19.1.1变量与函数第二课时教学设计

合集下载

人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计一. 教材分析人教版数学八年级下册《19.1.1 变量与函数》是初中数学的重要内容,主要让学生了解变量的概念,以及变量与函数的关系。

本节课通过具体的实例,引导学生理解函数的概念,并能够运用函数解决实际问题。

教材内容由浅入深,循序渐进,符合学生的认知发展规律。

二. 学情分析八年级的学生已经掌握了代数的基础知识,对数学概念有一定的理解能力。

但是,对于函数的概念和意义,以及如何运用函数解决实际问题,可能还存在一定的困难。

因此,在教学过程中,要注重引导学生通过实例理解函数的概念,培养学生的动手操作能力和解决问题的能力。

三. 教学目标1.知识与技能:使学生理解变量与函数的概念,能够识别函数关系,并运用函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和创新精神。

四. 教学重难点1.重点:理解变量与函数的概念,掌握函数的表示方法。

2.难点:函数概念的理解,以及如何运用函数解决实际问题。

五. 教学方法采用问题驱动法、合作学习法和情境教学法。

通过设置问题情境,引导学生观察、操作、思考,培养学生的动手操作能力和解决问题的能力。

同时,鼓励学生相互讨论、交流,培养学生的团队协作意识和创新精神。

六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学问题和活动。

2.学生准备:预习教材,了解变量与函数的基本概念。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化,引出变量与函数的概念。

提问:什么是变量?什么是函数?引导学生思考并回答。

2.呈现(15分钟)呈现教材中的例题和练习题,让学生观察、分析,引导学生发现变量与函数之间的关系。

提问:如何判断两个变量之间存在函数关系?如何表示函数关系?3.操练(15分钟)学生分组讨论,选取一个实例,尝试用函数表示变量之间的关系。

19.1.1变量与函数.1.1变量与函数第2课时教学设计.doc

19.1.1变量与函数.1.1变量与函数第2课时教学设计.doc

课题19.1.1 变量与函数(第 2 课时)教材版本人教2011 课标版授课年级八年级课时安排一课时广东省汕头市潮阳区授课教师黄华如学校名称洋贝初级中学本节课是学生在学习第一课时变量与常量的基础上,继续探究学习在一个变化过程中,教材背景存在两个变化的量,它们是怎样由一个变量发生变化,而另一个变量又是如何随之发生变化的过程,也就是函数关系的确立。

函数的概念比较抽象,学生理解起来较为困难,这需要通及学情分析过给他们设计大量的实例,不断的进行讨论分析比较,得出一般性的结论。

一、教学目标1、知识与技能(1)理解并掌握函数的概念;(2)能正确写出函数的解析式,会求函数值;(3)会求自变量的取值范围.2、数学思考经历探究变量之间关系的过程体验函数思想3、解决问题经历探究变量之间的关系和确定自变量取值范围时要注意的哪些问题的过程,在观察和教学目标讨论中寻求新知,在探索中培养学生发现问题、解决问题的能力。

重难点分析4、情感态度(1)让学生合作交流、探究发现新知,激发学生的学习兴趣,培养学生合作和交流的能力;(2)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.二、教学重点:(1)函数的概念;(2)自变量取值范围的确定.三、教学难点:自变量取值范围的确定本节课博采启发教学法、引探教学法等诸多方法之长,借助多媒体手段引导学生观察、教法与学法交流和探究,促进学生自主学习,努力做到教与学的最优组合.教师活动学生活动设计意图一、温故知新写出下列各问题中的关系式,并指出各关系式中的常量和变量.(1)寄一封质量在20g 以内的市内平信,需邮资0.80元,则寄x 封这样的信所需邮资y(元)与x(封)之间的关系;解答习题(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;二、新课出示题目,同时提出新的问题,让学生在解决旧知的基础上提出问题, 探究一:从而激发学生的学习兴趣,并且提上面每个问题中有几个变量?小组观察讨高学生对新知识的求知欲,为本节在同一个式子中的变量之间有什么联系?论,学生代表课的学习打下基础.发言归纳:上面每个问题中的个变量,教学当其中一个变量取定一个值时,另一个变量就有确定的值与其对应.学生归纳过程探究二:(1)下图是体检时的心电图.其中图上点的横坐标x 表示时间,纵坐标y 表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应吗?全班学生观察分析后作答通过以上几个问题的展示,使学生(2)下面的我国人口数统计表中,年份与人口数可以分别记作两个变量x 与y,对于表中每一个确定的年份们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量(x),都对应着一个确定的人口数(y)吗?年份人口数/亿是随着另一个变量的变化而变化的;1984 10.34指名学生分1989 11.06析作答1994 11.761999 12.522010 13.71【过渡语】以上问题中变量间的对应关系便是我们这节课所要学习的重点内容.学习概念(函数、自变量、函数值)一般地,在一个变化过程中,如果有两个变量x齐读函数概与y,并且对于x 的每一个确定的值,y 都有唯一确念,寻找关键定的值与其对应,那么我们就说x 是自变量,y 是x词的函数.如果当x=a 时,y=b,那么 b 叫做当自变量的值为 a时的函数值.通过讲练结合,使学生对函数概念的理解更透彻,同时培养学生的自利用新课前的复习题 1 分析、理解函数的概念分析邮资y学能力和对问题的分析能力与信的数量例如在复习题 1 中,y=0.8x ,会x 的关系,明随的变化而变化,确谁是自变所以是自变量,并且当x 取定一个值时,y 都有量,谁是谁的一个值与其对应,所以邮资y 是x 的函数。

