=cx,则a、b、c的大小关系是(
表达式.
解:设一次函数的解析式是y=kx+b(k≠0),
把A(-2,-3),B(1,3)两点代入y=kx+b中得,
−2k+b=−3

k+b=3
k=2
解得ቊ
b=1
则这个一次函数的解析式是y=2x+1.

新人教版八年级下册数学第十九章一次函数知识点总结

新人教版八年级下册数学第十九章一次函数知识点总结

新人教版八年级下册数学第十九章一次函数知识点总结八年级下册数学第十九章一次函数知识点总结一、基本概念:1.变量是在一个变化过程中数值发生变化的量,而常量是在一个变化过程中数值始终不变的量。

2.函数定义是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x 的函数。

当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

3、定义域是指一个函数的自变量x允许取值的范围。

4、确定函数定义域的方法有以下几种:1)关系式为整式时,函数定义域为全体实数;2)关系式含有分式时,分式的分母不等于零;3)关系式含有二次根式时,被开放方数大于等于零;4)关系式中含有指数为零的式子时,底数不等于零;5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数解析式是用来表示函数关系的数学式子,使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

6、函数图像的性质是对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

7、函数的三种表示法及其优缺点:1)解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

2)列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

3)图像法:用图像表示函数关系的方法叫做图像法。

8、由函数解析式画其图像的一般步骤:1)列表:列表给出自变量与函数的一些对应值。

2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

9、正比例函数和一次函数:所有一次函数或者正比例函数的图像都是一条直线。

1)正比例函数定义:一般地,形如y=kx(k为常数,k≠)y叫x的正比例函数。

人教版八年级下册数学 第19章《一次函数》讲义 第17讲 函数的认识

人教版八年级下册数学 第19章《一次函数》讲义 第17讲  函数的认识

第17讲函数的认识1、在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。

2、实际上,常量就是具体的数,变量就是表示数的字母。

(注意“π”是常量)函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

1、例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。

2、对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是11、当一个或几个变量取一定的值时,另一个变量有唯一确定值与之相对应,我们称这种关系为确定性的函数关系。

2、两个变量x,y,用一个等式表示出来,如果x取一个值,y都有唯一的值和他对应。

就是y与x的函数关系式。

1、自变量与函数在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定的值与它对应,那么,把x叫自变量,y叫x的函数。

2、函数值如果x=a时,y=b,那么把“y=b叫做x=a时的函数值”。

3、自变量取值范围的确定方法(1)、自变量的取值范围必须使解析式有意义。

当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。

(2)、自变量的取值范围必须使实际问题有意义。

4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义考点1、常量与变量例1、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量例2、假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A、1个B、2个C、3个D、4个例3、“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,______随______变化而变化,其中自变量是______,因变量是______.例4、在公式s=v0t+2t2(v0为已知数)中,常量是,变量是.例5、下列是某报纸公布的世界人口数据情况:(1)表中分别有几个变量?(2)你能将其中某个变量看成另一个变量的函数吗?(3)如果用x表示时间,y表示世界人口总数,那么随着x的变化,y的变化趋势是什么?(4)世界人口每增加10亿,所需的时间是怎样变化的?例6、在烧开水时,水温达到l00℃就会沸腾,下表是某同学做“观察水的沸腾”实验时记录的数据:(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间推移2分钟,水的温度如何变化?(4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗?(5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?1、在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A、C,rB、C,π,rC、C,πD、C,2π,r2、以固定的速度v0(米/秒)向上抛一个小球,小球的高度h(米)与小球的运动的时间t(秒)之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、4.9是常量,t、h是变量B、v0是常量,t、h是变量C、v0、-4.9是常量,t、h是变量D、4.9是常量,v0、t、h是变量3、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S (m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A、S和pB、S和aC、p和aD、S,p,a4、某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中是自变量,是因变量。

人教版数学八年级下册第十九章一次函数《-一次函数》)精选全文

人教版数学八年级下册第十九章一次函数《-一次函数》)精选全文

探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)当x=2.5时, y=3×2.5 - 9= -1.5.
课堂检测
能力提升题
我国现行个人工资、薪金所得税征收办法规定:月收入低于
5000元的部分不收税;月收入超过5000元但低于8000元的部分 征收3%的所得税……如某人月收入5360元,他应缴个人工资、 薪金所得税为:(5360-5000)×3%=10.8元. (1)当月收入大于5000元而又小于8000元时,写出应缴所得税
连接中考
根据记录,从地面向上11km以内,每升高1km,气温降低6℃; 又知在距离地面11km以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x(km)处的气温为y(℃) (1)写出距地面的高度在11km以内的y与x之间的函数表达式; (2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻, 她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时, 飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;
答:画正比例函数y=kx(k≠0)的图像,一般地, 过原点和点(1,k). 【思考】能用这种方法作出一次函数的图象吗?
素养目标
3. 能灵活运用一次函数的图象与性质解答有关 问题. 2.能从图象角度理解正比例函数与一次函数的 关系.
1. 会画一次函数的图象,能根据一次函数的图 象理解一次函数的增减性 .

