《19.1.1 变量与函数》教案、同步练习

合集下载

《19.1.1 变量与函数》教案1

《19.1.1 变量与函数》教案1

《变量与函数》(第一课时)设计单位:黑松驿初级中学八年级数学第十九章《一次函数》19.1《函数》19.1.1变量与函数第一课时(变量与常量)知识目标:理解变量与常量的概念。

重点:变量与常量的概念,变量之间的关系难点:对变量的判断教学设计:一.创设情景,引入新课(1)同学们,你们用过电话吗?假如每分钟的电话费为0.20元,那么我们在打电话的过程中,电话总费用M与通话时长t具有怎样的关系.提问:上述问题中,哪个量是固定不变的,哪些量又是可以变化的?二.讲授新课出示定义:在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量为常量.(2)每张电影票的售价为10元,如果第一场售出票150张,第二场售出票205张,第三场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?(3)当圆的半径为r分别为10厘米,20厘米,30厘米时,圆的面积S分别是多少?S与r有怎样的关系?S的值随r的值得变化而变化吗?提问:请同学们指出上述问题中的变量和常量.学生活动:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?1. 小明到商店买练习本,每本单价2元,购买的总数x (本)与总金额y(元)有怎样的关系2. 盛满10千克水的水箱,每小时流出0.5千克水,则水箱中的余水量y(千克)与时间t(小时)之间的关系如何表示呢?3.一只蜡烛全长20厘米,点燃后每分钟燃烧0.2厘米。

燃烧时间t,蜡烛剩余部分L。

用含t的式子表示L4、小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬16元/时计算,设小明的哥哥这个月工作的时间为t 时,应得报酬为m 元,则m与t有怎样的关系?你能找出其中的变量与常量吗?5.长方形的面积为10平方米,那么它的长X与宽y具有怎样的关系。

你能找出其中的变量与常量吗?6.大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系.三、巩固练习1、学生叙述生活中的情景,并找出常量和变量2、投影变量与常量的练习题(试情况而定)四、课堂小结变量:在一个变化过程中数值发生变化的量常量:在一个变化过程中数值始终保持不变的量五、作业1.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为:y=________,其中常量是_____,y和x都是_____量.2.小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月末存12元.设x个月后小张的存款数为y,试写出小张的存款数y与从现在开始的月份数x之间的函数关系式,其中常量是,变量是.六、课后反思。

人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计一. 教材分析人教版数学八年级下册《19.1.1 变量与函数》是初中数学的重要内容,主要让学生了解变量的概念,以及变量与函数的关系。

本节课通过具体的实例,引导学生理解函数的概念,并能够运用函数解决实际问题。

教材内容由浅入深,循序渐进,符合学生的认知发展规律。

二. 学情分析八年级的学生已经掌握了代数的基础知识,对数学概念有一定的理解能力。

但是,对于函数的概念和意义,以及如何运用函数解决实际问题,可能还存在一定的困难。

因此,在教学过程中,要注重引导学生通过实例理解函数的概念,培养学生的动手操作能力和解决问题的能力。

三. 教学目标1.知识与技能:使学生理解变量与函数的概念,能够识别函数关系,并运用函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和创新精神。

四. 教学重难点1.重点:理解变量与函数的概念,掌握函数的表示方法。

2.难点:函数概念的理解,以及如何运用函数解决实际问题。

五. 教学方法采用问题驱动法、合作学习法和情境教学法。

通过设置问题情境,引导学生观察、操作、思考,培养学生的动手操作能力和解决问题的能力。

同时,鼓励学生相互讨论、交流,培养学生的团队协作意识和创新精神。

六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学问题和活动。

2.学生准备:预习教材,了解变量与函数的基本概念。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化,引出变量与函数的概念。

提问:什么是变量?什么是函数?引导学生思考并回答。

2.呈现(15分钟)呈现教材中的例题和练习题,让学生观察、分析,引导学生发现变量与函数之间的关系。

提问:如何判断两个变量之间存在函数关系?如何表示函数关系?3.操练(15分钟)学生分组讨论,选取一个实例,尝试用函数表示变量之间的关系。

数学八年级下册第十九章一次函数19.1函数19.1.1变量与函数教案

数学八年级下册第十九章一次函数19.1函数19.1.1变量与函数教案

19.1.1 变量与函数第1课时常量与变量教学目标知识与技能:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

过程与方法:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。

情感态度与价值观:从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。

学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。

重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念难点:怎样理解“唯一对应”教学过程:一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。

例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。

再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。

二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。

A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。

人教版数学八年级下册19.1.1《变量与函数》教学设计

人教版数学八年级下册19.1.1《变量与函数》教学设计
1.通过情境导入、问题驱动的方式,引导学生主动探究变量与函数的关系。
-利用生活实例或数学问题,激发学生的好奇心,引导他们观察变量之间的变化规律。
-设计系列问题,逐步引导学生深入探讨函数的定义和性质。
2.运用合作学习、讨论交流的方法,提高学生的思维品质和解决问题的能力。
-组织学生进行小组合作,鼓励他们发表自己的观点,倾听他人的意见,共同解决问题。
-在下次课堂上,每个小组分享自己的解题过程和心得体会,促进同学之间的交流和学习。
5.思考与拓展:
-思考函数在生活中的应用,如天气预报、股票市场分析等,并简述函数在这些领域中的作用。
-探索函数的其他性质,如周期性、对称性等,并尝试举出相应的实际例子。
接着,我会引导学生思考:“如果我们想要预测未来某个时间点的气温,该怎么做呢?”从而引出变量和函数的概念。学生会发现,通过观察已经收集到的数据,可以尝试寻找气温与时间之间的关系,进而预测未来气温。这样,学生便对函数的概念有了初步的认识,为接下来的学习打下基础。
(二)讲授新知
在讲授新知环节,我会从以下几个方面展开:
-对于基础薄弱的学生,通过个别辅导和小组互助,帮助他们克服学习难点。
3.探究式学习,培养学生的思维能力
-采用问题驱动的教学方法,引导学生通过观察、实验、推理等过程,自主探究函数的定义和性质。
-设计开放性问题,鼓励学生多角度思考,培养他们的创新意识和解决问题的能力。
4.信息技术辅助,提高教学效果
-利用数学软件和多媒体工具,直观演示函数图象和变化过程,帮助学生形象地理解函数概念。
-通过网络资源,拓展学生的学习视野,使他们能够接触到更多与函数相关的实际应用。
5.实践活动,增强学生的应用能力
-安排课后实践活动,让学生在实际操作中运用函数知识,解决现实问题。