19.1.1变量与函数(2)教案

19.1.1变量与函数(2)教案

变量与函数(2)知识技能目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;2.联系求代数式的值的知识,探索求函数值的方法.教学过程一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式:y=10-x.问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积y cm2与MA长度x cm之间的函数关系式.解 y 与x 的函数关系式:221x y.二、探究归纳思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,MA 长度为0cm ,随着△ABC 不断向右运动过程中,MA 长度逐渐增长,最后A 点与N 点重合时,MA 长度达到10cm .解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;问题2,自变量x 的取值范围是:0<x <90;问题3,自变量x 的取值范围是:0≤x ≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,21+x 没有意义;在(4)中,x <2时,2-x 没有意义.解 (1)x 取值范围是任意实数;(2)x 取值范围是任意实数;(3)x 的取值范围是x ≠-2;(4)x 的取值范围是x ≥2.归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式. 例2 分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.解 (1) y =0.50x ,x 可取任意正数; (2)xy 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.例3 在上面的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?解 设重叠部分面积为y cm 2,MA 长为x cm , y 与x 之间的函数关系式为221x y = 当x =1时,211212=⨯=y 所以当MA =1 cm 时,重叠部分的面积是21cm 2.例4 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ; (3)12-=x y ; (4)x y -=2. 分析 函数值就是y 的值,因此求函数值就是求代数式的值.解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;(3)当x = 2时,y =122-= 2; (4)当x = 2时,y =22-= 0.四、交流反思1.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.五、检测反馈1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y . 3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)12-+=x x y .。

人教版八年级下19.1.1变量与函数教学设计2

人教版八年级下19.1.1变量与函数教学设计2

变量与函数教学设计一、课程说明函数是数学中最重要的基本概念之一,它揭示了变量之间存在这某种具体的联系。

是研究这种在变化中各个变量的关系的非常重要的工具。

在数学中扮演可十分重要的角色。

这种关系表现在变量之间的对应关系上,函数正是描述了这种关系,使得看似变化没有规律的一些量之间互相关联。

以便我们发现生活中变化事物的规律并寻求方法去解决它。

这些变化通常都具有一些特点:1.世界在不断的变化,变化的世界中存在很多变化的量。

2.在同一种变化之中,各个量的变化并不是孤立的,而是通过某种规律相互联系在一起。

3.在这些量的变化过程中,有一些量的变化受到另外一个量变化的制约,也就是说,一个量的变化是随着另外一个量的变化而变化。

基于以上分析,本课程才从实际生活中的一些常见例子入手,来寻找这种相关联的变化。

二、课程内容本教学内容来源于人教版初中数学义务教育课程标准实验教材八年级下册第十九章《一次函数》第一节内容《变量与函数》。

本节课的内容为:变量与函数,主要讲解了变量与常量及函数的概念。

本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系。

课本的引例较为丰富,但有些内容学生较为陌生,本设计只选取了其中较为简单的例子。

从生活中的实际问题入手,寓教于乐,真正把实际生活中的数学和书本中的数学有机结合在一起来。

三、学情分析“变量与函数”同学们初次接触到,学习抽象的知识难免有些难以理解,特别是定义中“唯一确定”的准确含义。

学生在日常生活中也接触过两个变量的关系等生活实例。

在本节教学中,从学生较为熟悉的生活实例入手,引领学生认识变量和函数的意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念。

四、教案设计【知识与技能】(1)初步感知用常量与变量来刻画简单的数学问题,能指出具体问题中的常量、变量。

人教版八年级下册19.1.1变量与函数教案[精品文档]

人教版八年级下册19.1.1变量与函数教案[精品文档]

《变量与函数》教案【教学目标】1.知识与技能(1)了解变量与常量的意义;(2)体会运动变化过程中的数量变化.2.过程与方法使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。

3.情感态度和价值观渗透事物是运动的,运动是有规律的辩证思想。

【教学重点】了解常量与变量的意义。

【教学难点】常量与变量的确定及关系。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件。

【课时安排】1课时【教学过程】一、情景导入【过渡】在我们生活的世界中,所有的事物都是在不停的变化,行星在宇宙中的位置随时间而变化;气温随海拔而变化;火箭的高度随时间而变化,雄鹰的飞翔也会变化。

在我们周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在。

课件展示图片。

【过渡】对于这些变化,我们从最基本的概念来进行认识。

二、新课教学1.变量与常量【过渡】大家先来思考一下几个问题。

(1)汽车以60 km/h 的速度匀速行驶,行驶时间为t h,行驶路程为s km.(2)每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?(3)你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径分别为10 cm,20 cm,30 cm时,圆的面积s分别为多少?s的值随r的值的变化而变化吗?(4)用10 m长的绳子围一个矩形.当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?分别指出问题中的变化的量及不变的量。

【过渡】在刚刚的几个问题中,我们知道在事物变化的过程中,有些量的变化的,而有些量则是固定的数值,保持不变。

在数学里,我们把这些变化的量称为变量,不变的量称为常量。

变量:在一个变化过程中,数值发生变化的量为变量。

常量:在一个变化过程中,数值始终不变的量为常量。

【练习】课本P71练习题,说出变量及常量。

数学人教版八年级下册第19章《19.1.1变量与函数》第二课时教学设计

数学人教版八年级下册第19章《19.1.1变量与函数》第二课时教学设计

第19章《19.1.1变量与函数》第二课时教学设计教学目标知识与技能:1.经过回顾思考认识变量中的自变量与函数.2.进一步理解掌握确定函数关系式.3.会确定自变量取值范围.过程与方法:1.经历回顾思考过程、提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.情感、态度与价值观:1.积极参与活动、提高学习兴趣.2.形成合作交流意识及独立思考的习惯.教学重点1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点认识函数、领会函数的意义教学方法回顾思考─探索交流─归纳总结教学准备PPT 学生制作正方形、三角形、圆等图形纸板教学过程设计(含各环节中的教师活动和学生活动以及设计意图)教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变量?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课[师]我们首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.[生]活动一两个问题都有两个变量.问题(1)中,经计算可以发现:行驶里程s(千米)与行驶时间t(小时)的关系式为:S=60t。