第十九章 一次函数 小结与复习-天津市2020年空中课堂人教版八年级数学下册课件(共30张PPT)

第十九章 一次函数 小结与复习-天津市2020年空中课堂人教版八年级数学下册课件(共30张PPT)

图象:一条直线
性质: k > 0,y 随 x 的增大而增大; k < 0,y 随 x 的增大而减小.
三、重要知识点的应用
应用1 正比例函数、一次函数的定义.
例1 下列变量之间关系中,一个变量是另一个变量的正比例函数 的是( B ).
(A)正方形的面积 S 随着边长 x 的变化而变化
S=x2
(B)正方形的周长 C 随着边长 x 的变化而变化
常量:100 和 10 ;变量:x 和 y ; 自变量:x ; 函数:y 是 x 的函数 .
问题3 函数有几种表示方法?各有哪些特点?画函数图象分几步?
(1) y = x2
解析式法
描述变量之间的对应关系
x
(2)
… -3 -2 -1 0
1
2
3

y=x2 … 9 4 1 0 1 4 9 …
列表法
直接给出 部分对应值
函数
字母系数取值 ( k>0)
y=kx+b (k ≠ 0)
b >0 b=0
b<0
图象
y Ox y
Ox y Ox
经过的象限 变化趋势
一、二、三 一、三
y 随x 的增大 而增大
一、三、四
问题7 一次函数图象的特征?一次函数的性质?
函数
字母系数取值 ( k<0)
b>0
y=kx+b (k ≠ 0) b = 0
一次函数的小结与复习 八年级 数学
学习目标:
1. 经历回顾与思考,整理本章学习内容. 2. 建立相关知识之间的联系,优化知识结构. 3. 理解一次函数在解决实际问题中的作用. 4. 进一步体会函数模型思想、数形结合思想及变化对应的思想.
二、本章主要知识点回顾

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

新人教版八年级数学下册第19章一次函数 全章知识点归纳总结

新人教版八年级数学下册第19章一次函数 全章知识点归纳总结

一次函数 全章知识点归纳总结1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.在某一变化过程中,有两个量,如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时称y 是x 的函数.1:下列各图给出了变量x 与y 之间的函数是:【 】2.表示方法(1)解析法:用数学式子表示函数的方法叫做解析法.如:30S t =,2S R π=. (2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式.例如4y x =就是一个函数关系式. (2)函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数. (3)函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. (4)求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.4.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥.在初中阶段,自变量的取值范围考虑下面几个方面: (1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数. (3)分式型:分母不为0. (4)复合型:不等式组 (5)应用型:实际有意义即可例题4:函数12-+=x x y 中的自变量x 的取值范围是【 】 A 、x ≥-2 B 、x ≠1 C 、x >-2且x ≠1 D 、x ≥-2且x ≠1例题5:函数242412----=x x x y 中的自变量x 的取值范围为_________________例题6:函数748142---=x x x y 中的自变量x 的取值范围为_________________例题7:若等腰三角形周长为30,一腰长为a ,底边长为L ,则L 关于a 的函数解析式为 . 5.函数图象:函数的图象是由平面直角中的一系列点组成的. 6.函数图像的位置决定两个函数的大小关系: (1)图像1y 在图像2y 的上方⇔21y y > (2)图像1y 在图像2y 的下方⇔21y y <xx(3)特别说明:图像y 在x 轴上方0>⇔y ;图像y 在x 轴下方0<⇔y例题8:直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为【 】A 、x >1B 、x <1C 、x >-2D 、x <-2例题9:如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是【 】 A .3x < B .3x > C .0x > D .0x < 7.描点法画函数图象的步骤:(1)列表; (2)描点; (3)连线. 例题10:画出函数42+=x y 的图像8.函数解析式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上; (2)函数图象上点的坐标满足函数解析式.9.验证一个点是否在图像上方法:代入、求值、比较、判断 例题11:下列各点中,在反比例函数y =6x图象上的是【 】 A .(-2,3) B .(2,-3) C .(1,6) D .(-1,6) 10.一次函数及其性质 知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.知识点三:一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.知识点四:一次函数y kx b =+的图象、性质与k 、b 的符号倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴图像的平移:b >0时,将直线y =kx 的图象向上平移b 个单位,对应解析式为:y =kx +b b <0时,将直线y =kx 的图象向下平移b 个单位,对应解析式为:y =kx -b 口诀:“上+下-”将直线y =kx 的图象向左平移m 个单位,对应解析式为:y =k (x +m ) 将直线y =kx 的图象向右平移m 个单位,对应解析式为:y =k (x -m ) 口诀:“左+右-”知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式. 例题12:一次函数y kx b =+的图象只经过第一、二、三象限,则【 】 A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,例题13:如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么【 】 A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <例题14:已知一次函数的图象过点(3,5)与(-4,-9),求该函数的图象与y 轴交点的坐标.例题15:已知一次函数011)3()12(=+-+--k y k x k ,试说明:不论k 为何值,这条直线总要经过一个定点,并求出这个定点.例题16:一次函数y =ax +b 的图像关于直线y =-x 轴对称的图像的函数解析式为____ __ 例题17:某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y (单位:千米)与所用时间x (单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.(1)请在图中画出公共汽车距乌鲁木齐市的路程y (千米)与所用时间x (小时)的函数图象. (2)求两车在途中相遇的次数(直接写出答案) (3)求两车最后一次相遇时,距乌鲁木齐市的路程.例题18:已知某一次函数当自变量取值范围是2≤y≤6时,函数值的取值范围是5≤x≤9.求此一次函数的解析式.例题19:已知一次函数y =ax +4与y =bx -2的图象在x 轴上相交于同一点,则ba的值是【 】 A 、4 B 、-2 C 、 12 D 、- 12例题20:求直线y =2x -1与两坐标轴所围成的三角形面积.11.直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k例题21:已知一次函数1+=x y ,另一条直线与之平行,且与坐标轴所围成的三角形面积为8,求此一次函数解析式.12.一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解.求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,bk-就是直线y b kx =+与x 轴交点的横坐标. 13.一次函数与一元一次不等式的关系:任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.。