人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。

学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。

本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。

二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。

但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。

因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。

三. 教学目标1.理解变量的概念,掌握常量与变量的区别。

2.理解函数的定义,掌握函数的表示方法。

3.能够运用变量和函数的知识解决实际问题。

四. 教学重难点1.重点:变量、函数的概念及其表示方法。

2.难点:函数概念的理解,函数表示方法的应用。

五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。

2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。

3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。

六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。

2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。

通过观察、讨论,让学生初步理解变量概念。

2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。

接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。

3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。

人教版八年级下第19章一次函数19.1.1变量与函数教案

人教版八年级下第19章一次函数19.1.1变量与函数教案
2.通过对变量、函数概念的理解,发展学生的抽象思维和逻辑推理能力。
3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。

人教版八年级数学下册 第19章 19.1.1 变量与函数 教案

人教版八年级数学下册 第19章 19.1.1  变量与函数 教案

19.1.1 变量与函数(第1课时)教学目标知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.过程与方法1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.2.逐步感知变量间的关系.情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.认识变量、常量2.用式子表示变量间关系教学难点用含有一个变量的式子表示另一个变量教具准备多媒体课件教学过程一图片欣赏开头语:为了更深刻地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.二、问题探究问题一:汽车以60千米/小时的速度匀速行驶,行驶路程为s千米,行驶时间为t小时.12. 3试用含t的式子表示s, s=________,这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•1请同学们根据题意得三场电影的票房收入为:早场票房收入= 10×150 = 1500 (元)午场票房收入= 10×205 = 2050 (元)晚场票房收入= 10×310 = 3100 (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3用含x的式子表示y, y=______ ,这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:水中的涟漪, 圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10cm 、20cm 、30cm 时,圆的面积s 分别为多少?1请同学们根据题意得当半径r=10cm 时,面积s=3.14×102当半径r=20cm 时,面积s=3.14×202当半径r=30cm 时,面积s=3.14×3022在以上这个过程中,变化的量是_____________.不变化的量是__________. 3试用含r 的式子表示s .s=_________,这个问题反映了___ _ 随_ __的变化过程问题四:用10m 长的绳子围成矩形,当矩形的一边长x 分别为 3m ,3.5m,4m 时,邻边长y 是多少?1 请同学们根据题意得当矩形的长为3时, y=(10-2×3)÷2 = 2当矩形的长为3.5时, y=(10-2×3.5)÷2 = 1.5当矩形的长为4时, y=(10-2×4)÷2 = 12在以上这个过程中,变化的量是_____________.不变化的量是__________. 3试用含x 的式子表示y . y=__________________,这个问题反映了矩形的___ _ 随_ __的变化过程.三、归纳总结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。

人教版数学八年级下册19.1.1《变量与函数》教学设计教师版

人教版数学八年级下册19.1.1《变量与函数》教学设计教师版

人教版数学八年级下册19.1.1《变量与函数》教学设计教师版一. 教材分析人教版数学八年级下册19.1.1《变量与函数》是学生在学习了初中阶段函数知识的基础上,进一步深入研究函数的概念、性质和应用。

本节内容主要包括函数的定义、函数的性质和函数的图像等方面的内容。

本节内容对于学生掌握函数知识,理解数学的内涵和外延,培养学生的数学思维能力都具有重要意义。

二. 学情分析学生在学习本节内容之前,已经学习了初中阶段函数的基本知识,对于函数的概念、图像和性质有一定的了解。

但是,对于函数的定义和细节方面可能还存在一些疑惑,需要通过本节课的学习进一步深化理解。

同时,学生需要通过本节课的学习,掌握函数知识的应用,提高解决实际问题的能力。

三. 教学目标1.理解函数的定义,掌握函数的性质,了解函数图像的基本特征;2.学会如何求解函数的值,能够运用函数知识解决实际问题;3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.函数的定义和性质;2.函数图像的特征;3.函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法、小组合作探究法等教学方法,通过引导学生自主探究、合作交流,让学生在实际问题中感受函数的意义,理解函数的定义和性质,掌握函数图像的基本特征,提高解决实际问题的能力。

六. 教学准备1.教学PPT;2.教学素材(实际问题、函数图像等);3.教学用具(黑板、粉笔等);4.学生分组合作探究材料。

七. 教学过程导入(5分钟)1.引入新课:通过一个实际问题引入函数的概念,让学生感受函数的意义;2.引导学生思考:如何定义函数?如何表示函数?呈现(15分钟)1.讲解函数的定义:函数是一种数学关系,其中每个输入值都对应唯一的输出值;2.介绍函数的性质:函数的单调性、奇偶性、周期性等;3.呈现函数图像:直线、曲线等。

操练(15分钟)1.让学生自主探究:如何求解函数的值?如何根据函数的性质解决问题?2.案例教学:通过一些实际问题,让学生运用函数知识解决问题。

人教版数学八年级下册19.1.1《变量与函数》教学设计

人教版数学八年级下册19.1.1《变量与函数》教学设计

人教版数学八年级下册19.1.1《变量与函数》教学设计一. 教材分析《变量与函数》是初中数学的重要内容,人教版八年级下册19.1.1节主要介绍了变量的概念以及函数的定义。

通过本节课的学习,学生能够理解变量、常量的概念,了解函数的定义及表示方法,为后续学习函数的性质、图象等知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等。

但他们对变量的概念及函数的定义还较为模糊,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对函数的表示方法感到陌生,需要通过教师的引导和学生的实践来逐步熟悉。

三. 教学目标1.知识与技能:使学生理解变量、常量的概念,掌握函数的定义及表示方法。

2.过程与方法:通过实例分析,让学生体会变量之间的依赖关系,学会用函数表示实际问题中的变量关系。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:变量、常量的概念,函数的定义及表示方法。

2.难点:函数概念的理解,函数表示方法的运用。

五. 教学方法1.情境教学法:通过生活实例引入变量、常量概念,让学生在具体情境中感受数学与生活的联系。

2.引导发现法:教师引导学生发现变量之间的依赖关系,自主探究函数的定义及表示方法。

3.实践操作法:让学生通过实际操作,加深对函数概念的理解,提高运用函数解决实际问题的能力。

六. 教学准备1.教学课件:制作涵盖实例、练习、拓展等环节的课件,以便于引导学生逐步深入学习。

2.教学素材:收集与生活相关的函数实例,如温度、身高、体重等,用于导入和巩固环节。

3.练习题库:准备不同难度的练习题,以便于针对性地进行操练和巩固。

七. 教学过程1.导入(5分钟)教师通过展示生活中常见的变量关系,如气温随时间的变化、身高与年龄的关系等,引导学生关注变量之间的依赖关系。

在此基础上,提出问题:“你们认为什么是变量?什么是常量?”让学生发表自己的见解。

19.1.1【教学设计】《变量与函数》(人教版)