每当行驶时间t取定一个值时,行驶里程s就随之确定一个值.例如当t=1,则s=60;当t=2,则y=120;当t=3,则y=180.问题(2)中,通过试验可以看出:票房收入y元与售票数量x张的关系式:y=10x X=150时y=1500;X=205时y=2050;X=310时y=3100;[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(3)中,很容易算出:圆的面积s与半径r的关系式为().当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r 随之确定一个值,它们的关系为r= .问题(4)中,我们可以根据题意,矩形的邻边长y与x的关系式为:y=5-x每确定一个矩形的一边长,即可得出另一边长,再计算出矩形的面积.如:当x=1cm 时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,那么我们就说x是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x 是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:通过在计算器上操作及填表分析,进一步认识函数意义,经过对表中数据分析推理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1[师]通过以后活动,我们对函数意义认识更深刻了,并完善掌握了函数关系式确定的方法.为了进一步学好函数,我们再来完成一个问题.[活动二]活动内容设计:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?设计意图:通过这一活动,加深函数意义理解,熟练掌握函数关系式确立的办法.学会确定自变量的取值范围,并能通过关系式解决一些简单问题.教师活动:注意学生在活动中对函数意义的认识水平,引导其总结归纳自变量取值范围的方法.学生活动:通过活动,感知体会函数意义,学会确立函数关系式及自变量取值范围,并能掌握其一般方法.活动过程及结果:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得:y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.[师]通过这个活动,我们在巩固函数意义理解认识及确立函数关系式基础上,又学会如何确定自变量取值范围和求函数值的方法.知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义.Ⅲ.随堂练习下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n•的变化而变化.解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.函数关系式:y=Ⅳ.课堂小结本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.本课作业课后P81第1、2题.板书设计课题:《19.1变量与函数》第二课时一、例题展示二、作业。

19-1-1第二课时变量与函数-八年级数学下册同步精品课件(人教版)

19-1-1第二课时变量与函数-八年级数学下册同步精品课件(人教版)

y,并且对于x的每一个确定的值,y都有唯一确定的
值与之对应.我们就说x是自变量, y是x的函数.如
果当x=a时y=b,那么b叫做当自变量为a时的函
数值.
课堂总结
判断函数
x 取一个确定的值, y 有唯一确定的值和
它对应.
课堂总结
解析式
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
的变化而变化.
自变量 x,y是 x 的函数,y=0.1x
课堂练习
6.下列问题中哪些量是自变量,哪些量是自变量的函数?试写出函数的解析
式.
(3)秀水村的耕地面积是106 m3,这个村人均占有耕地面积y(单位:m2)随这个
村人数n的变化而变化.
自变量 n,y 是 n
106
的函数,y=

(4)水池中有水10L,此后每小时漏水0.05L,水池中的水量V(单位:L)随时
−1
x 为任意实数
x≠-1
x≥-3
x≥-4且x≠1
课堂练习
1.一个正方形的边长为5cm,它的各边边长减少xcm后,得到
的新正方形的周长为ycm,y与x的函数关系式为( A
A.Y=20-4x
B.Y=4x-20
C.Y=20-x D.以上都不对
2.在圆周长计算公式C=2πr中,对半径不同的圆,变量(
A.C,r
当x=200时,y=50-0.1×200=30
归纳小结
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
是描述函数的常用方法.这种式子叫做函
数的解析式.
巩固练习
1.某中学的校办工厂现在年产值是15万元,计划今后每年增加

19.1.1变量与函数(2)教案

19.1.1变量与函数(2)教案

变量与函数(2)知识技能目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;2.联系求代数式的值的知识,探索求函数值的方法.教学过程一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式:y=10-x.问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积y cm2与MA长度x cm之间的函数关系式.解 y 与x 的函数关系式:221x y.二、探究归纳思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,MA 长度为0cm ,随着△ABC 不断向右运动过程中,MA 长度逐渐增长,最后A 点与N 点重合时,MA 长度达到10cm .解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;问题2,自变量x 的取值范围是:0<x <90;问题3,自变量x 的取值范围是:0≤x ≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,21+x 没有意义;在(4)中,x <2时,2-x 没有意义.解 (1)x 取值范围是任意实数;(2)x 取值范围是任意实数;(3)x 的取值范围是x ≠-2;(4)x 的取值范围是x ≥2.归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式. 例2 分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.解 (1) y =0.50x ,x 可取任意正数; (2)xy 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.例3 在上面的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?解 设重叠部分面积为y cm 2,MA 长为x cm , y 与x 之间的函数关系式为221x y = 当x =1时,211212=⨯=y 所以当MA =1 cm 时,重叠部分的面积是21cm 2.例4 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ; (3)12-=x y ; (4)x y -=2. 分析 函数值就是y 的值,因此求函数值就是求代数式的值.解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;(3)当x = 2时,y =122-= 2; (4)当x = 2时,y =22-= 0.四、交流反思1.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.五、检测反馈1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y . 3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)12-+=x x y .。

人教版八年级下第19章一次函数19.1.1变量与函数教案

人教版八年级下第19章一次函数19.1.1变量与函数教案
2.通过对变量、函数概念的理解,发展学生的抽象思维和逻辑推理能力。
3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。

19.1.1变量与函数(教学设计)

19.1.1变量与函数(教学设计)

19.1.1变量与函数行星在宇宙中的位置随时间而变化开头语:为了更深刻地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.(二)问题探究,形成概念问题1:汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,先填下面的表,再试用含t的式子表示s.I/Bt12345=“千米亲1.在以上这个过程中,变化的量是.不变化的量是2.试用含t的式子表示s.s=这个问题反映了匀速行驶的汽车所行驶的路程随行驶时间的变化过程.问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?若设一场电影售出票x张,票房收入为丫元,怎样用含x的式子表示y?2.在以上这个过程中,变化的量是.不变化的量是.3.试用含x的式子表示y.y=这个问题反映了票房收入随售票张数的变化过程.问题3:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?1.在以上这个过程中,变化的量不变化的量是.2.试用含m的式子表示L.L=这个问题反映了随的变化过程.问题4:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?1.在以上这个过程中,变化的量是不变化的量是.2.试用含s的式子表示r.r=这个问题反映了随的变化过程.变量(variable):在一个变化过程中,数值发生变化的量为变量。

