19.1.1变量与函数(第二课时)
191.1 变量与函数(第2课时)
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
第十九章
一次函数
19.1 函数
19.1.1 变量与函数 第2课时
活动一:创设情境
问 题 探 究
问题1:在上一节课“活动二”的问题(1)~(4)中,是否都 存在两个变量?请你用所学知识写出能表示同一个问题中的两 个变量之间对应关系的式子. 问题(1)~(4)中都存在两个变量,表示两个变量之间的关 系式分别为: (1)s=60t;(2)y=10x;(3)S=πr² ;(4)y=5-x. 问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
活动四:辨析概念
问 题 探 究
O
问题4:下列曲线中,表示y不是x的函数是( ), 怎样改动这条曲线,才能使y是x的函数?
y y y y
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念
解:(1)当0<x≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4. (2)当0<x≤3和x>3时,y都是x的函数,因为对于 x的每一个确定的值,y都有唯一确定的值与其对应.
19.1.1 变量与函数(第2课时)课件
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
数学人教版八年级下册第19章《19.1.1变量与函数》第二课时教学设计
第19章《19.1.1变量与函数》第二课时教学设计教学目标知识与技能:1.经过回顾思考认识变量中的自变量与函数.2.进一步理解掌握确定函数关系式.3.会确定自变量取值范围.过程与方法:1.经历回顾思考过程、提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.情感、态度与价值观:1.积极参与活动、提高学习兴趣.2.形成合作交流意识及独立思考的习惯.教学重点1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点认识函数、领会函数的意义教学方法回顾思考─探索交流─归纳总结教学准备PPT 学生制作正方形、三角形、圆等图形纸板教学过程设计(含各环节中的教师活动和学生活动以及设计意图)教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变量?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课[师]我们首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.[生]活动一两个问题都有两个变量.问题(1)中,经计算可以发现:行驶里程s(千米)与行驶时间t(小时)的关系式为:S=60t。
每当行驶时间t取定一个值时,行驶里程s就随之确定一个值.例如当t=1,则s=60;当t=2,则y=120;当t=3,则y=180.问题(2)中,通过试验可以看出:票房收入y元与售票数量x张的关系式:y=10x X=150时y=1500;X=205时y=2050;X=310时y=3100;[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(3)中,很容易算出:圆的面积s与半径r的关系式为().当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r 随之确定一个值,它们的关系为r= .问题(4)中,我们可以根据题意,矩形的邻边长y与x的关系式为:y=5-x每确定一个矩形的一边长,即可得出另一边长,再计算出矩形的面积.如:当x=1cm 时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,那么我们就说x是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x 是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:通过在计算器上操作及填表分析,进一步认识函数意义,经过对表中数据分析推理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1[师]通过以后活动,我们对函数意义认识更深刻了,并完善掌握了函数关系式确定的方法.为了进一步学好函数,我们再来完成一个问题.[活动二]活动内容设计:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?设计意图:通过这一活动,加深函数意义理解,熟练掌握函数关系式确立的办法.学会确定自变量的取值范围,并能通过关系式解决一些简单问题.教师活动:注意学生在活动中对函数意义的认识水平,引导其总结归纳自变量取值范围的方法.学生活动:通过活动,感知体会函数意义,学会确立函数关系式及自变量取值范围,并能掌握其一般方法.活动过程及结果:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得:y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.[师]通过这个活动,我们在巩固函数意义理解认识及确立函数关系式基础上,又学会如何确定自变量取值范围和求函数值的方法.知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义.Ⅲ.随堂练习下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n•的变化而变化.解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.函数关系式:y=Ⅳ.课堂小结本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.本课作业课后P81第1、2题.板书设计课题:《19.1变量与函数》第二课时一、例题展示二、作业。
19.1.1变量与函数(2)教案