19.1.1【教学设计】《变量与函数》(人教版)

《19.1.1变量与函数》
本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律.
1.了解变量与常量的意义;
2.体会运动变化过程中的数量变化.
3.进一步体会运动变化过程中的数量变化;
4.从典型实例中抽象概括出函数的概念,了解函数的概念.
5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;
6.能确定简单实际问题中函数的自变量取值范围;
7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.
1.了解变量与常量的意义,充分体会运动变化过程中量的变化.
2.概括并理解函数概念中的对应关系.
3.用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围.
多媒体:PPT课件、电子白板
第一课时
一、初步感知统领全章:
1.观察图片,体会变化:
【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,。

八年级数学下册 19.1.1 变量与函数教案 (新版)新人教版

八年级数学下册 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1 函数19.1.1 变量与函数【教学目标】知识与技能1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义.2、学会用含一个变量的代数式表示另一个变量.过程与方法体会数形结合的思想.情感、态度与价值观培养学生良好的变化与对应意识【教学重难点】重点:常量与变量的识别.难点:常量与变量的识别.【导学过程】【情景导入】由大量图片“万物皆变”)引入。

【新知探究】探究一、自主探究P71问题(1),汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.①.请同学们根据题意填写下表:t/时 1 2 3 4 5s/千米②.在以上这个过程中,变化的量是 ,不变化的量是_______.③.试用含t的式子表示s: s=________,t的取值范围是 ________ .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间的变化过程.探究二、自主探究P71问题(2)~~(4),然后完成下列填空在(2)中用含x的式子表示y, 则y=;在(3)中用含m的式子表示l, 则l =;在(4)中用含s的式子表示r,则r=;探究三、1.概念、在一个变化过程中,我们称数值发生变化的量......为 .有些量的数值是始终不变的,我们称它们为 .2.在P71的五个问题中,(1)中的常量是,变量是;(2)中的常量是,变量是;(3)中的常量是,变量是;(4)中的常量是,变量是;(5)中的常量是,变量是 .【知识梳理】1.什么叫变量?什么叫常量?2.举一个运动变化的例子并指出其变量和常量.3.你认为变化过程中的变量之间会有联系吗? 【随堂练习】1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x 之间的关系是 ( )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距S 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足S=vt ,在这个变化过程中,下列判断中错误的是 ( )A .S 是变量B .t 是变量C .v 是变量D .S 是常量3.长方形相邻两边长分别为x 、•y •,面积为100•,•则用含x •的式子表示y •,则y =_______,在这个问题中, 常量; 是变量.4.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .x 与y 之间的关系是y= ,在这个变化过程中,常量是 ,变量是 .5.一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y (吨),y = ,t 的取值范围是 .6.如图:已知△ABC 中,底边BC =15cm ,高AD 可以任意伸缩.写出△ABC 的面积S随AD 变化关系式,并指出其中常量与变量.7、如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n 盆花,每个图案的花盆总数是S ,求S 与n 之间的关系式.份数/份 1 2 3 4 5 6 7 100总价/元D A A A B Cn =1 n =2 n =3。

人教版八年级下册19.1.1变量与函数(教案)

人教版八年级下册19.1.1变量与函数(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是指数值可变的量,而函数则是一种特殊的关系,描述了一个变量随另一个变量变化而变化的规律。它是数学模型中的重要组成部分,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在描述物体运动中的应用,以及如何帮助我们解决问题。
举例:在解析式y = f(x)中,x为自变量,y为因变量,自变量是独立变量,而因变量随自变量变化。
(2)掌握函数的定义:使学生掌握函数的定义,了解函数的三种表示方法(列表法、解析式法、图象法)。
举例:给出一个具体函数,如y = 2x + 1,让学生学会用列表法、解析式法和图象法表示。
(3)学会绘制函数图像:培养学生通过描点、连线等方式绘制函数图像的能力。
2.教学难点
(1)函数抽象思维的培养:学生在从具体问题中抽象出函数关系时,可能存在一定的困难。
突破方法:通过生活中的实例,如气温随时间变化、物品价格与数量的关系等,引导学生理解函数的抽象概念。
(2)函数性质的判断:如何判断函数的单调性、奇偶性等性质,是学生学习的难点。
突破方法:通过具体函数的图象和解析式,引导学生观察、分析、归纳函数的性质,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
5.提高学生的数学运算能力:在学习函数相关知识的过程中,加强学生的运算训练,提高运算速度和准确性。
本节课将紧紧围绕核心素养目标,结合课本内容,注重培养学生的综合运用能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)理解变量的概念:强调自变量与因变量的区别,使学生能够准确判断变量之间的关系。
五、教学反思
在今天的教学中,我发现同学们对变量与函数的概念有了初步的认识,但仍然存在一些理解和应用上的困难。首先,对于变量的概念,尽管我通过生活中的实例进行了讲解,但部分同学在区分自变量和因变量时仍然感到困惑。在今后的教学中,我需要进一步强化变量的定义,并通过更多的实例来帮助同学们理解和掌握。

人教版数学八年级下册19.1.1《变量与函数》说课稿

人教版数学八年级下册19.1.1《变量与函数》说课稿

人教版数学八年级下册19.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,属于初中数学的函数单元。

本节内容主要介绍了变量的概念,函数的定义及其表示方法,旨在让学生理解变量之间的关系,掌握函数的基本概念和表示方法。

二. 学情分析学生在学习本节内容前,已经学习了代数基础知识,对代数表达式有一定的理解,但对于变量的概念和函数的定义可能还比较陌生。

因此,在教学过程中需要引导学生理解变量之间的关系,逐步引入函数的概念,并通过实例让学生掌握函数的表示方法。

三. 说教学目标1.知识与技能目标:让学生理解变量之间的关系,掌握函数的定义及其表示方法,能够识别和表示简单的函数关系。

2.过程与方法目标:通过观察、分析实例,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。

四. 说教学重难点1.教学重点:函数的定义及其表示方法。

2.教学难点:理解变量之间的关系,掌握函数的表示方法。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,积极参与课堂活动。