常量(constant):在一个变化过程中,数值始终不变的量为常量。

问题1:在一个变化过程中,理解变量、常量的关键词是什么?指出:在同一个变化过程中,理解变量与常量的关键词分别是:发生了变化和始终不变问题2:请指出上面四个问题中的常量、变量。

人教版数学八年级下册19.1.1《变量与函数》教学设计2

人教版数学八年级下册19.1.1《变量与函数》教学设计2

人教版数学八年级下册19.1.1《变量与函数》教学设计2一. 教材分析《变量与函数》是初中数学的重要内容,人教版八年级下册19.1.1节主要介绍函数的定义、函数的表示方法以及函数的性质。

通过本节课的学习,使学生理解函数的概念,能够运用函数的性质解决实际问题,培养学生抽象思维能力和解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了代数基础知识,对一元一次方程、一元二次方程有一定的了解,但函数知识较为抽象,对于函数的定义和性质可能存在理解上的困难。

因此,在教学过程中,需要注重引导学生从具体实例中抽象出函数的概念,并通过实际问题激发学生学习函数的兴趣。

三. 教学目标1.了解函数的定义,理解函数的表示方法,掌握函数的性质。

2.培养学生抽象思维能力和解决实际问题的能力。

3.激发学生学习函数的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.函数的定义及表示方法。

2.函数的性质及应用。

五. 教学方法1.情境教学法:通过实际问题引入函数概念,使学生在具体情境中感受函数的意义。

2.启发式教学法:引导学生从具体实例中抽象出函数的概念,培养学生独立思考的能力。

3.合作学习法:分组讨论,共同探究函数的性质,培养学生的团队协作能力。

4.巩固练习法:通过适量练习,使学生掌握函数的基本知识,提高解题能力。

六. 教学准备1.教学课件:制作课件,展示函数的定义、表示方法和性质。

2.实例材料:准备一些实际问题,用于引入函数概念。

3.练习题:准备适量练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入函数概念,如:火车从北京出发,随着时间的推移,距离北京越来越远,距离与时间之间的关系就是一个函数。

引导学生从实际问题中抽象出函数的概念。

2.呈现(10分钟)展示函数的定义、表示方法和性质,让学生了解函数的基本知识。

3.操练(10分钟)学生分组讨论,共同探究函数的性质。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)让学生独立完成练习题,检验学生对函数知识的掌握程度。

人教版数学八年级下册19.1.1《变量与函数》教学设计教师版

人教版数学八年级下册19.1.1《变量与函数》教学设计教师版

人教版数学八年级下册19.1.1《变量与函数》教学设计教师版一. 教材分析人教版数学八年级下册19.1.1《变量与函数》是学生在学习了初中阶段函数知识的基础上,进一步深入研究函数的概念、性质和应用。

本节内容主要包括函数的定义、函数的性质和函数的图像等方面的内容。

本节内容对于学生掌握函数知识,理解数学的内涵和外延,培养学生的数学思维能力都具有重要意义。

二. 学情分析学生在学习本节内容之前,已经学习了初中阶段函数的基本知识,对于函数的概念、图像和性质有一定的了解。

但是,对于函数的定义和细节方面可能还存在一些疑惑,需要通过本节课的学习进一步深化理解。

同时,学生需要通过本节课的学习,掌握函数知识的应用,提高解决实际问题的能力。

三. 教学目标1.理解函数的定义,掌握函数的性质,了解函数图像的基本特征;2.学会如何求解函数的值,能够运用函数知识解决实际问题;3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.函数的定义和性质;2.函数图像的特征;3.函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法、小组合作探究法等教学方法,通过引导学生自主探究、合作交流,让学生在实际问题中感受函数的意义,理解函数的定义和性质,掌握函数图像的基本特征,提高解决实际问题的能力。

六. 教学准备1.教学PPT;2.教学素材(实际问题、函数图像等);3.教学用具(黑板、粉笔等);4.学生分组合作探究材料。

七. 教学过程导入(5分钟)1.引入新课:通过一个实际问题引入函数的概念,让学生感受函数的意义;2.引导学生思考:如何定义函数?如何表示函数?呈现(15分钟)1.讲解函数的定义:函数是一种数学关系,其中每个输入值都对应唯一的输出值;2.介绍函数的性质:函数的单调性、奇偶性、周期性等;3.呈现函数图像:直线、曲线等。