变量与函数(2)知识技能目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;2.联系求代数式的值的知识,探索求函数值的方法.教学过程一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式:y=10-x.问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积y cm2与MA长度x cm之间的函数关系式.解 y 与x 的函数关系式:221x y.二、探究归纳思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,MA 长度为0cm ,随着△ABC 不断向右运动过程中,MA 长度逐渐增长,最后A 点与N 点重合时,MA 长度达到10cm .解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;问题2,自变量x 的取值范围是:0<x <90;问题3,自变量x 的取值范围是:0≤x ≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,21+x 没有意义;在(4)中,x <2时,2-x 没有意义.解 (1)x 取值范围是任意实数;(2)x 取值范围是任意实数;(3)x 的取值范围是x ≠-2;(4)x 的取值范围是x ≥2.归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式. 例2 分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.解 (1) y =0.50x ,x 可取任意正数; (2)xy 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.例3 在上面的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?解 设重叠部分面积为y cm 2,MA 长为x cm , y 与x 之间的函数关系式为221x y = 当x =1时,211212=⨯=y 所以当MA =1 cm 时,重叠部分的面积是21cm 2.例4 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ; (3)12-=x y ; (4)x y -=2. 分析 函数值就是y 的值,因此求函数值就是求代数式的值.解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;(3)当x = 2时,y =122-= 2; (4)当x = 2时,y =22-= 0.四、交流反思1.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.五、检测反馈1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y . 3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)12-+=x x y .。
人教版八年级数学下册19.1.1变量与函数第二课时优质课件.ppt
三、研学教材
思考(1)在心电图中,对于横坐标表示 时间x的每一个确定的值,纵坐标表示心 脏部位的生物电流y都有唯一确定的值与 其对应吗? 答:有
(2)在我国人口数统计表中,对于每一 个确定的年份x,都对应着一个确定的人 口数y吗? 答:是
归纳:一些用 图 或 表格 表达的问题中, 也能看到两个变量之间的联系.
1、一般地,在一个变化过程中,如果 有 两个变量x和y,并且对于x的每一个确定的值 , y都有唯__一__确__定__的__值_ 与其对应,那么我们就说 x是自变量 ,y是x的函数。
2、如果当x=a时,y=b,那么 b 叫做当自变 量的值为a 时的函数值.
3、用关于自变量的式子表示函数变_量__之间的 关系,这种式子叫做函数的解析式.
(3)汽车行驶x=200时,油箱中的汽油 量是函数 y=50-0.1x 在x=200时的函数值。 即:y = 50-0.1×200 =_3_0_
答:汽车行驶200时,油箱中还有30L汽油.
三、研学教材 温馨提示:确定自变量的取值范围时
①要使 函数关系式 有意义.
②要符合 问题 的实际意义. 3、用关于自变量数学__式__子__表示 函_数__与 自__变__量_之间的关系,这种式子叫做函__数_ 解析式, 它是描述函数的常用方法.
三、研学教材
1、在y=3x+1中,如果 x 是自变量, y 是x 的函数. 2、下列问题中哪些量是自变量?哪些量是自 变量的函数?试写出函数的解析式. (1)改变正方形的边长x,正方形 的面积s随之改变。 解:边长x是自变量 ,面积S是x的函数
函数解析式为 s=x2
三、研学教材
(2)每分向一水池注水0.1m3,注水量y(单 位:m3)随注水时间x(单位:min)的变化 而变化。解:时间x是自变量, 水量y是x的函数
人教版数学八年级下册19.1.1变量与函数第二课时教学课件PPT文档共33页
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
46、我们若已接受最坏的,就再没ห้องสมุดไป่ตู้什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
初中数学人教版《变量与函数》优质公开课1
(1)请写出弹簧的总长y(cm)与所挂物体的质量x(kg)之间的函数关系式; (2)当所挂物体的质量是10 kg时,弹簧的总长是多少? 解:(1)y=x+12 (2)当x=10时,y=17,故弹簧的总长是17 cm
17.某学校组织学生到离校6 km的光明科技馆去参观,学生小明因事没能
乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的
17.某学校组织学生到离校6 km的光明科技馆去参观,学生小明因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下表:
A.s=120-30t(0≤t≤4)
13.小亮利用计算机设计了计算程序,输入和输出的数据如下:
那么当输入的数据是 8 时,输出的数据是( C )
A.681
18.木材加工厂堆放木料的方式按如图所示堆放,随着层数的增加,物体
总数也会变化. (1)根据变化规律填写下表: (2)求出y与n的函数关系式;
层数n 物体总数y
1234… …
(3)当物体堆放的层数为10时,物体总数为多少?
解:(1)1,3,6,10 (2)y=n(n2+1) (3)55
合作探究
新知 函数的概念
1.函数 一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值 与其对应,那么我们就说x是自变量,y是x的函数.