八年级数学下册第十九章一次函数总结(重点)超详细(带答案)

八年级数学下册第十九章一次函数总结(重点)超详细(带答案)

八年级数学下册第十九章一次函数总结(重点)超详细单选题1、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,把线段AB以A为旋转中心,逆时针方向旋转90°,得到线段AC,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.答案:A分析:作出适当的辅助线,证得ΔAOB≌ΔCDA,即可建立y与x的函数关系,确定出答案.解:过点C作CD⊥y轴于点D,∵∠AOB=90°,∴∠CDA=∠AOB,∠OBA+∠OAB=90°,∵∠CAB=90°,∴∠CAD+∠OAB=90°,∴∠CAD=∠OBA,又∵AB=AC,∴ΔAOB≌ΔCDA(AAS),∴DA=OB=x,∴y=OD=DA+OA=x+1,又∵点B是x轴正半轴上的一动点,∴x>0,故选:A.小提示:本题考查了动点问题的函数图象问题,解题的关键是明确题意,建立函数关系,从而判断出正确的函数图象.2、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25C.x=10D.x=20答案:D分析:两直线的交点坐标为两直线解析式所组成的方程组的解.解:∵直线y=x+5和直线y=ax+b相交于点P(20,25),∴方程x +5=ax +b 的解为x =20.故选:D .小提示:此题主要考查了一次函数与一元一次方程,关键是掌握一元一次方程与一次函数的关系,从图象上看,一元一次方程的解,相当于已知两条直线交点的横坐标的值.3、在平面直角坐标系中,一次函数y =x +1的图象是( )A .B .C .D .答案:C 分析:观察一次函数解析式,确定出k 与b 的符号,利用一次函数图象及性质判断即可.解:∵一次函数y =x +1,其中k =1>0,b =1>0,∴图象过一、二、三象限,故选C .小提示:此题主要考查一次函数图象的性质,熟练掌握一次函数图象的性质是解题的关键.4、在同一平面直角坐标系中,直线y =−x +4与y =2x +m 相交于点P(3,n),则关于x ,y 的方程组{x +y −4=02x −y +m =0的解为( ) A .{x =−1y =5 B .{x =1y =3 C .{x =3y =1 D .{x =9y =−5答案:C分析:先把点P 代入直线y =−x +4求出n ,再根据二元一次方程组与一次函数的关系求解即可;解:∵直线y =−x +4与直线y =2x +m 交于点P (3,n ),∴n =−3+4,∴n =1,∴P (3,1),∴1=3×2+m ,∴m =-5,∴关于x ,y 的方程组{x +y −4=02x −y −5=0的解{x =3y =1 ; 故选:C .小提示:本题主要考查了一次函数的性质,二元一次方程与一次函数的关系,准确计算是解题的关键.5、下列函数①y =−5x ;②y =−2x +1;③y =3x ;④y =12x −1;⑤y =x 2−1中,是一次函数的有( ).A .1个B .2个C .3个D .4个答案:C分析:利用一次函数的定义进行判断即可选择.解:①是一次函数;②是一次函数;③是反比例函数;④是一次函数;⑤是二次函数,所以一次函数有3个.故选:C .小提示:本题考查一次函数的定义,理解一次函数的定义是解题关键.6、已知关于x 的一次函数y =3x +n 的图象如图,则关于x 的一次方程3x +n =0的解是 ( )A .x =−2B .x =−3C .x =−32D .x =−23答案:D分析:根据函数的图象得出一次函数y=3x+n与y轴的交点坐标是(0,2),把坐标代入函数解析式,求出n,再求出方程的解即可.从图象可知:一次函数y=3x+n与y轴的交点坐标是(0,2),代入函数解析式得:2=0+n,解得:n=2,即y=3x+2,当y=0时,3x+2=0,解得:x=−2,3,即关于x的一次方程3x+n=0的解是x=−23故选:D.小提示:本题考查了一次函数与一元一次方程,能求出一次函数的解析式是解此题的关键.7、如果一个正比例函数的图象经过不同象限的两点A(3,m)、B(n,﹣2),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0答案:B分析:利用正比例函数的性质,可得出点A,B分别在一、三象限,结合点A,B的坐标,可得出m>0,n<0.解:∵一个正比例函数的图象经过不同象限的两点A(3,m)、B(n,﹣2),∴点A,B分别在一、三象限,∴m>0,n<0.故选:B.小提示:此题考查了正比例函数的性质,牢记“当k>0时,正比例函数y=kx的图象在第一、三象限;当k<0时,正比例函数y=kx的图象在第二、四象限”是解题的关键.8、已知点(−2,y1),(0,y2),(4,y3)是直线y=−5x+b上的三个点,则y1,y2,y3的大小关系是().A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y1<y3<y2答案:A分析:结合题意,根据一次函数图像的性质分析,即可得到答案.