操练(15分钟)1.让学生自主探究:如何求解函数的值?如何根据函数的性质解决问题?2.案例教学:通过一些实际问题,让学生运用函数知识解决问题。

八年级数学下册19.1.1变量与函数第2课时函数教案人教版.doc

八年级数学下册19.1.1变量与函数第2课时函数教案人教版.doc

第2课时函数理解函数的概念,准确写出函数的关系式.重点函数的概念,函数解析式的求法.难点函数概念的理解.一、创设情境,引入新课师:上一节课中的每个问题都涉及两个变量,这两个变量之间有什么联系呢?当其中一个变量确定一个值时,另一个变量是否也随之确定呢?这将是我们这节课要研究的内容.二、讲授新课师:观察问题(1)中的表格,时间t和路程s是两个变量,但当t取定一个值时,s也随之确定一个值.t/时 1 2 3 4 5s/千米60 120 180 240 300生:是的,当t时,s=300.师:问题(2)也是一样的,当早场x=150时,收入y=1500;当午场x=205时,y=2050;当晚场x=310时,y=3100.也就是说售票张数x与票房收入y是两个变量,但当x取定一个值时,票房收入y也就确定一个值.师:问题(3)中,当圆的半径r=10 cm时,S=100πcm2,当r=20 cm时,S=400πcm2等,也就是说…生:也就是说当圆的半径r取定一个值时,面积S也随之确定,并且S=πr2.师:问题(4)中,当长为4 m时,面积为4 m2;当长为3 m时,面积S为6 m2;当长x 为2.5 m时,面积S为6.25 m2,也就是说…生:也就是说当长x取定一个值时,面积S也就随之确定一个值.师:当长取定为x m时,面积S等于多少呢?生:S=x·(5-x)=5x-x2.师:像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数.前面的几个问题中,哪个是自变量,哪个是函数呢?它们之间的关系如何用式子表示?生1:问题(1)中,时间t是自变量,路程s是t的函数,s=60t.生2:问题(2)中,售票数量x是自变量,收入y是x的函数,y=10x.生3:问题(3)中,圆的半径r是自变量,面积S是r的函数,S=πr2.生4:问题(4)中,长方形的长x是自变量,面积S是x的函数,S=x(5-x).师:其实,现实生活中某些函数关系是用图表的形式给出的,比如说:心脏部位的生物电流,y是x的函数吗?生:y是x的函数,因为在心电图里,对于x的每一个确定的值,y都有唯一确定的值和它对应.师:很好!再比如说下面是我国的人口统计表,人口数量y是年份x的函数吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.522010 13.71教师总结:(再一次叙述函数的定义)像这样,在一个变化过程中,如果有两个变量x 与y ,并且对于x 每一个确定的值,y 都有唯一确定的值与其对应,我们就说x 是自变量,y 是x 的函数.如果当x =a 时,y =b ,那么b 叫做当自变量x =a 时的函数值,例如在问题(1)中当t =1时的函数值s =60,当t =2时的函数值s =120.在人口统计表中当x =1999时,函数值y =12.52亿.【例】教材第73页例1师:关于自变量的取值范围我们再来看两个题目.求下列函数中自变量x 的取值范围:y =2x 2-5;y =1x +4; y =x +3.生1:对于y =2x 2-5,x 没有任何限制,x 可取任意实数.生2:对于y =1x +4,(x +4)必须不等于0式子才有意义,因此x≠-4. 生3:对于y =x +3,由于二次根式的被开方数大于等于0,因此x≥-3.三、巩固练习下列问题中,哪些是自变量?哪些是自变量的函数?写出用自变量表示函数的式子.1.改变正方形的边长x ,正方形的面积S 随之改变.【答案】S =x 2,x 是自变量,S 是因变量.2.秀水村的耕地面积为106 m 2,这个村人均占有耕地面积y 随这个村人数n 的变化而变化.【答案】y =106n,n 是自变量,y 是因变量.四、课堂小结本节课我们通过对问题的思考、讨论,认识了自变量、函数及函数值的概念,并通过两个活动,加深了对函数意义的理解,学会了确定函数关系式以及求自变量取值范围的方法,从而提高了运用函数知识解决实际问题的能力.本节课引入新课所设计的一些问题都来自于学生生活,函数的概念也是在教师引导下学生自主发现的,这样做能充分调动学生学习的积极性,同时能让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识。

人教版八年级下册19.1.1 第2课时 函数教案设计

人教版八年级下册19.1.1 第2课时 函数教案设计

第2课时 函 数1.了解函数的概念,弄清自变量与函数之间的关系;(重点)2.确定函数中自变量的取值范围.(难点)一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量.当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.二、合作探究探究点一:函数 【类型一】 函数的定义下列变量间的关系不是函数关系的是( )A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边长与面积D .圆的周长与半径解析:A 中,长方形的宽一定.它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;B 中,面积=(周长4)2,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;C 中,面积=12×底边上的高×底边长,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;D 中,周长=2π×半径,圆的周长与其半径是函数关系.故选C.方法总结:判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【类型二】 确定实际问题中函数解析式以及自变量下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10kg 的物体,它的原长为10cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;(2)设一长方体盒子高为30cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解析:(1)根据弹簧的长度等于原长加上伸长的长度,列式即可;(2)根据长方体的体积公式列出函数式.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数; (2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.方法总结:函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.探究点二:自变量的值与函数值【类型一】 根据解析式求函数值根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值为( )A.32B.25C.425D.254解析:∵x =52时,在2≤x ≤4之间,∴将x =52代入函数y =1x ,得y =25.故选B. 方法总结:根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【类型二】 根据实际问题求函数值小强想给爷爷买双鞋,爷爷说他的脚长25.5cm ,若用x (单位:cm)表示脚长,用y (单位:码)表示鞋码,则有2x -y =10,根据上述关系式,小强应给爷爷买________码的鞋.解析:∵用x 表示脚长,用y 表示鞋码,则有2x -y =10,而x =25.5,则51-y =10,解得y =41.方法总结:当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.探究点三:确定自变量的取值范围【类型一】 确定函数解析式中自变量的取值范围写出下列函数中自变量x 的取值范围:(1)y =2x -3;(2)y =31-x; (3)y =4-x ;(4)y =x -1x -2. 解析:当表达式的分母不含有自变量时,自变量取全体实数;当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.解:(1)全体实数;(2)分母1-x ≠0,即x ≠1;(3)被开方数4-x ≥0,即x ≤4;(4)由题意得⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2. 方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数. 【类型二】 确定实际问题中函数解析式的取值范围水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?解析:(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25(分钟),将t =25分钟代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y =200-2t .∵y ≥0,∴200-2t ≥0,解得t ≤100,∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100);(2)∵7:55-7:30=25(分钟),∴当t =25分钟时,y =200-2t =200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y =0时,200-2t =0,解得t =100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.三、板书设计1.函数的概念2.函数自变量的取值范围使函数有意义的自变量取值的全体,叫做函数自变量的取值范围.3.函数值在教学过程中,注意通过对以前学过的“常量与变量”的回顾与思考,提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解.。