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
③看每当变量确定一个值时,另外一个变量是否都有唯一
B.683
C.685
D.687
输入 1
2
3
4
5
…
输出
八年级数学下册 19.1 函数 19.1.1 变量与函数(第2课时)课件
第四页,共十三页。
新课讲解
思考
(1)在心电图中,对于横坐标表示时间x的每一个确
定的值,纵坐标表示心脏(xīnzàng)部位的生物电流y都
知
有唯一确定的值与其对应吗?
识
答:有
点 一
(2)在我国人口数统计表中,对于每一个确 定(quèdìng)的年份x,都对应着一个确定的人口数y
吗?
答:是
归纳 一些用 图 或 表格 表达的问题中,也能
看到两个变量(biànliàng)之间的联系.
12/13/2021
第五页,共十三页。
新课讲解
1、一般地,在一个变化过程中,如果有两个变量x和y,
并且对于x的每一个确定的值,y都有 确定的唯值一与其对应,
那么我们(wǒ men)就说 是自变量,_x___ 是 ___ y的函数. x
知
识 点 二
如果当x=a时,y=b,那么b叫做当自变量的值为a时 的 函数值.
(2)因为x代表的实际意义为行驶路程,所以(suǒyǐ)x不能取
.
且行驶中负的数耗油量为
,它不能超过油箱0中.1现x有汽油量的值50,即
因此,自变量x的取值范围是__________0_._1_x_≤_ 50
0≤ x ≤ 50
(3)汽车行驶x=200时,油箱中的汽油量是函数___________y_=在50x-0=.210x0时的
(2)每分向一水池注水0.1m3,注水量y(单位(dānwèi): m3)随注水时间x(单位:min)的变化而变化。
解:时间x是自变量, 水量y是x的函数
函数解析式为 y=0.1x
12/13/2021
第九页,共十三页。
新课讲解
(3)秀水村的耕地面积是106㎡,这个村人均占有(zhànyǒu)耕地 面积y(单位:㎡)随这个村人数n的变化而变化。
19.1.1变量与函数(第二课时)
变量与函数
(1)在一个变化过程 中
数值不发生变化的量 常量 数值发生变化的量 变量
(2)函数的定义:(包括y值的存在性和唯一性)
一般地,在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与 其对应,那么我们就说x是自变量,y是x的函数。
(3)函数值的定义: 如果当x=a时y=b,那么b叫做当自变量的值为a时的 函数值
1.下列关系中,y不是x函数的是(
Байду номын сангаасD)
x A. y 2
B. y x
2
C. y x D. y x
A
y=2x+15
X≥1且为整数
x ≠ -1
3、等腰三角形ABC的周长为10, 底边BC长
为 y , 腰AB长为
x, 求:
(1)y关于 x 的函数解析式; (2)腰长AB=3时,底边的长. (3)自变量的取值范围;
3 x2
n 1
∴自变量 n 的取值范围: n≥1
解: 由n-1≥0得n≥1
解:由x+2 ≠ 0得 x≠-2 (4)h
∴自变量 n 的取值范围: x≠-2
1 k k 1
k≤1且k ≠-1
解:自变量的取值范围是:
1.求下列函数中自变量x的取值范围
(1)y= (3)y=
5x 7 2
;(2)y=x2-x-2; ;(4)y=
年份 1984 人口数(亿) 10.34
1989 1994
1999
11.06 11.76
12.52
是
(5)如图,是体检时的心电图,其中横坐标x表示 时间,纵坐标y表示心脏某部位的生物电流,它 们是两个变量,其中y是x的函数吗?