2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过展示实际生活中的实例,引导学生观察和分析变量之间的关系,引出函数的概念。

2.探究新知:让学生通过小组合作,探讨函数的定义及其表示方法,教师进行引导和讲解。

3.巩固新知:通过练习题让学生巩固函数的概念和表示方法,教师进行点评和指导。

4.应用拓展:让学生运用函数的知识解决实际问题,提高学生解决问题的能力。

5.课堂小结:对本节课的内容进行总结,强调函数的概念和表示方法。

七. 说板书设计板书设计要清晰、简洁,能够突出函数的概念和表示方法。

主要包括以下几个部分:1.变量与函数的定义2.函数的表示方法3.函数的性质八. 说教学评价教学评价主要包括学生的学习效果评价和教师的教学评价两个方面。

(附答案解析)人教版八年级数学下册19.1.1 变量与函数(2))精选同步练习

(附答案解析)人教版八年级数学下册19.1.1 变量与函数(2))精选同步练习

19.1.1 变量与函数(2)同步练习班级__________姓名____________总分___________本节应掌握和应用的知识点1.在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.3.确定自变量的取值范围时,既要考虑函数关系式有意义,还要注意问题的实际意义.基础知识和能力拓展精练一、选择题1.下列曲线中表示y是x的函数的是()A. B. C. D.2.下列对函数的认识正确的是()A. 若y是x的函数,那么x也是y的函数B. 两个变量之间的函数关系一定能用数学式子表达C. 若y是x的函数,则当y取一个值时,一定有唯一的x值与它对应D. 一个人的身高也可以看作他年龄的函数3.下列函数中,自变量x的取值范围为1x<的是()A.11yx=-B.11yx=- C. 1y x=- D.11yx=-4.下列式子中的y不是x的函数的是()A. y=-2x-3B. y=-C. y=±D. y=x+15.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A. y =x +2B. y =x 2+2 C. y =D. y =6.函数y=1x -中,自变量x 的取值范围是( ) A. x≥1 B. x≤1 C. x >1 D. x≠1 7.已知函数2x 1y x 2-=+,当x 3=时,y 的值为() A. 1 B. 1- C. 2- D. 3-8.根据如图的程序,计算当输入x=3时,输出的结果y=()A. 2B. 3C. 4D. 59.一个长方体的体积为12 cm 3,当底面积不变,高增大时,长方体的体积发生变化,若底面积不变,高变为原来的3倍,则体积变为( ) A. 12 cm 3B. 24 cm 3C. 36 cm 3D. 48 cm 3二、填空题10.下列是关于变量 x 与 y 的八个关系式:① y = x ;② y2 = x ;③ 2x2 − y = 0;④ 2x − y2 = 0;⑤ y = x3 ;⑥ y = ∣x ∣;⑦ x = ∣y ∣;⑧ x =.其中 y 不是 x 的函数的有___________________________.(填序号)11.关于x ,y 的关系式:(1)y-x=0;(2)x=2y ;(3)y 2=2x ;(4)y-x 2=x ,其中y 是x 的函数的是_____________________12.如图是济南市8月2日的气温随时间变化的图象,根据图象可知:在这一天中,气温T(℃)____(填“是”或“不是”)时间t (时)的函数.13.等腰三角形的顶角y 与底角x 之间是函数关系吗?_________(是或不是中选择)14.在函数y=+中,自变量x的取值范围是_______.15.已知函数y=x2-x+2,当x=2时,函数值y=_____;已知函数y=3x2,当x=______时,函数值y=12.16.某人乘雪橇沿如图所示的斜坡笔直下滑,滑下的距离s(m)与时间t(s)之间的关系式是s =t2+10t.若下滑的时间为2s,则此人下滑的高度是_______m.三、解答题17.如图,下列各曲线中哪些能够表示y是x的函数?你能说出其中的道理吗?18.在等腰△ABC中,底角x为(单位:度),顶角y(单位:度).(1)写出y与x的函数解析式;(2)求自变量x的取值范围.19.在国内投寄平信应付邮资如下表:信件质量x(克)0<x≤200<x≤400<x≤60邮资y(元)0.80 1.60 2.40①y是x的函数吗?为什么?②分别求当x=5,10,30,50时的函数值.20.下表是丽丽往姥姥家打长途电话的几次收费记录:时间(分) 1 2 3 4 5 6 7电话费(元) 0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)如果用x表示时间,y表示电话费,上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数,请用式子表示它们的关系;(2)随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?(4)你能帮丽丽预测一下,如果打10分钟的电话,需付多少元话费?21.下列关系哪些表示函数关系?(1)在一定的时间t内,匀速运动所走的路程s和速度v;(2)在平静的湖面上,投入一粒石子,泛起的波纹的周长L与半径r;(3)正方形的面积S和梯形的面积S′;(4)圆的面积S和它的周长C.答案与解析1.C【解析】函数表示一个变化过程中两个变量的对应关系,对于自变量x的每个值,函数y都有唯一的值与它对应,由此可得B是正确的.故答案为:C.点睛:本题是函数的概念、函数的图象、反比例函数的意义的考查,根据函数的意义可知,函数表示一个变化过程中两个变量的对应关系,对于自变量x的每个值,函数y都有唯一的值与它对应,由此可得结果.2.D【解析】满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D正确;所以D选项是正确的.点睛:根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.3.D【解析】A项,因为1-x位于分母上,则1-x≠0,则该函数自变量x的取值范围为x≠1。

人教版八年级下册19.1.1 变量与函数(1)教学设计

人教版八年级下册19.1.1 变量与函数(1)教学设计

《19.1.1 变量与函数》教学设计(第1课时)一、内容和内容解析1.内容变量与常量的概念.2.内容解析本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从学生身边的常见问题及四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,且问题中变量的单值对应关系也为学习函数的定义作了铺垫.二、教学问题诊断分析变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系,类似于一元一次方程,没有用运动与变化的观点去体会两个变量之间相互依赖的变化.三、教学目标1.了解变量与常量的意义,体验在一个过程中常量与变量是相对存在的;2. 在较复杂问题中辨别常量与变量;3. 通过列举同学们身边的事例,激发同学们探究问题的兴趣,体会数学的应用价值,在探索活动中获得成功的体验。

学习重难点:重点:能找出一个变化过程中的变量与常量,难点:体会运动变化过程中量的变化.四、设计理念:1.改变知识的呈现方式,创设良好的游戏,情景氛围,激发学生的学习欲望,理清知识的来龙去脉。