∵直线y=−5x+b上,y随着x的增加而减小,且−2<0<4∴y1>y2>y3故选:A.小提示:本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.9、函数y=√x−1中自变量x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤1答案:A分析:根据二次根式有意义的条件列出不等式,即可求解.解:∵x−1≥0,∴x≥1.故选A.小提示:本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.10、A,B两地相距120km,甲、乙两人分别从两地出发相向而行,甲先出发,如图,l1,l2分别表示两人离A 地的距离s(km)与时间t(h)之间的关系,则当甲到达A地时,乙距离A地()A.56kmB.60kmC.80kmD.40km答案:B分析:先求出直线l2的解析式,从而求出当t=2.8时,s=36,由此即可求出直线l1的解析式,进而求出甲到达目的地的时间,由此即可得到答案.解:由题意可知,甲,乙的函数图象分别为l1,l2.∵l2经过点(1,0)和(7,120),∴l2:s=20t−20,当t=2.8时,s=36,∴由(0,120),(2.8,36)得l1:s=−30t+120,令−30t+120=0,解得t=4,将t=4代入l2,得s=60.∴当甲到达A地时,乙距离A地60km.故选B.小提示:本题主要考查了从函数图象获取信息,一次函数的应用,正确读懂函数图象是解题的关键.填空题11、一次函数的图象经过点(0,3),且与直线y=﹣2x+1平行,那么这个一次函数的解析式是 _____.答案:y=﹣2x+3分析:设一次函数的解析式为y=kx+b,由题可知,k=-2,再代入点(0,3)求出b,进而得出一次函数解析式.解:设一次函数解析式是y=kx+b,∵该一次函数与直线y=﹣2x+1平行,∴k=﹣2.∵一次函数的图象经过点(0,3),∴0+b=3,解得b=3,∴一次函数的解析式是y=﹣2x+3.所以答案是:y=﹣2x+3.小提示:本题考查求一次函数解析式,熟练掌握一次函数的性质以及定义是解决问题的关键.12、甲,乙两名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,−2);乙:y随x 的增大而减小;根据他们的叙述,写出满足上述性质的一个一次函数的表达式为______.答案:y=−x−2分析:设一次函数解析式为y=kx+b,根据函数的性质得出b=−2,k< 0,从而确定一次函数解析式,本题答案不唯一.解:设一次函数解析式为y=kx+b,∵函数的图象经过点(0,-2),∴b=−2,∵y随x的增大而减小,∴k<0,当取k=−1时,一次函数表达式为:y=−x−2,∴满足上述性质的一个函数表达式为:y=−x−2(答案不唯一).所以答案是:y=−x−2.小提示:本题主要考查一次函数的性质,数形结合是解题的关键,属于开放型的题型.13、若y=(k−3)x|k|−2+5是一次函数,则k=_________.答案:-3分析:根据一次函数的定义得到k−3≠0且|k|−2=1,解方程和不等式即可求解.解:∵y=(k−3)x|k|−2+5是一次函数,∴k−3≠0且|k|−2=1,∴k≠3且k=±3,∴k=−3.所以答案是:-3.小提示:本题主要考查了一次函数的定义.一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.14、如图,将正方形ABCD置于平面直角坐标系中,其中A(1,0),D(﹣3,0),AD边在x轴上,直线L:y=kx与正方形ABCD的边有两个交点O、E,当3<OE<5时,k的取值范围是_______.答案:k>2√2或k<0且k≠﹣43分析:设BC与y轴交于点M,由OA=1<3,OD=3,OE>3,可得E点不在AD边上,即k≠0,分k>0与k<0两种情况进行讨论.解:如图,设BC与y轴交于点M,∵OA=1<3,OD=3,OE>3,∴E点不在AD边上,∴k≠0,①如果k>0,那么点E在AB边或线段BM上,当点E在AB边且OE=3时,由勾股定理得AE2=OE2−OA2=9−1=8,∴AE=2√2,∴E(1,2√2),当直线y=kx经过点(1,2√2)时,k=2√2,∵OB2=AB2+OA2=16+1=17,∴OB=√17<5,当点E在线段BM上时,OE<OB=√17<5,∴k>2√2,符合题意;②如果k<0,那么点E在CD边或线段CM上,当点E在CD边且OE=3时,E与D重合;当OE=5时,由勾股定理得DE2=OE2−OD2=25−9=16,∴DE=4,∴E(﹣3,4),此时E与C重合,,当直线y=kx经过点(﹣3,4)时,k=−43当点E在线段CM上时,OE<OC=5,∴k<0且k≠−4,符合题意;3.