八年级数学下册19.1.1变量与函数第2课时函数教案人教版.doc
第2课时函数理解函数的概念,准确写出函数的关系式.重点函数的概念,函数解析式的求法.难点函数概念的理解.一、创设情境,引入新课师:上一节课中的每个问题都涉及两个变量,这两个变量之间有什么联系呢?当其中一个变量确定一个值时,另一个变量是否也随之确定呢?这将是我们这节课要研究的内容.二、讲授新课师:观察问题(1)中的表格,时间t和路程s是两个变量,但当t取定一个值时,s也随之确定一个值.t/时 1 2 3 4 5s/千米60 120 180 240 300生:是的,当t时,s=300.师:问题(2)也是一样的,当早场x=150时,收入y=1500;当午场x=205时,y=2050;当晚场x=310时,y=3100.也就是说售票张数x与票房收入y是两个变量,但当x取定一个值时,票房收入y也就确定一个值.师:问题(3)中,当圆的半径r=10 cm时,S=100πcm2,当r=20 cm时,S=400πcm2等,也就是说…生:也就是说当圆的半径r取定一个值时,面积S也随之确定,并且S=πr2.师:问题(4)中,当长为4 m时,面积为4 m2;当长为3 m时,面积S为6 m2;当长x 为2.5 m时,面积S为6.25 m2,也就是说…生:也就是说当长x取定一个值时,面积S也就随之确定一个值.师:当长取定为x m时,面积S等于多少呢?生:S=x·(5-x)=5x-x2.师:像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数.前面的几个问题中,哪个是自变量,哪个是函数呢?它们之间的关系如何用式子表示?生1:问题(1)中,时间t是自变量,路程s是t的函数,s=60t.生2:问题(2)中,售票数量x是自变量,收入y是x的函数,y=10x.生3:问题(3)中,圆的半径r是自变量,面积S是r的函数,S=πr2.生4:问题(4)中,长方形的长x是自变量,面积S是x的函数,S=x(5-x).师:其实,现实生活中某些函数关系是用图表的形式给出的,比如说:心脏部位的生物电流,y是x的函数吗?生:y是x的函数,因为在心电图里,对于x的每一个确定的值,y都有唯一确定的值和它对应.师:很好!再比如说下面是我国的人口统计表,人口数量y是年份x的函数吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.522010 13.71教师总结:(再一次叙述函数的定义)像这样,在一个变化过程中,如果有两个变量x 与y ,并且对于x 每一个确定的值,y 都有唯一确定的值与其对应,我们就说x 是自变量,y 是x 的函数.如果当x =a 时,y =b ,那么b 叫做当自变量x =a 时的函数值,例如在问题(1)中当t =1时的函数值s =60,当t =2时的函数值s =120.在人口统计表中当x =1999时,函数值y =12.52亿.【例】教材第73页例1师:关于自变量的取值范围我们再来看两个题目.求下列函数中自变量x 的取值范围:y =2x 2-5;y =1x +4; y =x +3.生1:对于y =2x 2-5,x 没有任何限制,x 可取任意实数.生2:对于y =1x +4,(x +4)必须不等于0式子才有意义,因此x≠-4. 生3:对于y =x +3,由于二次根式的被开方数大于等于0,因此x≥-3.三、巩固练习下列问题中,哪些是自变量?哪些是自变量的函数?写出用自变量表示函数的式子.1.改变正方形的边长x ,正方形的面积S 随之改变.【答案】S =x 2,x 是自变量,S 是因变量.2.秀水村的耕地面积为106 m 2,这个村人均占有耕地面积y 随这个村人数n 的变化而变化.【答案】y =106n,n 是自变量,y 是因变量.四、课堂小结本节课我们通过对问题的思考、讨论,认识了自变量、函数及函数值的概念,并通过两个活动,加深了对函数意义的理解,学会了确定函数关系式以及求自变量取值范围的方法,从而提高了运用函数知识解决实际问题的能力.本节课引入新课所设计的一些问题都来自于学生生活,函数的概念也是在教师引导下学生自主发现的,这样做能充分调动学生学习的积极性,同时能让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识。
人教版初中八年级下 19.1.2函数
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
1 (5) y x 1 1 x
x4 ( 6) y 9 x
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
作业
• 必做:书81---83页 第1-----5题,10、11 题 • 能力培养51页1-----7 • 选作:能力培养52页8----10
6
(3)正多边形的内角和度数y随变数n的变化 情况. y= (n-2) ×180°
x
例1、求出下列函数中自变量的取值范围 (1)y=2x
3 ( 3) y x2
(2)
m n 1
1 k k 1
(4) h
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
19.1.1变量与函数(2)
当堂练习
必做题
2.教材P81第1、2题。
选做题
教材P82第4、5题。
19.1.1
变量与函数(二)
学习目标
• 理解函数的概念
• 能准确的求出函数解析式,并能确 定自变量的取值范围
自学指导(一)
1. 回顾教材第71页4个问题并阅读P72“思考”以 下四段内容。归纳问题 (1)~(4)中分别有几个变 量?哪几个?同一题中这几个变量之间有什么 联系? 2.仔细阅读P73“思考”及以下三段内容,归纳 并掌握“自变量”“函数”“函数值”的概念。 (限时5分钟,看谁完成得又快又好)
自学指导(二)
1.仔细阅读P73例1及云图提示,思考y与x的函 数关系式应写成什么形式,本题中自变量 的范围是怎样确定的? 2.阅读P74练习上的最后一段,了解什么是函 数的解析式。 (限时4分钟,看谁完成得又快又好)
学以致用
1.下列变量y是否是自变量x的函数?为什么? (1)任意一个实数x,它的立方根为y. (2)任意一个正数x,它的平方根为y. (3)任意一个实数x,它的立方为y. (4)任意一个实数x,它的平方为y. 2.已知3x-y=2,如果把y看成x的函数,则函 数关系式为 .