2.改变单纯的学习方式,通过观察,分析,归纳,运用等活动,体验用数学的思维解决问题,增强应用意识,形成数学能力。

3.优化提问设计,给学生充分思考,交流的时空,引导学生自主构建变量与常量的定义。

新课标指出学生是学习的主人,是学习的主体。

本节课的整个教学过程,学生的思维处于活跃状态,学生获得知识的同时,学习能力和学习方法也得到了相应的发展,通过对比,学生主动建构知识,在总结中增强了学习的信心,并体验到了数学来源于生活,服务于生活。

五、设计思路:从学生感兴趣的生活实例入手,自然的创设了愉快的学习氛围,使学生轻松的理解了变量与常量这一比较枯燥的概念,接着通过四个探究,使学生从解析式,表格,图像等三种形式中辨析出变量与常量,在对比中主动观察,分析和讨论,感知理解从初步到深刻,从数字到字母,从特殊到一般,逐步深入。

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。

人教版八年级下册第十九章:19.1.1变量与函数(教案)

人教版八年级下册第十九章:19.1.1变量与函数(教案)
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数的基本概念。函数是一种特殊的关系,每个输入值对应唯一的输出值。它在描述现实世界中的数量关系方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调函数的定义和三要素这两个重点。对于难点部分,如函数图像的识别与绘制,我会通过具体例题和图像分析来帮助大家理解。
五、教学反思
在今天的课堂中,我们探讨了变量与函数的概念,我发现学生们对这个话题的兴趣还是挺高的。他们对于生活中各种变量关系的例子非常敏感,比如身高和体重、时间和速度等。在导入新课的时候,通过提问的方式激发了学生的好奇心,这是一个不错的开始。
在新课讲授环节,我注意到了一些问题。对于函数的定义,虽然我尽力用简单明了的语言解释,但仍然有一些学生显得有些迷茫。我可能需要寻找更多生动的例子,或者尝试用图形来直观展示输入和输出之间的关系,以便让学生更好地理解函数的本质。
4.掌握常量函数、线性函数、反比例函数等基本函数类型。
二、核心素养目标
1.培养学生运用数学语言描述现实世界中变量关系的抽象思维能力,提升数学建模素养。

八年级下册数学19变量与函数(教案)教案

八年级下册数学19变量与函数(教案)教案

19.1 函数19.1.1 变量与函数【知识与技能】运用丰富的实例,使学生了解常量与变量的含义,理解函数的概念,能根据所给条件写出简单的函数关系式.【过程与方法】通过丰富的实例,分析变化过程中的常量与变量,经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力.【情感态度】引导学生探索实际问题中的数量关系,培养学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【教学重点】理解常量、变量和函数的概念,并能根据具体问题得出相应的函数关系式.【教学难点】确定函数关系式及自变量的取值范围.一、情境导入,初步认识【教学说明】选取学生熟悉的生活情境,让学生感受其中的变化,从这些感受中逐渐领悟知识.情境1 汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.填写下列表格,再试着用含t的式子表示s.情境2 已知每张电影票的售价为10元,如果早场售出150张,午场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收入y元,怎样用含x的式子表示y?情境3 要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?二、思考探究,获取新知问题1 在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?问题2 用10cm长的绳子围成长方形.试改变长方形的长度,观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律(用表格表示).设长方形的长为xcm,面积为Scm2,怎样用含x的式子表示S?将学生分成若干小组,分别探究两个问题,再汇总交流.【教学说明】在小组实践探究时,教师应参与小组活动,然后再作出总结.上面的问题和探究都反映了不同事物的变化过程,其中有些量(时间t,里程s;出售票数x,票房收入y;……)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称为变量.也有些量是始终不变的,如上面问题中的速度60(km/h),票价10(元)等,即为常量.一般来说,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a 时y=b,那么b叫做当自变量的值为a时的函数值.提出自变量取值范围的概念,总结求自变量取值范围的规律:(1)自变量以整式形式出现,取值范围是全体实数.(2)自变量以分式形式出现,取值范围是使分母不为0的数.(3)自变量以偶次方根形式出现,取值范围为使被开方数为非负数的实数;自变量以立方根形式出现,取值为全体实数.(4)自变量以零次幂形式出现,取值范围为使底数不为0的数.(5)自变量取值范围还应考虑实际意义.三、典例精析,掌握新知例1 根据下列题意写出适当的关系式,并指出其中的变量和常量.(1)多边形的内角和W 与边数n 的关系.(2)甲、乙两地相距y km,一自行车以10km/h 的速度从甲地驶向乙地,试用行驶时间t(h)表示自行车离乙地的距离 s(km).【分析】弄清题意,找准其中的等量关系,并注意字母表示的量不一定是变量,如(2)中的y.解:根据题意列表为:例2 求下列函数中自变量的取值范围.(1)y=x 2-2x-1; (2)24y x =-; (3)24y x =- (4)3y x =+; (5)1362y x x =-- (6)y=(x-1)0. 【教学说明】观察含自变量的式子,进行归类,再依各自特征求范围.【答案】(1)一切实数; (2)x≠4; (3)x≥2; (4)x>-3; (5)1≤x≤3; (6)x≠1.【归纳总结】含自变量的式子有时包含多种特征(如有分母,有被开方数等),这时要综合考虑各种要求,准确界定范围.例3 小强在劳动技术课中要制作一个周长为80cm 的等腰三角形,请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量x 的取值范围.【分析】(1)周长等于三边的长度和,由此求得函数关系式;(2)自变量x 要使腰、底为正数,即x>0,y>0.同时还要满足任意两边的和大于第三边,得到不等式组求解.解:由题意,得2x+y=80,所以y=80-2x.由解析式本身有意义,得x 为全体实数. 又由使实际问题有意义,则要考虑到边长为正数,且要满足三边关系定理,故有0,0,2.x y x y >⎧⎪>⎨⎪>⎩.即0,2800,2280.x x x x >-⎧+>>-+⎪⎨⎪⎩ 解得20<x<40.故y=80-2x(20<x<40).四、运用新知,深化理解1.分别指出下列关系式中的变量与常量:(1)一个物体从高处自由落下,该物体下落的距离h(m)与它下落的时间t(s)的关系式为212h gt =(其中g≈9.8m/s 2); (2)等腰三角形的顶角y 与底角x 存在关系y=180°-2x ;(3)长方体的体积V(cm 3)与长a (cm ),宽b(cm),高h(cm)之间的关系式为V=abh.2.人心跳速度通常和人的年龄有关,如果a 表示一个人的年龄,b 表示正常情况下每分钟心跳的最高次数.经过大量试验,有如下的关系:b=0.8(220-a).(1)上述关系中的常量和变量各是什么?(2)一个15岁的学生正常情况下每分钟心跳的最高次数是多少?3.(1)齿轮每分钟转120转,如果用n 表示总转数,t(分)表示时间,那么n 关于t 的函数关系式是_____________.(2)火车离开A 站10km 后,以55km/h 的平均速度前进了t(h)小时,那么火车离开A 站的距离s(km)与时间t(h)之间的函数关系式是_____________________.4.某水果店卖苹果,其售出质量x(kg)与售价y(元)之间的关系如表:(1)试写出售价y(元)与售出质量x(kg)之间的函数关系式;(2)计算当x=6时,y 的值;(3)求售价为19.4元时,售出苹果的质量.【教学说明】用字母表示的量不一定是变量,如π、g 等表示的是常量,要从变与不变的实质出发来分辨变量和常量.【答案】1.(1)时间t 可以取不同值,随t 的变化,h 值也改变,因此时间t 、距离h 是变量,12、g 的值始终不变,是常量.(2)底角x 可以取不同值,y 随x 的改变而改变,因此x、y是变量,而180°与2是常量.(3)长a,宽b,高h都可以取不同的值,V的对应值也是变化的,故a、b、h、V都是变量.2.(1)变量是b、a,常量是0.8、220.(2)把a=15代入b=0.8(220-a),得b=0.8×(220-15)=164.3.(1)n=120t;(2)s=10+55t.4.(1)根据信息:售出质量每增加1千克,售价则增加2.4元,售价中另一部分0.2元不变,可求出y与x之间的函数关系式.(2)把x=6代入函数关系式可求出y值;(3)实际上是求当y=19.4时,它所对应的x的值.解:(1)从表中提供的信息看,质量每增加1千克,售价增加2.4元,所以y=2.4x+0.2.(2)当x=6时,y=2.4×6+0.2=14.6.(3)当y=19.4时,2.4x+0.2=19.4,解得x=8.即售价为19.4元时售出苹果的质量为8kg.五、师生互动,课堂小结由学生谈本节课的收获及仍存在的疑问等.教师根据学生的发言,予以点评总结.1.布置作业:从教材“习题19.1”中选取.2.完成练习册中本课时练习.本课时内容是学生的认识,由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律,掌握函数的知识.教学重在引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,提高研究与应用能力.。