综上,当3<OE<5时,k的取值范围是k>2√2或k<0且k≠−43小提示:本题考查了正方形的性质,勾股定理,一次函数图像与系数的关系,一次函数图像上点的坐标特征,利用数形结合与分类讨论是解题的关键.15、如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(-2,0),l2与x轴交于点C(4,0),则不等式组0<mx+n<kx+b的解集为_____.答案:1<x<4分析:先解不等式0<mx+n,结合图像可知l2上的点在x轴的上方,可得x<4,再解mx+n<kx+b,结合图像可知l1上的点在l2的上方,可得x>1,从而可得0<mx+n<kx+b的解集.解:∵不等式0<mx+n,∴l2上的点在x轴的上方,∵C(4,0),∴x<4,∵ mx+n<kx+b,∴l1上的点在l2的上方,∵A(1,p),∴x>1,∴不等式组0<mx+n<kx+b的解集为1<x<4,所以答案是:1<x<4,小提示:本题考查的是一次函数与不等式组的关系,掌握利用一次函数的图像解不等式组是解题的关键.解答题16、某空军加油飞机接到命令,立即给另一架正在飞行的运输机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油箱余油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图像如图所示,结合图像回答下列问题:(1)加油之前,加油飞机的加油油箱中装载了吨油;运输飞机的油箱有余油量吨油;(2)这些油全部加给运输飞机需分钟;(3)运输飞机的飞行油耗为每分钟吨油;(4)运输飞机加完油后,以原速继续飞行,如果每分钟油耗相同,最多能飞行小时.答案:(1)30,40(2)10(3)0.1(4)11.5分析:(1)通过观察图象,即可得到;(2)根据图象横坐标即可得到;(3)首先根据运输飞机在10分钟时间内,加油29吨,但加油飞机消耗了30吨,求出每小时耗油量,再求出每分钟的油耗;(4)先确定油量,除以每小时的油耗即可.(1)解:由图观察线段Q2段图象,加油油箱中装载了30吨油,由图观察线段Q1段图象,运输飞机油箱中装载了40吨油,故答案是:30,40;(2)解:由图可知加油飞机在10分钟时间内消耗了30吨,故答案是:10;(3)解:∵运输飞机在10分钟时间内,加油29吨,但加油飞机消耗了30吨,所以说10分钟内运输飞机耗油量为1吨,=6(吨),∴运输飞机每小时耗油量为30−291060=0.1(吨),∴运输飞机每分钟耗油量为660故答案是:0.1;=0.1(吨),(4)解:∵运输飞机每分钟耗油量为660∴运输飞机每小时耗油量为6(吨),最多能飞行69=11.5(小时).6故答案是:11.5.小提示:本题考查一次函数的应用,解题的关键是读懂图象,其中尤其注意运输飞机每小时耗油量这个隐含条件的确定.x+2与x轴相交于点A,与y轴相交于点B.17、在平面直角坐标系xOy中,直线y=12(1)求点A和点B的坐标;(2)点P为直线y=1x+2上一动点,若△OBP的面积为3,则点P的坐标为______.2答案:(1)A (-4,0),B (0,2)(2)(3,72)或(-3,12) 分析:(1)分别代入x =0,y =0求出与之对应的y ,x 的值,进而可得出点B ,A 的坐标;(2)通过△OBP 的面积为3,求得P 的横坐标为±3,代入解析式即可求得纵坐标.(1)解:当x =0时,y =12x +2=2, ∴点B 的坐标为(0,2);当y =0时,12x +2=0,解得:x =-4,∴点A 的坐标为(-4,0).(2)∵OB =2,△OBP 的面积为3,∴12OB •|xP |=3,即12×2•|xP |=3,∴xP =±3,∴点P 的坐标为(3,72)或(-3,12), 所以答案是:(3,72)或(-3,12). 小提示:本题考查了一次函数图象上点的坐标特征、一次函数的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用三角形面积求出点C 的横坐标.18、为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:②汽车行驶5h 后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L ,若以100km/h 的速度匀速行驶,该车最多能行驶多远.答案:①Q =100﹣6t ;② 70L ;③25003km .分析:①由表格可知,开始油箱中的油为100L ,每行驶1小时,油量减少6L ,据此可得t 与Q 的关系式; ②求汽车行驶5h 后,油箱中的剩余油量即是求当t =5时,Q 的值;③贮满50L 汽油的汽车,理论上最多能行驶几小时即是求当Q =0时,t 的值. 解:①Q 与t 的关系式为:Q =100﹣6t ;②当t =5时,Q =100﹣6×5=70,答:汽车行驶5h 后,油箱中的剩余油量是70L ;③当Q =0时,0=50﹣6t ,6t =50,解得:t =253,100×253=25003km .答:该车最多能行驶25003km .。