数学人教版八年级下册19.1.1变量与函数教学设计

数学人教版八年级下册19.1.1变量与函数教学设计
探究(二)
解决下列问题。
问题:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm.
1.请同学们根据题意填写下表:
所挂重物(kg)
1
2
3
4
5
m
受力后的弹簧长度L(cm)
1.请同学们根据题意填写下表:
售出票数(张)
早场150
午场206
晚场310
x
收入y (元)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示y: y=______ ,x的取值范围是.
这个问题反映了票房收入_________随售票张数_________的变化过程。
小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。
得出结论:
1、在一个变化过程中,我们称数值发生变化的量为________;
2、在一个变化过程中,我们称数值始终不变的量为________;
三、拓展延伸:
1.请同学们根据题意填写下表:(用含 的式子表示)
面积s(cm2)
10
20
30
s
半径r(cm)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含s的式子表示r.r=_________,s的取值范围是.
这个问题反映了___ _随_ __的变化过程.
19.1.1.变量与函数的教学设计

人教版八年级数学下册19章19.1.1变量与函数(教案)

人教版八年级数学下册19章19.1.1变量与函数(教案)
同学们,今天我们将要学习的是《变量与函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个量相互依赖的情况?”比如,自行车的速度和行驶时间的关系。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索变量与函数的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.在小组讨论中,要注意问题的设置,引导学生正确地思考和解决问题。
4.课后要加强作业和练习的布置,帮助学生巩固所学知识。
在今后的教学中,我会根据这节课的反思,不断调整和优化教学方法,以提高学生的学习效果。
在总结回顾环节,我强调了对函数概念和三要素的掌握,希望学生们能够在日常生活中运用所学知识。然而,我也意识到,仅仅依靠课堂上的讲解和练习是远远不够的,还需要在课后布置一些相关的作业和练习,以巩固所学知识。
1.在理论讲解时,要尽量用简单明了的语言,结合实际案例,让学生更好地理解抽象的概念。
2.在实践活动前,要进行充分的讲解和演示,确保学生能够顺利地进行实验操作。
-举例:在函数y = 2x + 3中,2和3是常量,x和y是变量。
2.教学难点
-函数关系式的建立:学生需要学会从实际问题中பைடு நூலகம்象出函数关系,并用数学符号进行表达。

(完整word)19.1.1-变量与函数(第2课时)--优质课(人教版教学设计精品)

(完整word)19.1.1-变量与函数(第2课时)--优质课(人教版教学设计精品)