八年级数学 第十九章 一次函数 19.1 函数 19.1.1 变量与函数 第2课时 函数
3.一名司机驾驶汽车从甲地去乙地,他以 80 km/h 的平均速度用了 4 h 到达
乙地.当他按照原路返回时,汽车的速度 v(km/h)与时间 t(h)的函数关系式是( B )
A.v=320t
B.v=32t 0
C.v=20t
D.v=2t0
12/11/2021
第二十一页,共二十八页。
4.下列关系式中,y 不是 x 的函数的是( A )
12/11/2021
第六页,共二十八页。
2.函数值与函数的解析式 函数值:在一个函数关系式中,如果当 x=a 时,y=b,那么 b 叫做当自变量 为 a 时的 函数(hánshù)值. 解析式:用关于 自变量 的数学式子表示函数与自变量之间的关系,是描 述函数的常用方法,这种式子叫做函数的解析式.
12/11/2021
第十四页,共二十八页。
【解析】 A.y=14x2=116x2,y 是 x 的函数; B.每个学号对应一个学生,每个学生对应一个身高,y 是 x 的函数; C.y=π12x2=14πx2,y 是 x 的函数; D.y=± x(x>0),每一个 x 的值对应两个 y 的值,y 不是 x 的函数.故选 D.
第十三页,共二十八页。
当堂测评
1.下面每个选项中分别给出了某个变化过程中的两个变量 x 和 y,其中 y 不 是 x 的函数的是( D )
A.y:正方形的面积,x:这个正方形的周长 B.y:某班某名学生的身高,x:这个班学生的学号 C.y:圆的面积,x:这个圆的直径 D.y:一个正数的平方根,x:这个正数
12/11/2021
第二页,共二十八页。
★教学目标★ 1.理解函数、自变量、函数值、函数的解析式等的概念; 2.会求函数自变量的取值范围.
人教版八年级数学下册19.1.1变量与函数(2) 课件
等号右边是开偶次方的式子,自变量的取值
范围是使根号下的式子的值大于或等于0的实数,例如:
= − 3.
④.零次型
等号右边是自变量的零次幂或负整数次幂,
自变量的取值范围是使幂的底数不为0的实数,例如:
= 0.
新知探究
例5 汽车的油箱中有汽油50L,如果不再加油,那么油箱中的
油量y(单位:L)随行驶里程x(单位:km)的增加而减少,
的函数. 例如,问题1中的s=3t,问题2中的S=x(5-x)
如果当x=a时y=b,那么b叫做当自变量的值为a时
的函数值.
新知小结
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
3个条件
缺一不可
③看每当变量确定一个值时,另外一个变量是否都有唯一
确定的值与之相对应.
平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子;
叫做函数的解析式
解:函数关系式为: y = 50-0.1x.
0.1x表示的意义是什么?
新知探究
(2)指出自变量x的取值范围;
解: 由x≥0及50-0.1x ≥0得
0 ≤ x ≤ 500.
汽车行驶里程,油箱中
的油量均不能为负数!
∴自变量的取值范围是
化;当一个变量确定时,另一个变量也随之确定.
新知探究
奥运会火炬手以3米/秒的速度
跑步前进传递火炬,传递路程为s
米,传递时间为t秒,怎样用含t的
式子表示 s?