人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .4.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从5.已知A BB地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地6.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.7.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .8.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .59.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .12.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+13.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m <<15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.17.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.18.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.19.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.20.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.21.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB 有最小值时,P 点的坐标为________.22.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.23.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.24.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.25.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.26.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题27.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.28.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.29.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF 的函数表达式;(2)若点A 的坐标为(-6,0),点P (m ,n )在线段EF 上(不与点E 重合) ①求△OPA 的面积S 与m 的函数表达式; ②求当△OPA 的面积为9时,点P 的坐标;③求当△OPA 的面积与△OPF 的面积相等时,点P 的坐标.参考答案。

八年级数学下册第十九章一次函数题型总结及解题方法(带答案)

八年级数学下册第十九章一次函数题型总结及解题方法(带答案)

八年级数学下册第十九章一次函数题型总结及解题方法单选题1、已知自变量为x的一次函数y=a(x−b)的图象经过第二、三、四象限,则()A.a>0,b<0B.a<0,b>0C.a<0,b<0D.a>0,b>0答案:C分析:根据函数图象经过二、三、四象限,可知a<0,−ab<0,进一步判断即可.解:∵原函数为y=ax−ab,图象经过二、三、四象限,∴a<0,−ab<0,解得a<0,b<0.故选:C小提示:本题考查一次函数图象性质,熟记相关知识点是解题关键.2、一次函数y=(a+1)x+a+2的图象过一、二、四象限,则a的取值是()A.a<﹣2B.a<﹣1C.﹣2≤a≤﹣1D.﹣2<a<﹣1答案:D分析:若函数y=kx+b的图象过一、二、四象限,则此函数的k<0,b>0,据此求解.解:∵一次函数y=(a+1)x+a+2的图象过一、二、四象限,∴a+1<0,a+2>0解得-2<a<-1.故选:D.小提示:考查了一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.3、根据如图所示的程序计算函数y的值,若输入x的值是8,则输出y的值是−3,若输入x的值是−8,则输出y的值是()A.10B.14C.18D.22答案:C分析:把x=8时,y=−3代入程序中计算,求出b的值,再将x=−8代入,求出y值即可.=−3,解:当x=8时,可得y=−8+b2可得:b=2,当x=−8时,可得:y=−2x+2=−2×(−8)+2=18,故选:C.小提示:本题主要考查了求函数值,根据自变量的取值范围求出相应的函数值,根据题意先求出b的值是解答本题的关键.4、下列变化过程中,y是x的正比例函数是()A.某村共有105m2耕地,该村人均占有耕地y(单位:m2)随该村人数x(单位:人)的变化而变化B.一天内,温岭市气温y(单位:℃)随时间x(单位:时)的变化而变化C.汽车油箱内的存油y(单位:升)随行驶时间x(单位:时)的变化而变化D.某人一年总收入y(单位:元)随年内平均月收入x(单位:元)的变化而变化答案:D分析:根据正比例函数的定义逐项判断即可.,故y不是x的正比例函数;解:A.由题意得:y=105xB.因为温岭市一天的气温早晚较低,中午较高,故y不是x的正比例函数;C.因为在行驶时间为零时汽车油箱内的存油y不是零,故y不是x的正比例函数;D.由题意得:y=12x,故y是x的正比例函数;故选:D.小提示:本题考查了正比例函数的定义,一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,且k≠0),那么y就叫做x的正比例函数5、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快答案:B分析:根据表格中两个变量的数据变化情况,逐项判断即可.解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B 符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.小提示:本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.6、A,B两地相距120km,甲、乙两人分别从两地出发相向而行,甲先出发,如图,l1,l2分别表示两人离A 地的距离s(km)与时间t(h)之间的关系,则当甲到达A地时,乙距离A地()A.56kmB.60kmC.80kmD.40km答案:B分析:先求出直线l2的解析式,从而求出当t=2.8时,s=36,由此即可求出直线l1的解析式,进而求出甲到达目的地的时间,由此即可得到答案.解:由题意可知,甲,乙的函数图象分别为l 1,l 2. ∵l 2经过点(1,0)和(7,120),∴l 2:s =20t −20,当t =2.8时,s =36, ∴由(0,120),(2.8,36)得l 1:s =−30t +120,令−30t +120=0,解得t =4,将t =4代入l 2,得s =60. ∴当甲到达A 地时,乙距离A 地60km . 故选B .小提示:本题主要考查了从函数图象获取信息,一次函数的应用,正确读懂函数图象是解题的关键.7、一个蓄水池有水50m 3,打开放水闸门放水,水池里的水和放水时间的关系如表,下面说法不正确的是( )B .每分钟放水2m 3C .放水10分钟后,水池里还有水30m 3D .放水25分钟,水池里的水全部放完 答案:A分析:根据题意可得蓄水量y =50﹣2t ,从而进行各选项的判断即可. 解:设蓄水量为y ,时间为t ,y =kt +b ∴{k +b =482k +b =46 解得:{k =−2b =50则可得y =﹣2t +50,A 、放水时间是自变量,水池里面的水量是因变量,故本选项符合题意;B 、蓄水池每分钟放水2m 3,故本选项不合题意;C 、放水10分钟后水池还剩50-20=30m 3,故本选项不合题意;D、蓄水池一共可以放水50÷2=25分钟,故本选项不合题意;故选A.小提示:本题主要考查了一次函数的性质,自变量和因变量,解题的关键在于能够准确求出一次函数解析式. 