人教版八年级下册(新)数学同步教案19.1.1变量与函数(第1课时)

人教版八年级下册(新)数学同步教案19.1.1变量与函数(第1课时)

19.1.1变量与函数(第1课时)一、内容和内容解析1.内容变量与常量概念.2.内容解析函数研究的是变量之间的对应关系,变量是函数概念的基础.变量是在某个变化过程中数值发生变化的量;相对地,在某个变化过程中数值始终不变的量叫常量.变量总是与某个变化过程联系在一起,因此,学习变量与常量,必须要在运动变化过程中进行.变量是为函数概念服务的.从逻辑关系讲,先有变量,再有函数,然后才有函数的表示方法(解析法、列表法和图象法).因此,确定变量与常量是在分析变化过程中进行的,而不是在函数解析式中寻找.函数概念的核心是变化和对应关系,理解函数概念需要有足够的变化过程的体会.综上所述,本课的教学重点:体会运动变化过程,了解变量和常量的含义.二、目标和目标解析1.目标(1)了解变量与常量的意义.(2)体会运动变化过程中的数量变化.2.目标解析(1)了解变量与常量的意义,要求知道变量和常量的特征,能指出具体变化过程中的变量和常量.(2)体会运动变化过程中的数量变化,要求通过考察实例,认识自然界和生活中存在着大量的运动变化现象,认识到研究这些运动变化过程的必要性,知道要用数学方法研究这些变化过程,需要分析变化过程中的数量变化,并在观察的基础上概括变量与常量的概念.三、教学问题诊断分析运动变化现象广泛地存在于自然界和生活实际中,学生具有比较丰富的生活经验.但从数学角度对变化过程进行研究,把一系列变化的数值都看作一个量,这还是第一次,这会给学生带来观念上的冲突.在先前的学习中,学生学习的是单个的数与数之间的关系,而变量本质上涉及一个数集,其中包含了很多数.用运动变化的观点分析变化过程中的数量变化,并结合实例体会变量所涉及的数集的含义,在此基础上概括和认识变量,这是学习的难点.四、教学支持条件分析只有在充分体会运动变化过程中的数量变化的基础上,才能真正了解变量的意义.因此,需要用动画或视频向学生直观地展示运动变化的过程.五、教学过程设计(一)创设情境,提出问题引言:“万物皆变” ——行星在宇宙中的位置随时间而变化;气温随海拔而变化(见章头图);树高随树龄而变化;小球从斜坡滚下时位置随着时间的变化而变化;在平静的水面上丢下一颗石子,就会在水面上漾起圆形涟漪,这些涟漪慢慢扩展,其面积随着半径的增大而增大……这种一个量随另一个量的变化而相应变化的现象大量存在.怎样从数学的角度,用数学的方法研究这些变化过程的变化规律呢?本章,我们将学习研究这些变化规律的相关知识.设计意图:通过引言教学提出本章需要研究的问题,激发学习兴趣,引起合理的选择性注意,起先行组织者作用.问题1 如图,小球在斜坡上滚动,请观察这一运动变化过程,你注意到了什么变化?师生活动:教师用几何画版展示运动变化过程,让学生说出关注到的变化,并引导学生注意量的变化,学生可能观察到的量是,小球在斜坡上滚动的距离、小球运动的水平距离、小球的垂直高度等.这时,教师运用几何画板的度量功能,动态地显示出这些量的变化,让学生感受到同一变化过程中可能有多个变化的量,这些量确实是变化的.设计意图:让学生看到运动变化过程,引导学生关注变化过程中数量的变化,体会研究变化过程的必要性.(二)观察思考,形成概念1.观察思考,体会变化问题2 观察并思考下列问题:(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h ,行驶的里程为S km ,你能说出s = 2.47厘米y = 2.86厘米x = 2.14厘米汽车行驶过程中变化的量和不变的量吗?(2)每张电影票的售价为10元,设某场电影售出x张票,票房收入为y元,你能说出其中变化的量和不变的量吗?(3)你见过水中涟漪吗?圆形水波慢慢地扩大,在这一过程中,当圆的半径r分别为10 cm,20 cm,30 cm时,圆的面积S分别为多少?在这个过程中,哪些量是变化的?(4)用10 m长的绳子围一个矩形,当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?在矩形改变形状的变化过程中,哪些量是变化的?哪些量是固定不变的?师生活动:教师展示问题(1)中汽车运动、(3)中圆形水波的扩展、(4)中的图形变化过程的动画或视频,引导学生关注其中的量.问题(1)(3)(4)用动画展示变化过程.学生在观察这些变化过程及其数量特征的基础上说出这些量是否变化.设计意图:引导学生观察不同的变化过程,体会变化过程中数值变化的量和数值不变的量,为形成变量和常量概念提供归纳样例.2.分类概括,形成概念问题3 通过上述问题变化过程的观察,你认为这些问题中的量可以怎样分类?师生活动:在学生进行分类的基础上,教师引导学生通过概括得出变量与常量的概念:在变化过程中,有些量的数值是不断变化的,有些量的数值是固定不变的,我们称数值发生变化的量叫变量,数值固定不变的量叫常量.设计意图:引导学生先分类、再归纳,引导学生概括出变量和常量的概念,发展数学概括能力.(三)辨别练习,巩固概念1.