新知探究
知识点 1
函数的有关概念
问题1 全运会火炬手以3米/秒的速度跑步前进传递火炬,传
递路程为s米,传递时间为t秒,填写下表:
八年级数学下册19.1.1变量与函数第2课时导学案新版新人教版2
19.1.1 变量与函数(第二课时)学习目标:我能理解函数的概念,能准确识别出函数关系中的自变量和函数,会用变化的量描述事物,能学会列函数解析式,会确定自变量的取值范围。
学习重点:函数的概念及确定自变量的取值范围。
学习难点:认识函数,领会函数的意义。
学习过程:一、创设情境:请你举出生活中含有两个变量的变化过程,说出其中的常量和变量。
二、自主学习:请看书72——74页内容,完成下列问题:1、思考书中第72页的问题,归纳出变量之间的关系。
当其中一个变量取定一个值时,__________________________________。
2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。
3、归纳出函数的定义,明确函数定义中必须要满足的条件。
归纳:一般的,在一个变化过程中,如果有____变量x和y,并且对于x的___________ ,y都有_________与其对应,那么我们就说x是_______,y是x的_____。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
补充小结:对函数的定义的理解:(1)必须是一个变化过程中有两个变量;(2)其中一个变量每取一个值,另一个变量有且只有唯一的值对它对应。
三、合作交流与展示:1、P73的例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200千米时,油箱中还有多少汽油?1、求下列函数中自变量的取值范围(1) y=x-2 (2)y=1 x-2四、当堂检测:(1、2、3题必做,4题选做)1、P74:1题2、判断下列变量之间是不是函数关系:(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高.2、求下列函数中自变量的取值范围(1)y=-x-2 (2)y=x-35(3)y=1x-3(4)y=1x-34.写出下列函数的解析式.(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.(3)P74.2题2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且OA=OD ,∠OAD=50°,则∠OAB 的度数为( )A .40°B .50°C .60°D .70°2.若线段a ,b ,c 组成直角三角形,则它们的比可以为( )A .2∶3∶4B .7∶24∶25C .5∶12∶14D .4∶6∶103.如图,正方形ABCD 的周长是16,P 是对角线AC 上的个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .25B .23C .22D .44.下列多项式中能用完全平方公式分解的是( )A .x 2-x +1B .a 2+a +12C .1- 2x +x 2D .-a 2+b 2-2ab5.已知反比例函数1y x =,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x 1>时,0y 1<<D .当x 0<时,y 随着x 的增大而增大 6.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°7.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第n 个图形中小菱形的个数用含有n 的式子表示为( )A .21nB .32n -C .31n +D .4n8.下列命题中的真命题是( )A .有一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .对角线互相垂直平分的四边形是正方形D .有一组邻边相等的平行四边形是菱形9.已知多项式x 2+bx+c 分解因式为(x+3)(x ﹣1),则b 、c 的值为( )A .b =3,c =﹣2B .b =﹣2,c =3C .b =2,c =﹣3D .b =﹣3,c =﹣210.下列式子成立的是( )A .2(3)-=3B .23﹣3=2C .3=3D .(3)2=6 二、填空题11.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差2s 甲____2s 乙.(填“>”、“<”或“=”) 12.有一组数据:2,4,4,,5,5,6x 其众数为4,则x 的值为_____.13.如图所示,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若DE=5,则AC 的长等于_____.142x -x 的取值范围是________.15.如图,AC 是菱形ABCD 的对角线,AC=8,AB=5,则菱形ABCD 的面积是_________.16.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒2cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.17.如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为_________.三、解答题18.有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.19.(6分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).(1)填空:a =_________,b =_________.(2)补全频数分布直方图.(3)该校有2000名学生,估计这次活动中爱心捐款额在1525≤≤x 的学生人数.20.(6分)解方程:2x 2﹣4x+1=0.(用配方法)21.(6分)已知一个三角形的三边长分别为1545,20,5245x x x x ,求这个三角形的周长(要求结果化简).22.(8分)如图,一块铁皮(图中阴影部分),测得3AB =,4BC =,12CD =,13AD =,90B =∠.求阴影部分面积.23.(8分)如图,一次函数y= 34x+6的图象与x 轴、y 轴分别交于A 、B 两点,点C 与点A 关于y 轴对称.动点P 、Q 分别在线段AC 、AB 上(点P 与点A 、C 不重合),且满足∠BPQ=∠BAO .(1)求点A 、 B 的坐标及线段BC 的长度;(2)当点P 在什么位置时,△APQ ≌△CBP,说明理由;(3)当△PQB 为等腰三角形时,求点P 的坐标.24.(10分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.(1)通过计算说明边长分别为2,3,13的ABC ∆是否为直角三角形;(2)请在所给的网格中画出格点ABC ∆.25.(10分)实践与探究宽与长的比是512-(约0.618)的矩形叫做黄金矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在一个变化的过程中,我们称数值发生变化的量 为变量,数值始终不变的量为常量。 2.能指出问题中的变量与常量; 3.会列变量之间的关系式。
5.购买一些签字笔,单价3元,总价为y元,签字笔 为x支,根据题意填表: 1 2 3 … x(支) 3 6 9 y(元) (1)y随x变化的关系式y= 3x , x 是自 变量, y 是 x 的函数; (2)当购买8支签字笔时,总价为 24 元.