8、某次物理实验中,测得变量V和m的对应数据如下表,则这两个变量之间的关系最接近下列函数中的().A.V=m+1B.V=2m C.V=3m−1D.V=m答案:A分析:观察这几组数据,找到其中的规律,然后再答案中找出与之相近的关系式.解:有四组数据可找出规律,2.41-1=1.41,接近12;4 .9-1=3.9,接近22;10 .33-1=9.33,接近32;17 .21-1=16.21,接近42;25 .93−1=24.93,接近52;37 .02−1=36.02,接近62;故m与v之间的关系最接近于v=m2+1.故选:A.小提示:本题是开放性题目,需要找出题目中的两未知数的律,然后再答案中找出与之相近的关系式.9、在平面直角坐标系中,一次函数y=mx+b(m,b均为常数)与正比例函数y=nx(n为常数)的图象如图所示,则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣1分析:函数图象的交点坐标即是方程mx+b=nx的解,观察图象解题.解:∵两条直线的交点坐标为(3,−1),∴关于x的方程mx=nx−b的解为x=3,故选:A.小提示:本题考查两条一次函数的图象的交点,是重要考点,难度较易,掌握相关知识是解题关键.10、下列函数关系式中,自变量x的取值范围错误的是()中,x≠﹣1A.y=2x2中,x为全体实数B.y=√x+1C.y=√−x2中,x=0D.y=中,x>﹣7√x+7答案:B分析:根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式,判断即可.解:A、y=2x2中,x为全体实数,自变量x的取值范围正确,不符合题意;B、y=,x>﹣1,本选项自变量x的取值范围错误,符合题意;√x+1C、y=√−x2,x=0,自变量x的取值范围正确,不符合题意;D、y=,x>﹣7,自变量x的取值范围正确,不符合题意;√x+7故选:B.小提示:本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.填空题11、如图,已知直线y=ax+b,则方程ax=1﹣b的解为x=_____.分析:观察图形可直接得出答案.解:由ax=1﹣b得ax+b=1,根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=4.所以答案是:4.小提示:此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想方法.12、一次函数y=−x+3中,函数值y随着自变量x值的增大而______.答案:减小分析:根据一次函数的增减性与系数的关系判断即可.解:在一次函数y=-x+3中,k=-1<0,∴y随着x增大而减小,所以答案是:减小.小提示:本题考查了一次函数的性质,熟练掌握一次函数增减性与系数的关系是解题的关键.13、从−1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是___________.答案:23分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=−x+3是y随x增大而减小的,函数.y=x+3和y=2x+3都是y随x增大而增大的,所以符合题意的概率为23解:当k>0时,一次函数y=kx+3的图象y随x的增大而增大,∴k=1或k=2∴所得一次函数中y随x的增大而增大的概率是2,3所以答案是:2.3小提示:本题考查概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y随x的增大而增大.14、在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B 是x 轴正半轴上的点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,点B 的横坐标a 的取值范围是____.答案:83<a ≤4分析:画出示意图,分别求出当直线AB 过点(2,1) 时和当直线AB′过点(4,0) 时,a 的值,进而即可求解. 如图所示:当直线AB 过点(2,1) 时,△AOB 内部有2个整数点, 设直线AB 的解析式为y=kx+b ,把A(0,4),(2,1)代入上式,得:{b =42k +b =1,解得:{b =4k =−32,∴直线AB 解析式为:y=−32x+4,把y=0代入y=−32x+4,得:0=−32x+4,解得:x=83; 当直线AB′过点(4,0) 时,△AOB 内部有3个整数点,∴△AOB 内部(不包括边界)的整点个数为m ,当m =3时,点B 的横坐标a 的取值范围是:83<a ≤4.故答案是:83<a ≤4.小提示:本题主要考查一次函数的应用,掌握待定系数法以及数形结合的思想方法,是解题的关键. 15、正比例函数y =kx(k ≠0)经过点(1,3),则k =__________. 答案:3分析:把(1,3)代入y=kx(k≠0),利用待定系数法求解k即可得到答案.解:把(1,3)代入y=kx(k≠0),∴k=3,所以答案是:3.小提示:本题考查的是利用待定系数法求解正比例函数的解析式,掌握待定系数法是解题的关键.解答题16、已知y=y1+y2,y1与x2成正比例,y2与x−2成正比例,当x=1时,y=5;当x=−1时,y=11.(1)求y与x之间的函数表达式;(2)求当x=2时y的值.答案:(1)y=2x2−3(x−2);(2)y=8分析:(1)设y1=kx2,y2=a(x-2),得出y=kx2+a(x-2),把x=1,y=5和x=-1,y=11代入得出方程组,求出方程组的解即可;(2)把x=2代入函数解析式,即可得出答案.解:(1)设y1=kx2,y2=a(x−2),则y=kx2+a(x−2),把x=1,y=5和x=−1,y=11代入得:{k−a=5,k−3a=11,即k=2,a=−3,∴y与x之间的函数表达式是y=2x2−3(x−2),(2)把x=2代入得:y=2×22−3×(2−2)=8.小提示:本题考查了用待定系数法求出正比例函数的解析式的应用,主要考查学生的计算能力.17、在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.答案:(1)y=12x+1,A(0,1)(2)n≥1分析:(1)利用待定系数法即可求得函数解析式,当x=0时,求出y即可求解.(2)根据题意x+n>12x+1结合x>0解出不等式即可求解.(1)解:将(4,3),(−2,0)代入函数解析式得,{3=4k+b 0=−2k+b ,解得{k=12b=1,∴函数的解析式为:y=12x+1,当x=0时,得y=1,∴点A的坐标为(0,1).(2)由题意得,x+n>12x+1,即x>2−2n,又由x>0,得2−2n≤0,解得n≥1,∴n的取值范围为n≥1.小提示:本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关键.18、如图1,在Rt△ABC中,AC=BC,点D在AC边上,以CD为边在AC的右侧作正方形CDEF.点P以每秒1cm的速度沿F→E→D→A→B的路径运动,连接BP、CP,△BCP的面积y(cm2)与运动时间x(秒)之间的图象关系如图2所示.(1)求EF的长度和a的值;(2)当x=6时,连接AF,判断BP与AF的数量关系,说明理由.答案:(1)EF=3 cm,a=152(2)BD=AF,理由见解析分析:(1)根据图1和图2当点P在不同边运动时函数图象的变化,从而确定出EF和a的值;(2)根据(1)可知,当x=6时,点P在点D处,证明△ADC≌△AFC全等即可.(1)解:当点P在边EF上运动时,y=S△BCP=12BC•PF=12BC×1×x=12BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP=12BC×3=32BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x=3+31=6(秒),∴b=6,当点P在DA上运动时,y =S △PBC =12BC •PC ,∴y 随PC 的增大而增大,当点P 与点A 重合时,即x =8时,y 最大,此时AD =8×1﹣3﹣3=2,∴AC =BC =3+2=5(cm ),∴a =12BC ×EF =12×5×3=152;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .小提示:本题考查动点问题的函数图象,全等三角形的性质与判定,利用数形结合,读懂图中数据和信息是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第十九章一次函数知识点总结
一、基本概念:
1. 变量:在一个变化过程中数值发生变化的量。