指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/每升,加油x L,车主加油付油费y元;(2)小明看一本200页的小说,看完这本小说需要t天,平均每天所看的页数为n;(3)用长为40 cm的绳子围矩形,围成的矩形一边长为x cm,其面积为S cm2.师生活动:学生独立完成,教师引导学生进行相互交流和评价.设计意图:辨别实际问题中的变量和常量,体会变量的含义.(四)生活举例,应用概念你能举出一个变化过程的例子,并说出其中的变量和常量吗?试一试!师生活动:学生举例,相互交流,教师进行适当点评.设计意图:让学生说说自己熟悉的变化过程,并确定其变量和常量,体会并初步用数量描述变化过程.(五)拓展思考,深化认识试一试,你能确定下列变化过程中的变量吗?(1)小敏长高了;(2)在汤中加水,汤变淡了;(3)小狗越来越可爱了.师生活动:学生发现这些问题中没有现成的量,尝试用数量描述.其中(1)(2)可用数量描述,而(3)不能用数量描述.(1)中可以假设小敏的身高为y,年龄为x,它们都是变量,没有常量;(2)中可以假设原来有汤a kg,含盐b kg,加水x kg,含盐比率为y(表示咸淡),则变量为y,x,常量为a,b.设计意图:让学生尝试对一些变化过程进行数量描述,在用数量描述变化过程中体会变量的含义,有些变化过程中没有常量.同时通过反例说明并不是所有的变化过程都能用变量表示.(六)回顾小结运动变化普遍存在于我们的生活中,通过学习,我们初步考察了运动变化的过程,引进了描述变化特征的数量——变量.1.什么叫变量?什么叫常量?2.你能举出实际生活中运动变化的例子,并指出其中的变量和常量吗?(七)布置作业1.教科书第71~72页练习题;2.举出三个运动变化的实例,说出其中的变量和常量.六、目标检测1.在某一变化过程中,________________________叫变量;______________________叫常量.设计意图:考查变量和常量的意义.2.指出下列变化过程中的变量和常量:(1)自来水龙头平均每秒出水0.5 kg,水龙头开x s,出水y kg;(2)竖直向上抛出一颗石子直到落地为止,抛出t s时,石子离地面高度为h m;(3)移动电话月租费20元,市内通话费0.3元/min,市内月通话t min,应付费y元.设计意图:考查能否在具体问题中辨别变量和常量.3.试一试,用变量表示下列变化过程:(1)将一壶冷水烧开,水温越来越高;(2)食物放在冰柜中冷冻直到冻好为止,食物越来越冷.设计意图:考查用变量描述变化过程.参考答案:1.数值发生变化的量;数值始终不变的量.2.(1)变量:水龙头开的时间t(单位:s)和出水量y(单位:kg),常量:平均每分钟出水0.5 kg;(2)变量:抛出后的时间t(单位:s)和石子离地高度h(单位:m),没有常量;(3)变量:市内月通话时间t(单位:min)和应付费y(单位:元),常量:月租费20元,每分市内通话费0.3元.3.(1)变量:水温W(单位:ºC)和烧水的时间t(单位:min);常量:每分水温平均升高的度数n;(2)变量:食物的温度W(单位:ºC)和冷冻时间t(单位:min);常量:每分食物温度平均降低的度数k(单位:ºC).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19章《19.1.1变量与函数》第19章《19.1.1变量与函数》售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;•日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10时,则L=15,当m=20时,则L=20.[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为r=S.问题(2)中,我们可以根据题意,每确定一个矩形的一边长,•即可得出另一边长,再计算出矩形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,•年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:通过在计算器上操作及填表分析,进一步认识函数意义,经过对表中数据分析推理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是1这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1《19.1.1变量与函数》同步练习一、单选题(共15题;共30分)1、物体从足够高的地方做自由落体运动,下降的高度h与时间t满足关系式h=gt2则3秒后物体下落的高度是(g取10)()A、15米B、30米C、45米D、60米2、下列关系式中,变量x=-1时,变量y=6的是()A、y=3x+3B、y=-3x+3C、y=3x–3D、y=-3x–33、如图,矩形的长和宽分别为8cm和4cm,截去一个宽为x的小矩形(阴影部分)后余下另一个矩形的面积S与x之间的关系可表示为().A、S=4xB、S=4(8-x)C、S=8(4-x)D、S=8x4、要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为( )。