19.1。

1变量与函数(第2课时)一、内容和内容解析1.内容函数的概念.2.内容解析函数是描述运动变化规律的重要数学模型,是联系方程和不等式相关知识及数与形的纽带.函数概念是中学数学的核心概念,它刻画了变化过程中两个变量之间的对应关系,是继续学习一次函数、二次函数、反比例函数等内容的基础.本章内容包括函数的概念和表示法、正比例函数、一次函数.一次函数是函数值变化量与自变量变化量的比值固定不变的简单函数模型.研究一次函数可以获得初中函数研究的一般步骤(下定义——画图象——观察图象-—概括性质)和基本思想(模型思想、数形结合的思想、运动变化和对应思想),发展数学观察、表征、抽象概括和推理能力.函数概念学习过程中蕴含的核心数学认知活动是数学抽象概括活动.变量y要成为变量x的函数,需满足两个条件:(1)在同一个变化过程中,有两个变量x和y,一个变量y随着另一个变量x的变化而变化;(2)变量y的值是由变量x的取值唯一确定的.“单值对应”是函数概念的关键词,是函数概念的核心所在.综上所述,本课教学的重点:概括并理解函数概念中的单值对应关系.二、目标和目标解析1.目标(1)了解函数的概念.(2)能结合具体实例概括函数的概念.(3)在函数概念形成过程中体会运动变化与对应的思想.2.目标解析目标(1)的要求:能在具体实例(包括解析式、表格、图象呈现)中辨别变量之间的关系是否是函数关系,能举出函数的实例.目标(2)的要求:能观察运动变化的具体实例,分析变量之间的对应关系并发现其单值对应的特征,通过归纳实例中变量之间的单值对应特征概括函数的概念.目标(3)的要求:在函数概念的形成过程中,初步体会变量之间的联系,感受变化与对应的思想.三、教学问题诊断分析学生在小学阶段学习过正比例关系和反比例关系,知道具有正(反)比例关系的两个量中,一个量随着另一个量的增大而增大(减小);在字母表示数中接触过当字母取值变化时,代数式的值随之变化.学生在生活中也具有对两个量之间存在依存关系的体验,如气温随时间的变化而变化、单价固定时总价随着数量的变化而变化.尽管这些学习经验和生活经验可以帮助学生理解函数的含义,但初次接触函数的概念,学习中还是会遇到较大困难.主要困难在于难以形成“一个变量的值的确定导致另一个变量取值的唯一确定”的概括,当一个变量的值取定时,另一个变量怎样才算“唯一确定”.学生容易认为,函数关系中的“唯一确定"指的是可以通过公式求出的唯一的值,对不能用公式求出值的“单值对应关系”难以理解.因此,本节的难点是对函数概念中的“对应”含义的理解. 四、教学过程设计 (一)创设情境,提出问题引言:通过前面的学习,我们体会到万物皆变,在运动变化过程中往往蕴含着量的变化,研究变量之间的关系,是把握变化规律的关键.设计意图:通过引言教学复习上一节课所学内容,提出本课需要研究的问题,引起合理的选择性注意,起先行组织者作用.(二)合作探究,形成概念 1.观察思考,分析变化 让我们从下列熟悉的变化过程开始研究其变化之间的变量关系.问题1 下面各题的变化过程中,各有几个变量?其中一个变量的变化是怎样影响另一个量的变化的? (1)如图1,汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的里程为s km .(2)每张电影票的售价为10元,设某场电影售出x 张票,票房收入为y 元. (3)如图2,圆形水波慢慢地扩大,在这一过程中,圆的半径为r ,面积为S . (4)如图3,用10 m 长的绳子围一个矩形,矩形的一边长为x ,它的邻边长为y .师生活动:教师与学生一起分析变化过程(1)中变量之间的关系.在变化过程(1)的分析中,首先引导学生得出,有两个变量t , s ;s 随着t 的变化而变化.y = 1.41厘米CD BAxy图3图1图2设计意图:初步概括变量的联动性.追问1:s是怎样随着t的具体变化而变化呢?能用数值加以说明吗?师生活动:教师引导学生取定t的一些值,计算对应s的值并列表:当t的数值取定后,s的值有一个且只有一个.也就是说,当t取定一个值时,s的值由t的值完全确定,而且唯一确定.师生活动:引导学生对变化过程(2)(3)(4)进行类似于变化过程(1)的变量关系分析,并得到如下结论:设计意图:通过师生共同讨论,分析问题1(1)中一个变量的变化对另一个变量变化的影响,在此基础上,学生独立进行问题1(2)(3)(4)变量之间对应关系的分析,为发现这些对应关系的共同特征,实现函数概念的第一次概括提供归纳的样例.2.归纳共性,初步概括问题2能用自己的语言说说这些问题中变量之间关系的共同特点吗?试一试!师生活动:教师引导学生归纳,在一个变化过程中有两个变量,当一个变量取定一个值时,另一个变量有唯一确定的值与之对应.如由s=60 t,当t=1,2,3时能分别求出唯一的s的值.设计意图:对能用解析式表示的变量之间的对应关系的共同特征进行初步概括.3.观察思考,再次概括问题3 下面是我国体育代表团在第23~30届夏季奥运会上获得的金牌数统计表,把届数和金牌数分别记作两个变量x和y,对于表中的每一个确定的届数x,都对应着一个确定的.....金牌数y吗?届数x/届2324252627282930金牌数y /155161628325138枚引导学生说出年份与人口数的对应关系,体会用表格也可以由一个变量的值确定出另一个相关变量的值.设计意图:让学生感受到当一个变量取定一个值时,可以通过查表唯一确定出另一个变量的值,突出函数的本质属性,剥离“用公式表示变量关系"这一无关属性.问题4如图4,是北京某天的气温变化图,你能说出9:00,10:00,13:00的气温吗?图4师生活动:教师在网上打开天气预报页面,引导学生阅读气温变化图,体会根据时温图可以确定气温数值,体会这也是变量之间的单值对应关系.追问1:一天中,当时间确定时,气温的数值是否也是唯一确定的?设计意图:让学生体会到,当一个变量取定一个值时,通过图象也可以唯一确定另一个变量的值,剥离“用公式表示变量关系”这一无关属性.问题5 上述实际问题中,两个变量之间的关系,当一个变量取定一个值时,既有通过公式确定另一个变量的唯一的值,又有通过对应表格确定另一变量唯一的值,还可以通过图象确定另一个变量的唯一的值.综合这些现象,你能归纳出上面所有实例中的变量之间关系的共同特点吗?请家互相讨论.师生活动:学生分组讨论,归纳出如下结论:在一个变化过程中,有两个变量,当一个变量取定一个值时,另一个变量有唯一确定的值与之对应.教师与学生一起概括出函数概念:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与之对应,那么我们就说x是自变量,y是x的函数.追问:请结合问题1(2)说说函数定义中“变化”“对应"“唯一确定"的含义.师生活动:学生交流,教师引导学生进行点评,并顺势带出“函数值"的概念.如果当x=a时,对应的y=b,那么b叫做当自变量的值为a时的函数值.设计意图:在前面分步概括的基础上,概括出三类不同表现形式的变量对应关系的共同特征,形成函数概念.(三)初步辨析,了解概念1.下面是我国大陆地区人口若干年份的人口统计表,表中的人口数y 是年份x 的函数吗?年份x人口数y /亿 1984 10.34 1989 11.06 1994 11.76 1999 12.52 201013.712.下列问题中哪些是自变量?哪些是自变量的函数?试写出用自变量表示函数的式子: (1)向一水池每分注水0.1 m 3,注水量y (单位:m 3)随注水时间x (单位:min)的变化而变化. (2)改变正方形的边长x ,正方形的面积S 随之变化.(3)某汽车油箱中有油 40 L ,它在高速公路上行驶,耗油量为0.07 L/km ,汽车行驶的里程为x km ,油箱中剩下的汽油量为y L .设计意图:形成函数概念后,及时进行概念辨析. (四)综合应用,深化理解1.P 是数轴上的一个动点,它所表示的实数是m ,P 点到坐标原点的距离为S . (1)s 是m 的函数吗?为什么? (2)m 是s 的函数吗?为什么?2.图5是一只蚂蚁在竖直的墙面上爬行的路线图,请问: (1)蚂蚁离地的高度h 是离起点的水平距离t 的函数吗?为什么? (2) t 是h 的函数吗?为什么?3.请举出一个函数的实例.师生活动:学生独立完成,教师个别指导,并引导学生进行自我评价和相互评价.离地高度h /cm离起点水平距离t/cm1 2 6 4 5 612 3 4 5 3 图5设计意图:通过正反两方面的例子进一步进行函数概念辨析,深化对函数概念的理解.(五)回顾总结,反思提升通过本课学习,你对函数有什么认识?(1)请举例说明什么是函数.(2)请结合实例说说你对函数定义中“对于变量x每一个确定的值,y都有唯一确定的值与之对应”的认识.设计意图:问题(1)引导学生回顾函数概念,问题(2)引导学生再次理解函数概念中的单值对应关系及确定对应关系方法(式子、表格、图象).布置作业:教科书第81页第1~4题;举一个函数的实例.六、目标检测1.判断下列哪些变化过程中的变量之间关系是否为函数关系,如果是,指出其中的自变量和函数.(1)某超市中鸡蛋价格是9元/ kg,鸡蛋的销售收入y(单位:元)随着销售量x(单位:kg)的变化而变化;(2)把边长为10 cm的正方形纸板的四角都截去一个边长为x的小正方形,做成一个无盖的长方体,该长方体的体积V(单位:cm3)随x(单位:cm)的变化而变化;(3)如图,小球沿着弯管往下滚,小球所在位置的横坐标为x(单位:m),纵坐标为h(单位:m),h随着x的变化而变化.设计意图:考查函数的概念.2.用关系式表示1(1)(2)中的函数,并求1(1)(2)中当自变量的值分别为1,2,3时的函数值.设计意图:考查对函数值意义的了解,是否会根据函数式求函数值.3.请举一个函数的实例.参考答案:1.(1)自变量为x,y是x的函数;(2)自变量为截去的小正方形边长x,长方体体积V是x的函数;(3)h不是x的函数,因为当x取某些值时,对应h的值不止一个.2.(1) y=9x,当x的值分别为1,2,3时,对应的函数值y分别为9,18,27;(2)V=x(10-2x)2,当x的值分别为1,2,3时,对应的函数值分别为64,72,48.3.略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.1 变量与函数
(第2课时)
教学目标
知识与技能
1.认识变量、常量.
2.学会用含一个变量的代数式表示另一个变量.
过程与方法
1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.
2.逐步感知变量间的关系.
情感与价值观要求
1.积极参与数学活动,对数学产生好奇心和求知欲.
2.形成实事求是的态度以及独立思考的习惯.
教学重点
1.认识变量、常量
2.用式子表示变量间关系
教学难点
用含有一个变量的式子表示另一个变量
教学方法
精心设疑合作交流自主探究
教具准备
多媒体课件
课时安排
1课时
教学过程
活动一图片欣赏
开头语:为了更深刻地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.
活动二提出问题,创设情境
问题1:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.
1.
2..
3.试用含t的式子表示s.
问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?若设一场电影售出票x张,票房收入为y元,怎样用含x的式子表示y?
问题3:圆形水波慢慢地扩大,在这一过程中,当圆的半径r分别为10cm,20cm,30cm 时,圆的面积S分别为多少?怎样用半径r来表示面积S?
问题4:用10m长的绳子围一个矩形,当矩形的一边长x分别为3m,3.5m,
4m,4.5m时,它的邻边长y分别为多少?如何用一边长x来表示它的邻边长y?
学生合作交流自主完成.
结论:1.S=60t; 2.y=10x; 3.S=兀r2;4. y=5–x.
问题升华
提问1:分别指出思考(1)~(4)的变化过程中所涉及的量,在这些量中哪些量是发生了变化的?哪些量是始终不变的?
提问2:在思考(1)~(4)的变化过程中,当一个量发生变化时,另一个量是否也随之发生变化?是哪一个量随哪一个量的变化而变化?
提问3:在思考(1)~(4)的变化过程中,发生变化的量有限制条件吗?如何限制?
活动三形成概念
变量(variable):在一个变化过程中,数值发生变化的量为变量。

常量(constant):在一个变化过程中,数值始终不变的量为常量。

问题1:在一个变化过程中,理解变量、常量的关键词是什么?
指出:在同一个变化过程中,理解变量与常量的关键词分别是:发生了变化和始终不变.
问题2请指出上面各个变化过程中的常量、变量。

活动四辨析概念
解:略
补充练习:
指出下列关系式中的变量与常量:
(1) y=5x -6;(3)y=4x2+5x - 7;
(2) y = ; (4)S=兀r2 .
解:(1)5和-6是常量,x和y是变量.
(2)6是常量,x、y是变量.
(3)4、5、-7是常量,x、y是变量.
(4)兀是常量,s、r是变量.
活动五理解概念
问题探究:请结合你的生活实际,自己设计一个变化过程,指出其中的变量
与常量.
活动六:升华概念
问题1:根据销售记录,某型号的服装每天的售价x (元/件)与当日的销售
大胆猜想它们之间的变化规律,用关系式表示你猜想的变化规律,并指出关系式中的常量.
解:变量有:服装每天的售价x (元/件)和当日的销售量y (件),当日的销售量y 随服装每天的售价x 的变化而变化.
变化规律满足:y=280-x ,关系式中的常量是:数字280.
问题2:
《基础训练》P65第9题 .
活动七:课堂小结
本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.
问题1:在一个变化过程中,什么是变量?什么是常量?请举例说明.
问题2:在一个变化过程中,量与量之间是否是相互依存和变化的?是否存在变化规律?量的变化是否有限制条件?如何确定变量的变化条件?
活动八:布置作业
1.指出下列问题中的变量和常量:
(1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔的数量为x 支,应付的总价为y 元;
(2)用长为50cm 的铁丝围成一个等腰三角形,记这个等腰三角
形的腰长为xcm,底边长为ycm ; (3)如图,△ABC 中,∠ACB=90°,AC=3cm,BC=4cm.现有一动点
P 从点B 出发,沿射线BA 方向以1cm /s 的速度运动,到达点A 随即
停止运动.记点P 的运动时间为x (s ),△ACP 的面积为y (cm ²).
(4)出售某种文具盒,若每个获利x 元,一天可售出(6-x )个,一天出售该种文具盒的总利润为y 元.
2.写出第1题的4个问题中能反映y 与x 的变化关系的式子,并指出x 的取值范围.
教学反思: B
C。

相关文档
最新文档