常量:在一个变化过程中数值始终不变的量。

2.函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

3、定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(即:自变量取值范围)
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。

(或:用关于自变量的数学式子表示函数与自变量之间关系的式子叫做函数的解析式。

)使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

6、函数图像的性质:
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

7、函数的三种表示法及其优缺点
&
(1)解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

8、由函数解析式画其图像的一般步骤:
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

9、正比例函数和一次函数:所有一次函数或者正比例函数的图像都是一条直线。

(1)正比例函数定义:
一般地,形如y=kx(k为常数,k≠0)y叫x的正比例函数)。

k叫做比例系数。


(2)一次函数定义:
如果y=kx+b(k,b是常数,k ≠0 ),那么y叫x的一次函数。

k叫比例系数。

当b=0时,一次函数y=kx+b 变为y=kx。

正比例函数是一种特殊的一次函数。

(3)正比例函数的图像:y=kx(k≠0)是经过点(0,0)和(1,k)的一条直线。

一次函数的图象:y=kx+b (k ≠0)是经过点(0,b )和)0,(k b -的一条直线。

(4)一次函数y=kx +b 的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),)0,(k
b -.即横坐标或纵坐标为0的点。

(5)性质:(1)在一次函数上的任意一点P (x ,y ),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y 轴交点的坐标总是(0,b),与x 轴总是交于(-b/k ,0) ----------------正比例函数的图像都是过原点。


(3)函数不是数,它是指某一变化过程中两个变量之间的关系。

10、直线y=kx +b 和直线y=kx 的图象和性质与k 、b 的关系如下表所示:
b>0
b<0 b=0 k>0
经过第一、二、三象限 经过第一、三、四象限 )
经过第一、三象限
图象从左到右上升,y 随x 的增大而增大
k<0
经过第一、二、四象限 经过第二、三、四象限 |
经过第二、四象限
图象从左到右下降,y 随x 的增大而减小
总结如下:
k>0时,y 随x 增大而增大,必过一、三象限。


k>0,b>0时, 函数的图象经过一、二、三象限;(一次函数)
k>0,b<0时, 函数的图象经过一、三、四象限;(一次函数)
k>0,b=0时, 函数的图象经过一、三象限。

(正比例函数)
k<0时, y 随x 增大而减小,必过二、四象限。

k<0,b>0时,函数的图象经过一、二、四象限;(一次函数)
k<0,b<0时,函数的图象经过二、三、四象限;(一次函数)
k<0,b=0时,函数的图象经过二、四象限。

(正比例函数)
11、直线y 1=kx +b 与y 2=kx 图象的位置关系:
(1)当b>0时,将y 2=kx 图象向x 轴上方平移b 个单位,就得到y 1=kx +b 的图象. 】
(2)当b<0时,将y 2=kx 图象向x 轴下方平移-b 个单位,就得到了y 1=kx +b 的图象.
11.在两个一次函数表达式中: 直线l 1:y 1=k 1x +b 1与l 2:y 2=k 2x +b 2
k 相同, b 也相同时,两一次函数图像重合;
k 相同, b 不相同时,两一次函数图像平行;
k 不相同,b 不相同时,两一次函数图像相交;
k 不相同,b 相同时, 两一次函数图像交于y 轴上的同一点(0,b )。

12、特殊位置关系:直线l 1:y 1=k 1x +b 1与l 2:y 2=k 2x +b 2
两直线平行,其函数解析式中K 值(即一次项系数)相等 。

即:b k k 2121b ≠=且 两直线垂直,其函数解析式中K 值互为负倒数(即两个K 值的乘积为-1)。

即:121-=•k k 13、.
14、直线平移规律:上加下减(y ),左加右减(x )
向右平移n 个单位 y=k (x-n )+b
向左平移n 个单位 y=k (x+n )+b
向上平移n 个单位 y =kx+b+n
向下平移n 个单位 y =kx+b-n
15、待定系数法:先设待求函数的关系式(其中含未知系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

待定系数法求函数解析式步骤:
(1)根据已知条件写出含有待定系数的解析式y=kx 或者y=kx+b ;
(2)将x 、y 的几对值或图象上几个点的坐标代入上述解析式,
得到待定系数为未知数的方程或方程组。

\
(3)解方程(组)得到待定系数的值。

(4)将求出的待定系数代回所求的函数解析式,得到所求函数的解析式。

如何设一次函数解析式:
点斜式 y-y 1=k(x-x 1)(k 为直线斜率,(x 1,y 1)为该直线所过的一个点)
两点式 (y-y 1) / (y 2-y 1)=(x-x 1)/(x 2-x 1)(已知直线上(x 1,y 1)与(x 2,y 2)两点)
截距式 (y=-b/ax+b a 、b 分别为直线在x 、y 轴上的截距 ,已知(0,b ),(a ,0) ) 扩展:1.求函数图像的k 值:x x y
y 2
121
-- 2.求任意线段的长:)()(21212
2y y x x --+ 3.求两个一次函数式图像交点坐标:解两函数式,就是解方程组
4.求任意两点所连线段的中点坐标:⎪⎪⎭
⎫ ⎝⎛++2,22121y y x x。

相关文档
最新文档