A、常量为20,变量为x,yB、常量为20、y,变量为xC、常量为20、x,变量为yD、常量为x、y,变量为205、当x=2时,函数y=2x-1的值是().A、0B、-3C、3D、46、已知函数y=3x-1,当x=3时,y的值是().A、6B、7C、8D、97、在函数y= 中,自变量x的取值范围是().A、x≠-2B、x>2C、x<2D、x≠28、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A、y=- xB、y= xC、y=-2xD、y=2x9、在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A、①②⑤B、①②④C、①③⑤D、①④⑤10、一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A、y=10x+30B、y=40xC、y=10+30xD、y=20x11、某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为()A、y=40xB、y=32xC、y=8xD、y=48x12、某地的地面温度为21℃,如果高度每升高1千米,气温下降3℃,则气温T(℃)与高度h(千米)之间的表达式为()A、T=21-3hB、T=3h-21C、T=21+3hD、T=(21-3)h13、在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A、太阳光强弱B、水的温度C、所晒时间D、热水器14、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A、B、C、y=-2xD、y=2x15、若y与x的关系式为y=30x﹣6,当x=时,y的值为()A、5B、10C、4D、-4二、填空题(共5题;共6分)16、“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是________,因变量是________.17、小强想给爷爷买双鞋,爷爷说他自己的脚长25.5cm,若用x(cm)表示脚长,用y(码)表示鞋码,则有2x-y=10,根据上述关系式,小强应给爷爷买________码的鞋.18、一列火车以60千米/时的速度行驶,它驶过的路程s(千米)是所用时间t(时)的函数,这个函数关系式可表示为 ________ .19、林老师骑摩托车到加油站加油,发现每个加油器上都有三个量,其中一个表示“元/升”其数值固定不变的,另外两个量分别表示“数量”、“金额”,数值一直在变化,在这三个量当中元/升是常量,________是变量。

20、下列变量间的关系是函数关系的有________(填序号)①正方形的周长与边长;②圆的面积与半径;③ ;④商场中某种商品的单价为a元,销售总额与销售数量三、解答题(共5题;共25分)21、海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深.T(时)0 3 6 9 12h(米)5 7.4 5.1 2.6 4.5上述问题中,字母T,h表示的是变量还是常量,简述你的理由.22、根据下列情境编制一个实际问题,说出其中的常量与变量,小王春节骑车去看望爷爷,小王家与爷爷家相距10千米,小王骑车的速度为每小时12千米。

23、齿轮每分钟120转,如果n表示转数,t表示转动时间.(1)用n的代数式表示t;(2)说出其中的变量与常量.24、已知x无论取何正值,y1=-3x+7都比y2=kx+5大,求k的取值范围.25、根据下列情境编制一个实际问题,说出其中的常量与变量,并说明变量的取值范围:小王春节骑车去看望爷爷,小王家与爷爷家相距10千米,小王骑车的速度为每小时12千米.答案解析部分一、单选题1、【答案】C【考点】函数值【解析】【分析】直接把t=3代入函数关系式h=gt2中即可得的答案.【解答】把t=3代入函数关系式得:h=×10×32=45,故选:C.【点评】此题主要考查了待定系数法求函数值,题目比较基础,关键是正确代入.2、【答案】B【考点】函数值【解析】【分析】把x=-1分别代入各项,看y的值是否是6即可判断。

【解答】A、当x=-1时,y=-3+3=0,故本选项错误;B、当x=-1时,y=3+3=6,故本选项正确;C、当x=-1时,y=-3-3=-6,故本选项错误;D、当x=-1时,y=3-3=0,故本选项错误;故选B.【点评】解答本题的关键是掌握好求函数值的基本方法。

3、【答案】B【考点】函数关系式【解析】【分析】观察图形可知:阴影部分面积=大矩形的面积-小矩形的面积.【解答】由题意得,S与x之间的关系可表示为S=4×8-4x=4(8-x),故选B.【点评】解答本题的关键是熟练掌握矩形的面积公式,准确把握图形的特征。

4、【答案】A【考点】常量与变量【解析】【分析】根据常量与变量的定义即可判断。

由题意得,常量为20,变量为x,y,故选A。

【点评】解答本题的关键是熟记常量是指不变的量,变量是指变化的量。

5、【答案】C【考点】函数值【解析】【解答】x=2时,y=2×2-1=4-1=3选:C.【分析】把x=2代入函数解析式计算即可得解.6、【答案】C【考点】函数值【解析】【解答】x=3时,y=3×3-1=8选:C.【分析】把x=3代入函数关系式进行计算7、【答案】D【考点】函数自变量的取值范围【解析】【解答】根据题意,有x-2≠0,解可得x≠2选:D.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-2≠0,解可得自变量x的取值范围.8、【答案】D【考点】函数关系式【解析】【解答】依题意有:y=2x选:D.【分析】根据总价=单价×数量得出y与x之间的函数关系式9、【答案】A【考点】函数关系式【解析】【解答】①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确选:A.【分析】根据一次函数的定义可知,x为自变量,y为函数,也叫因变量;x 取全体实数;y随x的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.10、【答案】A【考点】函数关系式【解析】【解答】一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30选:A.【分析】根据师生的总费用,可得函数关系式11、【答案】B【考点】函数关系式【解析】【解答】依题意得y=40×80%×x=32x .选:B.【分析】等量关系是:总价=单价×80%×数量.12、【答案】A【考点】函数关系式【解析】【解答】∵当高度为h时,降低3h ,∴气温T℃与高度h(千米)之间的关系式为T=21-3h选:A.【分析】气温=地面温度-降低的气温,把相关数值代入13、【答案】B【考点】常量与变量【解析】【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B .【分析】函数的定义:设在某变化过程中有两个变量x、y ,如果对于x 在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.14、【答案】D【考点】函数关系式【解析】【解答】依题意有:y=2x ,故选:D【分析】根据总价=单价×数量得出y与x之间的函数关系式即可.15、【答案】C【考点】函数值【解析】【解答】解:由题意得:y=30×﹣6=4.故选:C.【分析】将x=代入函数解析式可得出y的值.二、填空题16、【答案】时间;温度【考点】常量与变量【解析】【解答】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量17、【答案】41【考点】函数值【解析】【解答】∵用x表示脚长,用y表示鞋码,则有2x-y=10,而x=25.5,则51-y=10,解得:y=41【分析】由于已知用x表示脚长,用y表示鞋码,则有2x-y=10,而爷爷只告诉他自己的脚长25.5cm,代入公式即可求出小强该买多少码的鞋18、【答案】s=60t【考点】函数关系式【解析】【解答】s与t的函数关系式为:s=60t ,故答案为:s=60t .【分析】根据路程=速度×时间即可求解.【答案】数量、金额【考点】常量与变量【解析】【解答】在这三个量当中元/升是常量,数量、金额是变量【分析】常量就是在变化过程中不变的量,变量是指在程序的运行过程中随时可以发生变化的量20、【答案】①②④【考点】函数的概念【解析】【解答】在一个变化过程中,有两个变量x和y ,对于x的每一个确定值,y都有唯一的值与之对应,则称y是x的函数.在③中,当x取一个值时,对应的y值有两个,故不是函数。

相关文档
最新文档