中国人口数统计表 3.如图是体检时的心电图,其中图上的横坐标 x 表示时 4.人口数统计表中,年份与人 年份 人口数 / 亿 间,纵坐标y表示心脏部位的生物电流,这个问题的 口数可以分别记作两个变量x y 是 x 的函数。 x和y 1984 ___ 10.34 变量是 _,_____ 和y.____ x 是自变量,人口数 1989 11.06 y 是 ____ x 函数,当x=1999 ____ 1994 11.76 时,函数值 y= __________, 12.52亿 当 1999 12.52 x = 2010时,函数值 y = 2010 13.71 13.71亿 . ________
3.已知 3 x y 5, 把它写成 y 是 x 的函数的 形式是
y 3x 5
4.一个三角形的底边为5,高h可以任意伸缩,三 1 角形的面积也随之发生了变化. 5 h 解:(1)面积s随高h变化的关系式s = ,其 2 5 s 中常量是 2 ,变量是 h和s , h 是自变量,___ 是 h 的函数; 7.5 , (2)当h=3时,面积s=______ (3)当h=10时,面积s=______ 25 ;
x≠0的实数
确定下列函数中自变量的取值范围 x全体实数 (1)y=2x2-1 ___________ (2) y=
1 x2
2 x1 x
x≠2 _________
—————
(3) y= 2 x
(4) y=
x≤2
x - 1 且x 0 2 _______________
课本P81习题第3题.在计算器上按照下面的程序进行操作:
19.1.1变量与函数 (第二课时)
• 学习目标: 1.了解函数的概念; 2.能结合具体实例概况函数的概念; 3. 在函数概念的形成过程中体会运动 变化与对应的思想;
• 学习重难点: 重点:概况并理解函数概念中的单值对 应关系 难点:对函数概念中的“单值对应”含 义的理解
问题1:在上一节课的问题探究(1)—(4)中,是 否都存在两个变量?请你用所学知识写出能表示同一 个问题中的两个变量之间对应关系的式子.
(1)s=60t;(2)y=10x;(3)S=πr² ;(4)
S=x(5-x)
(1)t和s是两个变量,t=1,s=60;t=2,s=120;· · · · · · t S___ 就随之 t=5,s=300.当_______ 确定一个值时 确定一个值。 (2)x和y是两个变量,x=150,y=1500;x=205,y=2050;
解:(1)行驶路程x是变量,油箱中的油量y是x的函数。 函数解析式是:y 50 0.1x
(2)由于油箱中有油50L,且平均耗油量为0.1L/km. 即 0.1x 50 。又因为x≥0,解得0≤x≤500
∴ 自变量x的取值范围是:0≤x≤500 (3)当汽车行驶200km时,油箱中的汽油量是 y=50-0.1x200=30(L)。
填表并回答问题:
x y=+2x
1
4
9
16
2和-2
8和-8
18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之对应吗 不是 ?答: 。 (2)y是x的函数吗?为什么? 答:不是,因为y的值不是唯一的。 归纳:对于x的每一个确定的值,y都有唯一确定的 值与其对应,指明了变量x 与y 的对应关系可以是: “一对一” “二对一” 或 “多对一” ,如果是 “一对多”的情况就不是函数了.
练一练:
1.下列问题中的变量y是不是x的函数? 3 y x 1 y 2 x 2 y 2x 3 是 是 是
x 0
4
7
yx
2
5
y x
2
6 9
y x
是
是
y x
8
不是 y x 5
不是
y x 3z
2
不是
不是
例1.汽车油箱中有汽油50L。如果不再加油,那么 油箱中的油量y(单位:L)随行驶路程x(单位:km) 的增加而减少,平均耗油量为0.1L/km. (1)写出表示y与x的函数解析式; (2)指出自变量x的取值范围; 要考虑实际 意义哦! (3)汽车行驶200km时,油箱中还有多少汽油?
请同学们找出这些函数的常量变量、自变量和函数: (1) y =3000—300x (2) S=570—95t (3) y = x (4) S r 2 解:(1)常量是3000,-300;变量是x,y;自变 量是x;y是x的函数。 (2)常量是570,-95;变量是t,s;自变量 是 t;s是t的函数。 (3)常量是1;变量是x,y;自变量是x;y是x 的函数。 (4)常量是 ;变量是r,s;自变量是r; s是r的函数。
x 确定一个值时______ y 当_____ 就随之确定一个值。
一般地,在一个变化过程中,如果有两个变量x与 y,并且对于x 的一个确定的值,y都有唯一确定的值 与其对应,那么我们就说x是自变量,y是x的函数。 如果当x=a时,y=b,那么b叫做当自变量的值为a时 的函数值。
1.“票房收入问题”中y=10x,对于x的每一个值,y都 唯一 的值与之对应,所以 有______ 是自变量,y是x的 x 函数. 2.“行程问题”中s=60t,对于t的每一个值,s都有唯一 _____ 的值与之对应,所以 t 是自变量, s 是 t 的函数.
6.一个梯形的上底是4,下底是9,写出面积S随 1 s ( 4 9 ) h 高h变化的函数解析式 ____2 ,常量 1 h和s ,自变量是 h , 是 2 ,4,9 ,变量是____
h 是 s 的函数。
作业
1、函数y=自变量x的取值范围是( A、x≥1且x≠3 B、x≥1 ) D、x>1且x≠3 C、x≠3
注意:确定自变量的取值范围时,不仅
要考虑函数关系式有意义,而且 还要注意问题的实际意义.
交流讨论:
1、函数关系是用数学式子给出(叫解析式法), 对应的式子叫函数的解析式
2、是不是所有的函数关系都能用函数解 析式表示吗?
像S=60t, y=10x ,s
r
2
, S=x(5-x) (叫解析式法)
输入x(任意一个数)
按键 × 2
显示y(计算结果) x y 1 7 3 11 -4 -3 0 5
+
5
=
101 -5.2 207 - 5.4
问题:显示的数y是x的函数吗?为什么? 答:是,因为x取定一个值时,y都有唯一确定的值与其 对应。
2、下列各曲线中哪些表示 y 是 x 的函数?
课本P82习题第7题
2、 若球体体积为V,半径为R,则V=πR3。其中变量是 __________、__________,常量是__________,__________ 。自变量是__________,__________是__________的函数。
3、已知一根长为20m的铁丝围成一个长方形,若宽为x,长为y.
(1)求出y关于x的函数解析式。 (2)写出自变量x的取值范围。 (3)求当x=4时所对应的函数值。
课后作业 1、课本P74练习1,2,P81第1,2题,P82第 4,5题
2、《精练》P53-54
3、预习课本P75-77
拓展作业:节约资源是当前最热门的话题,我市居 民每月用电不超过100度时,按0.57元/度计算;超过 100度电时,其中不超过100度部分按0.57元/度计算, 超过部分按0.请写出电费y 与用电量x的函数解析式
(2)若小明家8月份用了125度电,则应缴电费少?
(3)若小华家七月份缴电费45.6元,则该月用电多少度?
一.函数关系是用数学式子给出的
二. 像前面的心电图,函数关系是用图象给出的 (叫图象法) 三 .前面我国人口数统计表,函数关系是用表格给 出的 (叫列表法)
思考?
议一议!
实数,都有对应的函数y?
3 对函数y= 来讲自变量x取任意 x
3 答:当x=0时,函数 y= x 没有意义,函数值不存在。
因此,自变量取值范围是: