定积分 第五节 定积分的应用

合集下载

§5 数学模型:定积分的应用

§5 数学模型:定积分的应用

438§5 数学模型:定积分的应用定积分的概念来源于几何学上求曲边梯形的面积和物理学中的实际问题,因而有着广泛的应用。

由于定积分定义为积分和的极限,因此当所研究的量可以归结为求类似积分和的和式的极限时,就可用定积分来求解。

其思想方法为:“分割,代替,求和,取极限。

”定积分的思想常应用在建立求总量的数学模型中,它在几何、物理、经济、社会学等几乎每一门学科中都有着广泛的用途,成为定量研究各种自然规律与社会现象的必不可少的工具。

各种在整体范围内为变化的或弯曲的几何或物理对象,在经过分割后的局部范围内可以近似的认为是不变的或直的,然后用定积分(求和)的思想建立定积分模型。

为了今后讨论方便,需要寻找建立这一类模型的共同的简单方法,从而在建立积分模型时,不必重复定积分概念引入时的分析和推导过程。

5.1 定积分的微元法 1 定积分概念的实质分析引例(积水问题) 设水流到水箱的速度为)(t r 升/分钟,问从0=t 到2=t 这段时间水流入水箱的总量W 是多少?利用定积分的思想,这个问题要用以下几个步骤来解决。

Step(1) 分割:用任意一组分点把区间[]2,0分成长度为),,2,1(1n i t t t i i i =-=∆-的n 个小时间段;Step(2) 代替:设第i 个小时间段里流入水箱的水量是i W ∆ ,在每个小时间段上,水的流速可视为常量,得i W ∆的近似值i i i t r W ∆≈∆)(ξ (i i i t t ≤≤-ξ1); Step(3) 求和:得W 的近似值∑=∆=ni i i t r W 1)(ξ;439Step(4) 取极限:得W 的精确值⎰∑=∆==→21d )()(lim t t r t r W ni i i ξλ。

上述四个步骤 “分割-代替-求和-取极限” 可概括为两个步骤。

第一个步骤:包括分割和求近似.其主要过程是将时间间隔细分成很多小的时间段,在每个小的时间段内,“以常代变”,将水的流速近似看作是匀速的,设为)(i t r ,得到在这个小的时间段内流入水箱的水量i i i t t r W ∆≈∆)(。

高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

的图形的面积S,正确的是 ( )
A.S= 10 (x-x2)dx C.S= 10 (y2-y)dy
B.S= 10 (x2-x)dx D.S= 10 (y- y )dy
【解析】选A.根据题意,如图所示,阴影部分为曲线 y=x2与y=x所围成的图形,其面积S= 10 (x-x2)dx.
2.(选修2-2P67T7改编)直线y=3x与曲线y=x2围成图形
b a
f(x)dx=_F_(_b_)_-_F_(_a_)_,这个结论叫做微积
分基本定理,又叫做牛顿-莱布尼茨公式.其中F(x)叫做
f(x)的一个原函数.为了方便,常把F(b)-F(a)记成
F(x)|ab ,即
b a
f(x)dx=F(x)
|ab
=F(b)-F(a).
【常用结论】 1.定积分应用的两条常用结论 (1)当曲边梯形位于x轴上方时,定积分的值为正;当曲 边梯形位于x轴下方时,定积分的值为负;当位于x轴上 方的曲边梯形与位于x轴下方的曲边梯形面积相等时, 定积分的值为零.
(1)设函数y=f(x)在区间[a,b]上连续,则
b a
f(x)dx
= ab f(t)dt.
(
)
(2)若函数y=f(x)在区间[a,b]上连续且恒正,
则 ab f(x)dx>0. ( )
(3)若
b a
f(x)dx<0,那么由y=f(x),x=a,x=b以及x轴
所围成的图形一定在x轴下方. ( )
(4)微积分基本定理中的F(x)是唯一的. ( )
第五节 定积分的概念与微积分基本定理、
【知识梳理】 1.定积分的概念与几何意义 (1)定积分的定义 如果函数f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等分成n个

高等数学第五章定积分及其应用

高等数学第五章定积分及其应用

⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。

高等数学第05章 定积分及其应用习题详解

高等数学第05章 定积分及其应用习题详解
x

0

x 1 sin tdt 0dt 1 , 2

b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3

1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n

b a
cdx lim f ( i ) xi lim c(b a) c(b a) .

x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。

本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。

一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。

通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。

定积分的结果是一个数值。

二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。

例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。

这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。

三、定积分的物理应用定积分在物理学中有广泛的应用。

例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。

定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。

四、定积分的经济学应用定积分在经济学领域也被广泛应用。

例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。

定积分可以将变化的价格和数量转化为面积,以方便计算。

五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。

例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。

定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。

六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。

例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。

定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。

七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。

根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。

八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要内容之一,经常被应用于实际问题的解决中。

本文将从三个方面来论述定积分的应用。

一、定积分在几何中的应用首先,定积分可以用于求曲线下面的面积。

以 y=f(x) 为例,若f(x)>0,则曲线 y=f(x) 与 x 轴的两点 a、b 组成的图形的面积为S=∫baf(x)dx这时,可以将曲线 y=f(x) 分成许多小块,每块宽度为Δx,高度为 f(xi),从而可以得到其面积为ΔS=f(xi)Δx因此,当Δx 趋于 0 时,所有小块的面积之和就等于图形的面积,即∑ΔS→S因此,用定积分就可以求出图形的面积。

其次,定积分还可以用于求旋转体的体积。

以曲线 y=f(x) 在 x 轴上旋转360°为例,其体积为V=π∫baf(x)^2dx这里,π为圆周率。

最后,定积分还可以用于求某些奇特图形的长、面积等等。

二、定积分在物理中的应用物理中也有许多问题可以通过定积分来解决。

比如,运动问题中的速度、加速度,可以通过位移的变化来求得。

若某运动物体的速度为 v(t),则其位移 s(t) 为s(t)=∫v(t)dt同样,若某运动物体的加速度为 a(t),速度为 v(t),则其位移为s(t)=∫v(t)dt=∫a(t)dt最后,定积分还可以用于求密度、质量等物理量。

三、定积分在工程中的应用定积分在工程中的应用也非常广泛。

比如,在流体力学中,对于一条管道中的液体,可以通过惯性和重力等因素,求出其中液体的流量和压力。

而这些流量和压力可以通过定积分计算得出。

在电学中,电量、电荷、电流和电势等都可以通过定积分来求解。

在结构设计中,定积分也常常被用来计算约束力、杠杆比例等。

总之,定积分在几何、物理和工程等领域中都有着广泛应用。

熟练地掌握定积分的方法和应用,对于科学研究和实际问题的解决都有着非常积极的帮助。

第5章定积分及其应用

第5章定积分及其应用

第5章 定积分及其应用§5.1 定积分的概念习 题 5-11.填空题:(1)函数()f x 在区间[,]a b 上的定积分是积分和的极限,即()baf x dx ⎰=( ).(2)定积分的值只与( )及( )有关,而与( )的记法无关. (3)区间[,]a b 的长度的定积分的表示是( ). (4)被积函数()f x 在区间[,]a b 上连续是定积分()baf x dx ⎰存在的( ).(5)定积分的几何意义( ). 2.利用定积分的定义计算下列积分: (1)2baxdx ⎰; (2)1x e dx ⎰.3.利用定积分的定义计算由抛物线21y x =+,直线x a =、x b =(b a >)及x 轴所围成的图形的面积.4.利用定积分的几何意义,证明下列等式: (1)1310x -=⎰; (2)sin 0xdx ππ-=⎰;(3)4π=⎰; (4)11arctan 0xdx -=⎰;(5)11124x dx xdx -=⎰⎰ ; (6)2202cos 2cos xdx xdx πππ-=⎰⎰.5.利用定积分的几何意义求a⎰(0)b >的值.6. 将下列极限表示成定积分: (1)()201lim3nii i i x λξξ→=-∆∑,λ是[]7,5-上的分割;(2)01limni i x λ→=,λ是[]0,1上的分割.7.将下列和式的极限表示成定积分:(1)111lim 12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (2)112lim p p p p n n n +→∞+++(0p >);(3))221limn n n →∞+; (4)n .8.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下(图5-1-8).试用梯形公式求此河横截面积的近似值.图5-1-8§5.2 定积分的性质习 题 5-21. 证明定积分的性质: (1)()()bb aakf x dx k f x dx =⎰⎰ (k 为常数); (2)1b baadx dx b a ⋅==-⎰⎰. 2. 估计下列积分值:(1)421(2)x dx +⎰; (2)3244(1sin )x dx ππ+⎰; (3)arctan x xdx ;(4)21x edx ⎰; (5)2211x dx x +⎰; (6)20sin x dx x π⎰. 3. 设()f x 及()g x 在[],a b 上连续,证明: (1) 若在[],a b 上,()0f x ≥,且()0baf x dx =⎰,则在[],a b 上,()0f x ≡;(2)若在[],a b 上,()0f x ≥,且()f x 不恒等于零,则()0baf x dx >⎰;(3)若在[],a b 上,()()f x g x ≤,且()()bbaaf x dxg x dx =⎰⎰,则在[],a b 上,()()f x g x ≡.4. 根据定积分性质及第3题的结论,比较下列每组积分的大小:(1)320sin xdx π⎰,220sin xdx π⎰; (2)221x dx ⎰,231x dx ⎰;(3)21ln xdx ⎰,221(ln )x dx ⎰; (4)10x e dx ⎰,21x e dx ⎰;(5)1xe dx ⎰,()101x dx +⎰; (6)20xdx π⎰,20sin xdx π⎰;(7)20sin xdx π⎰,02sin xdx π-⎰; (8)2cos xdx π-⎰,20cos xdx π⎰;(9)10xdx ⎰,()01ln 1x dx +⎰ (10)()01ln 1x dx +⎰,011xdx x+⎰;. 5. 利用积分中值定理求下列极限: (1)sin limn pnn x dx x+→∞⎰; (2)120lim 1nn x dx x →∞+⎰; (3)10lim 1n xx n x e dx e →∞+⎰.6. 设()f x 在[],a b 上连续,()0baf x dx =⎰.证明:()f x 在[],a b 上在[],a b 内至少存在一个零点.7. 设()f x 在[]0,1上连续,在()0,1内可导,且1233()(0)f x dx f =⎰.证明:在()0,1内至少存在一点ξ,使得()0f ξ'=.8. 设()f x 在[],a b 上连续,在(),a b 内可导,且存在(),c a b ∈,使得()()()caf x dx f b c a =-⎰.证明:在(),a b 内至少存在一点ξ,使得()0f ξ'=.§5.3 微积分基本公式习 题 5-31. 设0()cos xx t tdt ϕ=⎰,求(0)ϕ',4πϕ⎛⎫' ⎪⎝⎭. 2.求下列函数的一阶导数: (1)0()sin xtx e dt ϕ=⎰; (2)223()t xx e dt ϕ-=⎰;(3)2()x x ϕ=⎰; (4)2x y =;(5)32x xy =⎰; (6)()cos 2sin ()cos xxx t dt ϕπ=⎰;(7)22x txy t e dt -=⎰; (8)2()xe xy f t dt =⎰.3. 求下列函数的二阶导数:(1)()330sin xy t x tdt =-⎰; (2)258sin ()xy t f x dt dy t ⎛⎫= ⎪⎝⎭⎰⎰.4. 利用洛必达法则,求下列极限:(1)20cos limxx t dt x→⎰; (2)201lim arctan xx tdt x+→⎰;(3)202limsin 2x t x x e dt x x→-⎰; (4)()2202002sin limln 1x x xt dtt t dt→⎡⎤+⎣⎦⎰⎰;(5)121ln 1lim (1)xx tdtt x →-⎰+; (6)232lim(sin )x x x t dtt t t dt→-⎰⎰;(7)22201lim ()x t x x t t edt x -→+∞+⎰; (8)()222020lim xt xx t e dt te dt→⎰⎰.5. 设函数()y y x =由方程00cos 0y xte dt tdt +=⎰⎰所确定,求dydx. 6. 设函数()y y x =由方程20cos y x x y tdt -+=⎰所确定,求dy dx.7. 设0sin t x udu =⎰,0cos t y udu =⎰,求dydx.8.设20()(1)xt f x t t e dt -=-⎰,问x 为何值时,()f x 有极值?9. 求函数0()(4)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.10. 计算下列各定积分: (1)24211()x dx x+⎰; (2)()13213x x dx --⎰; (3)332(21)x dx --⎰; (4)1(21)xe dx +⎰; (5)12111dx x -+⎰; (6)240tan xdx π⎰;(7)10⎰; (8)21201x dx x +⎰; (9)20cos 2x dx π⎛⎫ ⎪⎝⎭⎰; (10)41dx ⎰; (11)420213311x x dx x -+++⎰; (12)211e dx x ---+⎰; (13)20sin x dx π⎰; (14)设21,01()1,10x x f x x x ⎧+ ≤≤=⎨+ -≤<⎩,求11()f x dx -⎰. 11. 设()f x 连续,若()f x 满足1()()x f xt dt f x xe =+⎰,求()f x .12. 设13201()()1f x x f x dx x =++⎰,求()f x 与10()f x dx ⎰. 13. 设0ln(1)()(0)xt f x dt x t+=>⎰,求1()f x f x ⎛⎫+ ⎪⎝⎭. 14. 设1sin ,0()20,0x x f x x x ππ⎧ ≤≤⎪=⎨⎪ <>⎩或,求0()()x x f t dt ϕ=⎰在(,)-∞+∞内的表达式.§5.4 定积分的换元积分法与分部积分法习 题 5-41. 用换元积分法求下列定积分: (1)122(115)dxx --+⎰; (2)101xx e dx e +⎰; (3)220sin cos x xdx π⎰; (4)022122dx x x -⎰++; (5)1⎰; (6)2120t te dx -⎰; (7)1221xe dx x ⎰; (8)35201x dx x +⎰; (9)2502353x x dx x +-+⎰;(10)6e e⎰; (11)21e ⎰; (12)320sin cos d πθθθ⎰;(13)1(14);(15)ax ⎰;(16)3⎰(17)⎰;(18)0;(19) 0⎰; (20); (21)3122(1)xdx -+⎰;(22)1;(23)41⎰;(24)1⎰-;(25)⎰; (26)2⎰; (27)-⎰; (28)()223min 2,x dx -⎰(29)2sin sin cos xdx x xπ+⎰;(30)0π⎰. 2. 用分部积分法求下列定积分: (1)ln 2x xe dx ⎰; (2)1ln e x xdx ⎰;(3)41⎰; (4)1arctan x xdx ⎰; (5)220sin x xdx π⎰; (6)324sin xdx xππ⎰; (7)220cos x xdx π⎰; (8)1530ln x xdx ⎰ ;(9)230x e dx ;(10)22(1)x - ; (11)220cos x e xdx π⎰; (12)1sin(ln )ex dx ⎰ ;(13)22ln (1)e exdx x -⎰; (14)12(1)ln (1)e x x dx -++⎰;(15)221log x xdx ⎰;(16)20sin x x dx π⎰; (17)1ln eex dx ⎰ ; (18)()242sec 1tan x xdx x π+⎰;(19)161⎰; (20)122(1)m xdx -⎰(m 为自然数).3. 利用积分区间的对称性以及函数的奇偶性,计算下列定积分:(1)22sin cos 2x xdx ππ-⎰;(2)22ππ-⎰;(3)6sin x xdx ππ-⎰;(4)1⎰; (5)x dx ; (6)221cos xdx x ππ-+⎰;(7)522cos xdx ππ-⎰; (8)325425sin 21x xdx x x -+⎰+; (9))sin x x dx ππ-⎰+.(10)244cos 1x xdx e ππ--+⎰.4.已知()f x 是连续函数,证明 (1)1()()[()]baf x dx b a f a b a x dx =-+-⎰⎰;(2)200()[()(2)]aaf x dx f x f a x dx =+-⎰⎰;(3)()2321()2aa x f x dx xf x dx =⎰⎰(0a >).5. 设()f x 是连续函数,证明 (1) 当()f x 是偶函数时,则0()()xx f t dt ϕ=⎰为奇函数;(2)当()f x 是奇函数时,则0()()xx f t dt ϕ=⎰为偶函数.6. 证明:220()2()aaax dx x dx ϕϕ-=⎰⎰,其中()x ϕ为连续函数.7. 证明:110(1)(1)m n n m x x dx x x dx ϕϕ-=-⎰⎰.8. 证明:20sin 2sin nn xdx xdx ππ=⎰⎰.9. 证明:112211111xx dx dx x x =++⎰⎰(0x >). 10. 设31sin ()x t f x dt t =⎰,求120()x f x dx ⎰.若1sin ()n x t f x dt t=⎰,求110()n x f x dx -⎰.11. 若()f x ''在[0,]π连续,(0)2f =,()1f π=,证明:[()()]sin 3f x f x xdx π''+=⎰.12. 当0x >时,()f x 可导,且满足方程11()1()xf x f t dt x=+⎰, 求()f x .§5.5 广义积分习 题 5-51 计算下列瑕积分.(1)41dx x +∞⎰; (2)0e +∞⎰; (3)2122dx x x +∞-∞++⎰; (4)211(1)dx x x +∞+⎰; (5)1+∞⎰; (6) 0sin px e xdx ω+∞-⎰(0,0p ω>>);(7)21arctan xdx x+∞⎰;(8) 1⎰(9)1e⎰(10)10⎰;(11)21⎰;(12)()22011dx x -⎰.2. 求当k 为何值时,瑕积分()21ln kdx x x +∞⎰收敛?当k 为何值时,该瑕积分发散?又当k 为何值时,该瑕积分取得最小值?3. 计算瑕积分0n x n I x e dx +∞-=⎰(n 为自然数).4. 求c 为何值时,使2lim xc tx x c te dt x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰. 5.求2+∞⎰.6. 计算下列式子:(1)(7)2(4)(3)ΓΓΓ; (2)3(3)()29()2ΓΓΓ; (3)40x x e dx +∞-⎰; (4)2220x x e dx +∞-⎰. 7. 用Γ函数表示下列积分,并指出积分的收敛范围.(1)nxe dx +∞-⎰(0n >); (2)101ln pdx x ⎛⎫⎪⎝⎭⎰; (3)22x dx +∞--∞⎰;(4)mn x x edx +∞-⎰; (5)10⎰; (6)311dx x +∞+⎰. §5.6 定积分的几何应用习题5-61. 求由下列各组曲线所围成平面图形的面积:(1)1xy =,y x =,2x =; (2)x y e =,xy e -=,1x =; (3)2y x =,2x y +=; (4)3y x =,1y =,2y =,0x =;(5)0y =,1y =,ln y x =,0x =; (6)22x y =,228x y +=;(7) ln y x =,y 轴,ln y a =,ln y b =( 0b a >>);(8) 23y x =+,2y x =. 2. 直线x k =平分由2y x =,0y =,1x =所围之面积,求k 之值. 3. 求抛物线243y x x =-+-及在点(0,3)-和(3,0)处切线所围成图形的面积. 4. 求抛物线22y px =及其在点,2p p ⎛⎫⎪⎝⎭处的法线所围成的图形的面积. 5. 求曲线33cos ,sin x a t y a t ==,).0(>a 所围成图形的面积. 6. 求曲线2cos r a θ=).0(>a 所围成图形的面积.7. 求曲线2(2cos r a θ=+)).0(>a 所围成图形的面积. 8. 求对数螺线r ae θ=(0a >,πθπ-≤≤)及射线θπ=所围成图形的面积.9. 计算阿基米德螺线r a θ= (0a >)上相应于θ从0到2π的一段弧与极轴所围成的图形(如图5-6-22)的面积.图5-6-22 图5-6-2310.求由下列各曲线所围成图形的公共部分的面积. (1) 3cos r θ=及1cos r θ=+;(2) r θ=及2cos 2r θ=.11. 圆1r =被心形线1cos r θ=+分割成两部分,求这两部分的面积. 12.设sin y x =,02x π≤≤.问:为t 何值,图5-6-23中阴影部分的面积1s 与2s 之和最小?最大?13.求由下列已知曲线围成的平面图形绕指定的轴旋转而成的旋转体的体积.(1)2xy a =,0y =,x a =,2x a =(0a >),绕x 轴. (2)22(2)1x y +-=,绕x 轴.(3)ln y x =,0y =,x e =,绕x 轴和y 轴. (4)224x y +=,24(1)x y =--,0y >,绕x 轴. (5)5xy =,6x y +=,绕x 轴.(6)cos y x =,0x =,x π=,x 轴,绕y 轴.14. 求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩(02t π≤≤,0a >)的一拱与0y =所围成的图形绕直线2y a =旋转而成的旋转体的体积.15. 由心形线4(1cos )ρθ=+和直线0θ=及2πθ=所围成图形绕极轴旋转而成的旋转体的体积.16. 一个棱锥体的底面是长为2a 的正方形,高为h ,求此棱锥体的体积 (如图5-6-24).图5-6-24 图5-6-2517.设直线y ax b =+(0a >,0b >)与直线0x =,1x =及0y =所围成的梯形面积等于A ,试求a 、b ,使这个梯形绕x 轴旋转所得旋转体的体积最小.18.在由椭圆域2214y x +≤绕y 轴旋转而成的椭球体上,以y 轴为中心轴打一个圆孔,使剩下的部分的体积恰好等于椭球体体积的一半,求圆孔的直径.19.设有一锥体,其高为h ,上、下底都为椭圆,椭圆的轴长分别为2a 、2b 与2A 、2B ,求这锥体的体积.20.作半径为r 的球的外切正圆锥,问此圆锥的高h 为何值时,其体积V 最小?求出此最小值(如图5-6-25).21.把星形线232323x y a +=所围成的图形绕x 轴旋转(图5-6-26),计算所得旋转体的体积.图5-6-26 图5-6-27 22.用积分的方法证明图5-6-27所示球缺的体积为2()3H V H R π=-. 23.求圆盘222x y a +≤绕x b =-(0b a >>)旋转而成的旋转体的体积.24.证明:由平面图形x a =,x b =,0a b ≤<,0()y f x ≤≤绕y 轴旋转而成的旋转体的体积为2()baV xf x dx π=⎰.25.利用24题的结论,计算sin y x =(0x π≤≤)和x 轴所围成的图形绕y 轴旋转所成的旋转体的体积.习题5-71. 已知边际成本'2()25309C q q q =+-,固定成本为55,试求总成本()C q ,平均成本与变动成本.2. 已知边际收入为'()30.2R q q =-,q 为销售量,求总收入函数()R q ,并确定最高 收入的大小.3. 某产品生产q 个单位是总收入R 的变化率为'()200100qR q =-,求: (1)生产50个单位时的总收入;(2)在生产100个单位的基础上,再生产100个单位时总收入的增量.4. 已知某商品每周生产q 个单位时,总成本变化率为'()0.412C q q =-(元/单位),固 定成本500,求总成本()C q . 如果这种商品的销售单价是20元,求总利润()L q ,并问每周生产多少单位时才能获得最大利润?图5-7-56. 设某城市人口总数为F ,已知F 关于时间t (年)的变化率为dF dt =,假设在计算的初始时间(0)t =,城市人口数为100(万),试求t 年中该城市人口总数.7. 若边际消费倾向在收入为Y 时为1232Y -,且当收入为零时总消费支出070c =.(1)求消费函数()c Y ;(2)求收入由100增加到196时消费支出的增加数.8. 设储蓄边际倾向(即储蓄额S 的变化率)是收入y 的函数 '()0.3S y =, 求收入从100元增加到900元时储蓄的增加额.9. 如果需求曲线为2()500.025D q q =-,并已知需求量为20个单位,试求消费者剩余CS .10. 假设某国某年洛伦兹曲线近似地由3y x =(01x ≤≤)表示,试求该国的基尼系数.11. 某投资项目的成本为100万元,在10年中每年可收益25万元,投资率为5%,试 求这10年中该项投资的纯收入的贴现值.12. 一位居民准备购买一栋别墅,现价为300万元,如果以分期付款的方式,要求每年 付款21万元,且20年付清,而银行贷款的年利率为4%,按连续复利计息,请你帮这位购5. 某新产品的销售率由下式给出()10090x f x e -=-,式中x 是产品上市的天数,前四天的销售总数是曲线()y f x =与x 轴在之间的面积(如图5-7-5),求前四天总的销售量.房者作一决定:是采用一次付款合算还是分期付款合算?总习题五1.求下列极限:(1) limnn k →∞=. (2) 21lim inni n i nen ne→∞=+∑;(3)11lim n n i n →∞= (4)112lim p p p p n n n +→∞+++(0p >); (5)lim n →∞2.利用积分中值定理求下列极限: (1)sin lim0n pnn xdx x +→∞=⎰; (2)222lim n x n n x dx e+→∞⎰.3.求下列极限:(1)101lim (1sin 2)xtx t dt x →+⎰; (2)lim ()x a x a x f t dt x a →-⎰(其中()f x 连续);(3)()2arctan lim xx t dt→+ (4) ()2210limxt t x e dt→+∞⎰.4.(已知[]02()1()1xf t dt f x -=-⎰,求(0)f '.5. 已知()2021,0()0,x t e dtx f x x x ⎧-⎪≠=⎨⎪=0⎩⎰,求(0)f '. 6.设()f t 在0t ≤≤+∞上连续,若220()(1)x f t dt x x =+⎰,求(2)f .7. 求函数0()(3)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.8. 证明:111ln(1)11ln 23n n n+=++++<+. 9. 设()f x 、()g x 在区间[,]a b 上均连续,证明:(1)()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⋅⎰⎰⎰(柯西-施瓦茨不等式);(2)[]()()()111222222()()()()bbba aaf xg x dxf x dxg x dx +≤+⎰⎰⎰(闵可夫斯基不等式).10. 设函数()f x 在区间[,]a b 上连续,且()0f x >,证明:11ln ()ln ()b b a a f x dx f x dx b a b a ⎡⎤≥⎢⎥--⎣⎦⎰⎰. 11. 设()f x 在[0,]a (0a >)上有连续导数,且(0)0f =,证明:2()2aMa f x dx ≤⎰,其中0max ()x aM f x ≤≤'=.12. 设()f x 在[0,1]上连续且单调减少,试证:对任何(0,1)a ∈,有1()()af x dx a f x dx ≥⎰⎰.13. 设()x ϕ在[,]a b 上连续,()()()xaf x x b t dt ϕ=-⎰,证明:必存在(,)a b ξ∈,使得()f ξ'=0.14.设()f x 在区间[,]a b 上连续,()g x 在区间[,]a b 上连续且不变号.证明至少存在一点[,]a b ξ∈,使下式成立()()()()bbaaf xg x dx f g x dx ξ=⎰⎰(积分第一中值定理).15. 计算下列定积分:(1)3(1sin )x dx π-⎰; (2)e ;(3)⎰; (4)0ax ⎰ (0a >);(5)20sin 1cos x xdx xπ++⎰; (6)40ln(1tan )x dx π+⎰;(7)a⎰(0a >); (8);(9)121(21)x x dx -++⎰; (10)sin )x x dx ππ-⎰(11)42213||||1x x dx x -⎛⎫-+ ⎪+⎝⎭⎰; (12)设2,01()2,12x x f x x x ⎧ ≤≤=⎨-<<⎩,求20()f x dx ⎰.16.利用函数的奇偶性计算定积分121(x dx -+⎰. 17. 利用函数的周期性计算定积分2(sin 2)(tan 1)a ax x dx π++⎰.18. 设函数()f x 在(,)-∞+∞内连续,并满足条件()sin xu f x u e du x -=⎰,求()f x .19. 计算下列各题: (1)设(5)2f =,5()3f x dx =⎰,求5()xf x dx '⎰.(2)已知2()tan f x x =,求40()()f x f x dx π'''⎰.20. 证明()[()()]aaaf x dx f x f x dx -=+-⎰⎰,并求下列定积分:(1)441sin dx x ππ-+⎰; (2)244sin 1x x dx e ππ--+⎰; (3)244cos 1nxx dx e ππ--+⎰(n 为正整数). 21. 设()f x 在区间[,]a b 上连续,且()f x 关于2a bx +=对称的点处取相同的值.证明: 2()2()a b baaf x dx f x dx +=⎰⎰.22. 证明:112211111xx dt dt t t =++⎰⎰(0x >). 23. 判断下列瑕积分的敛散性:(1)1+∞⎰;(2)2+∞⎰;(3)2cos ln xdx x+∞⎰;(4) 0+∞⎰;(5)3(1)(2)dxx x x +∞--⎰;(6)1+∞⎰;(7)120ln 1xdx x -⎰; (8)1ln 11eex dx x --⎰.24. 已知sin 2x dx x π+∞=⎰,求220sin x dx x+∞⎰. 25. 求介于直线0x =,2x π=之间由曲线sin y x =和cos y x =所围成的平面图形的面积.26. 求椭圆22113x y +=和22113x y +=的公共部分的面积. 27. 求曲线x y e =及该曲线的过原点的切线和x 轴的负半轴所围成的平面图形的面积. 28. 设曲线21:1L y x =-(01)x ≤≤、及x 轴和y 轴所围成的区域被曲线21:L y ax =分为面积相等两部分,其中a 是大于零的常数,试确定a 的值.29. 求由柱体222x y a +≤与222x z a +≤(0a >)的公共部分所围成图形的体积.30.将曲线r =绕x 轴旋转而成的旋转体的体积. 31. 将抛物线2y x ax =-在横坐标0与c (0c a >>)之间的弧段绕x 轴旋转,问c 为 何值时,所得旋转体体积V 等于弦OP (P 为抛物线与x c =的交点)绕x 轴旋转所得锥体体积.32. 设抛物线2y ax bx c =++通过点(0,0),且当[0,1]x ∈时,0y ≥.试确定a b c 、、 的值,使得该抛物线与直线1x =,0y =所围成图形的面积为13,且使该图形绕x 轴旋转而成的旋转体的体积最小.33.一位居民准备购买一栋别墅价值为300万元,若首付为50万元,以后分期付款,每年付款数目相同,10年付清,而银行贷款的年利率为6%,按连续复利计息,每年应付款多少?(0.60.5448e-≈)34. 某公司投资2000万建成一条生产线,投产后,在t 时刻的追加成本和追加收益分别为23()52g t t =+ (百万/年)23()17t t ϕ=- (百万/年)试确定该生产线在何时停产可获得最大利润?最大利润是多少?.35.生产某种产品的固定成本为50万元,边际成本与边际收益分别为216100=-+(万元/单位产品)MC Q Q=-(万元/单位产品)MR Q894试确定工厂应将产量定为多少个单位时,才能获得最大利润?并求最大利润.。

高等数学 课件 PPT 第五章 定积分

高等数学 课件 PPT 第五章  定积分
[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],

定积分的概念定积分应用

定积分的概念定积分应用

THANKS
谢谢
总结词
定积分在弹性力学中用于计算物体在受力作用下的应力和应变。
详细描述
在弹性力学中,物体在受力作用下的应力和应变可以通过将弹性力学方程与定积分相结合来计算。通过确定物体 的受力分布和边界条件,可以计算出物体的应力和应变。
热传导中的温度分布
总结词
定积分在热传导中用于计算物体内部的温度分布。
详细描述
在热传导问题中,物体内部的温度分布可以通过将热传导方程与定积分相结合来计算。通过确定物体 的热源、边界条件和初始温度分布,可以计算出物体在不同时刻的温度分布。
积分区间
由积分下限和积分上限 确定的闭区间,表示为 $[a, b]$。
定积分的几何意义
定积分表示曲线与直线$y = x$ 及$x$轴所夹的面积,即曲线下
方间的距离。
当定积分的积分区间为$[a, b]$ 时,定积分的值等于曲线与直线 $y = x$及$x$轴所夹的面积在 $x=a$和$x=b$处的面积差。
恒力做功的计算
在物理学中,恒力做功可以直接用力 和位移的乘积来计算。然而,当作用 力是变力时,不能简单地用力和位移 的乘积来计算。
定积分的引入
为了计算变力做功,我们需要引入定 积分的概念。通过将变力函数在位移 区间上进行积分,可以得到变力做功 的值。
04
CHAPTER
定积分在经济学中的应用
边际和弹性
消费者剩余和生产者剩余
消费者剩余
生产者剩余
定积分可用于计算消费者剩余,即消费者愿 意支付的价格与实际支付的价格之间的差额。 通过积分可以求出整个需求曲线下方的面积, 即总消费者剩余。
定积分也可用于计算生产者剩余,即生产者 愿意接受的价格与实际接受的价格之间的差 额。通过积分可以求出整个供给曲线上方的 面积,即总生产者剩余。

高数第五章 定积分的应用

高数第五章    定积分的应用

第五章 定积分的应用在本章中,我们将利用学过的定积分理论来解决一些实际问题.首先介绍建立定积分数学模型的方法——微分元素法;再利用这一方法求一些几何量(如面积、体积、弧长等)和一些物理量(如功、液体静压力、引力等);并介绍定积分在经济学中的简单应用.第一节 微分元素法实际问题中,哪些量可用定积分计算?如何建立这些量的定积分表达式?本节中我们将回答这两个问题.由定积分定义知,若()f x 在区间,a b ⎡⎤⎣⎦上可积,则对于,a b ⎡⎤⎣⎦的任一划分:1<<<0n a x x x b == ,及1,i i x x -⎡⎤⎣⎦中任意点i ξ,有d Δ01()lim()nb i i aλi f x x f ξx →==∑⎰,(5-1-1)这里()-=-= 11,2,,i i i Δx x x i n ,}{≤≤=1m ax i i nλΔx . (5-1-1)式表明定积分的本质是一类特定和式的极限,此极限值与,a b ⎡⎤⎣⎦的分法及点i ξ的取法无关,只与区间,a b ⎡⎤⎣⎦及函数()f x 有关.基于此,我们可以将一些实际问题中有关量的计算归结为定积分来计算.例如,曲边梯形的面积、变速直线运动的位移等均可用定积分来表达.由上一章中分析曲边梯形面积用定积分来表示的过程,我们可概括地将此过程描述为“划分找近似,求和取极限”.也就是说,将所求量整体转化为部分之和,利用整体上变化的量在局部近似于不变这一辩证关系,局部上以“不变”代替“变”,这是利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中所求量U 符合下列条件:(1)建立适当的坐标系和选择与U 有关的变量x 后,U 是一个与定义在某一区间,a b ⎡⎤⎣⎦上的可积函数()u x 有关的量; (2)U 对区间,a b ⎡⎤⎣⎦具有可加性,即如果把,a b ⎡⎤⎣⎦任意划分成n 个小区间()-=-= 11,2,,i i i Δx x x i n ,则U 相应地分成n 个部分量i ΔU ,且1nii U U Δ==∑;(3) 部分量i ΔU 可近似地表示成()()1,i i i i i u ξΔx ξx x -∈⎡⎤⎣⎦,且i ΔU 与()i i u ξΔx 之差是iΔx 的高阶无穷小,即()()i i i i ΔU u ξΔx o Δx -=,那么,我们可得到所求量U 的定积分数学模型d ()b au x U x =⎰. (5-1-2)在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间1,i i x x -⎡⎤⎣⎦的下标略去,记为[,d ]x x x +,称其为典型小区间,相应于此小区间的所求量的部分量记作ΔU .因此,建立实际问题的定积分模型可按以下步骤进行:(1) 建立坐标系,根据所求量U 确定一个积分变量x 及其变化范围,a b ⎡⎤⎣⎦;(2) 考虑典型小区间[,d ]x x x +,求出U 相应于这一小区间的部分量ΔU ,将ΔU 近似地表示成,a b ⎡⎤⎣⎦上的某个可积函数()ux 在x 处的取值与小区间长度d Δx x =的积,即 d (d )()ΔU u x x o x =+, (5-1-3)我们称d ()u x x 为所求量U 的微分元素(简称微元或元素),记作d d ()U u x x=;(3) 计算所求量U ,即d =d ()b b aau x U x =⎰⎰U .上述建立定积分数学模型的方法称为微分元素法,这一方法的关键是步骤(2)中微分元素d U 的取得.第二节 平面图形的面积在上一章开头讨论过由连续曲线()()()0y =f x f x ≥,以及直线()x=a ,x =b a <b 和x 轴所围成的曲边梯形的面积()d baA f x x =⎰.如果()f x 在,a b ⎡⎤⎣⎦上不都是非负的,由定积分对区间的可加性,则所围图形的面积为()d b aA f x x =⎰.本节将讨论一般平面图形的问题,如果其边界曲线是由两条连续曲线()1y f x =, ()2y f x =()()21f x f x ⎡⎤≥⎣⎦及直线x =a ,x =b 所围成的平面图形,其面积便可用定积分来计算.下面我们运用定积分的微分元素法,建立不同坐标系下平面图形的面积计算公式.一、 直角坐标情形设一平面图形由曲线()()12,y f x y f x ==及直线x =a 和()x =b a b <围成(见图5-1).图5-1为求其面积A ,我们在,a b ⎡⎤⎣⎦上取典型小区间[,d ]x x x +,相应于该小区间的平面图形面积ΔA 近似地等于高为()()12f x f x -、宽为d x 的窄矩形的面积,从而得到面积微元()()d d 12A f x f xx =-.所以,此平面图形的面积为()()d 12b aA f x f xx =-⎰. (5-2-1)类似地,若平面图形由12(),()x φy x φy ==及直线y c =和()y d d c =>围成(见图5-2),则其面积为()()d 12d cA φy φy y =-⎰. (5-2-2)图5-2例1 计算由抛物线21y x =-+与2y x =所围图形的面积A . 解 解方程组221y x y x⎧=-+⎪⎨=⎪⎩得两抛物线的交点为122⎛⎫ ⎪⎝⎭和122⎫⎪⎝⎭,于是图形位于2x =-与2x =之间,如图5-3所示,取x 为积分变量,由(5-2-1)式得d 22222)A xxx x=--=-32022()3x x =-=图5-3例2 计算由直线4y x =-和抛物线22y x =所围平面图形的面积A . 解 解方程组224y xy x ⎧=⎪⎨=-⎪⎩得两线的交点为(2,-2)和(8,4),平面图形,如图5-4所示,位于直线2y =-和4y =之间,于是取y 为积分变量,由(5-2-2)式得d 24242yA y y -=+-⎰3242(4)26yyy -=+-18=.图5-4注意:若在例1中取y 为积分变量,在例2中取x 为积分变量,则所求面积的计算会较为复杂.例如在例2中,若选x 为积分变量,则积分区间是[0,8].当(,2)0x ∈时,典型小区间(,d )x x x +所对应的面积微元是(d d A x=⎤⎦;而当(2,8)x ∈时,典型小区间所对应的面积微元是()d d 4A x x ⎤-⎦=. 故所求面积为(()d d 28024A x x x⎤⎤+-⎦=⎦⎰⎰.显然,上述做法较例2中的解法要复杂.因此,在求平面图形的面积时,恰当地选择积分变量可使计算简便.当曲边梯形的曲边为连续曲线,其方程由参数方程(),(),x φt y ψt =⎧⎨=⎩12t t t ≤≤ 给出时,若其底边位于x 轴上,()φt 在12[,]t t 上可导,则其面积微元为 ()()d d d A y x ψt φt t ==' d (0)t >. 从而面积为()()d 21t t A ψt φt t ='⎰. (5-2-3)同理,若其底边位于y 轴上,且()ψt 在12[,]t t 上可导,则其面积微元为 ()()d d d A x y φt ψt t ==' d (0)t > 从而面积为()()d 21t t A φt ψt t ='⎰. (5-2-4)例3 设椭圆方程为12222y x ab+= (,a b 为正的常数),求其面积A .解 椭圆的参数方程为cos ,sin ,x a t y b t =⎧⎨=⎩20t π≤≤. 由对称性知d 204sin (cos )A b t a t tπ'=⋅⎰d d 22201cos 24sin 42ta b t t a b t ππ-==⎰⎰a b=π.二、 极坐标情形设一平面图形,在极坐标系下由连续曲线()r r θ=及射线,θαθβ==所围成(称为曲边扇形,如图5-5所示.)为求其面积,我们在θ的变化区间[,]αβ上取一典型小区间[,d ]θθθ+,相应于此区间上的面积近似地等于中心角为d θ、半径为()r θ的扇形面积,从而得到面积微元()d d 212A r θθ=, 所以d 21()2βαA r θθ=⎰. (5-2-5)图5-5例4 计算阿基米德(Archimedes)螺线(>)0r a θa =上相应于θ从0到2π的一段弧与极轴所围成图形如图5-6所示的面积.解 由式(5-2-5)得d 22232302114()2630A a θθa θa ππ⎛⎫===π ⎪⎝⎭⎰.图5-6 图5-7例5 求由双纽线()()2222222x y a x y +=-所围成,且在半径为a 的圆内部的图形如图5-7所示的面积.解 由对称性,所求面积应等于第一象限部分面积的4倍,极坐标下双纽线在第一象限部分的方程为222co 2r a s θ=, 04θ≤≤π.圆的方程为r a =. 由 222cos 2r a θr a ⎧=⎪⎨=⎪⎩解得两曲线在第一象限交点为6,a ⎛⎫⎪⎝⎭π,由式(5-2-5)得所求面积d cos d 2264061142222A a θa θθπππ⎡⎤=+⎢⎥⎣⎦⎰⎰42262sin 23a a θπππ=+2(23aπ=+-.第三节 几何体的体积一、 平行截面面积为已知的立体体积考虑介于垂直于x 轴的两平行平面x a =与x b =之间的立体如图5-8所示,若对任意的[,]x a b ∈,立体在此处垂直于x 轴的截面面积可以用x 的连续函数()A x 来表示,则此立体的体积可用定积分表示.图5-8在[,]a b 内取典型小区间[,d ]x x x +,对应于此小区间的体积近似地等于以底面积为()Ax ,高为d x 的柱体的体积,故体积元素为()d d V A x x =, 从而d ()b aA x V x =⎰. (5-3-1)例1 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,如图5-9所示,计算此平面截圆柱体所得楔形体的体积V .解法1 建立坐标系如图5-9,则底面圆方程为222x y R +=.对任意的[,]x R R ∈-,过点x 且垂直于x 轴的截面是一个直角三角形,两直角边的长度分别为y =和tan y αα=,故截面面积为()()tan 2212x R x A α-=.于是立体体积为tan d 221()2R RV R x αx -=-⎰tan d tan 22302()3RαR x x R α=-=⎰.图5-9 图5-10解法2 在楔形体中过点y 且垂直于y 轴的截面是一个矩形如图5-10所示,其长为2x =tan y α,故其面积为()2A yy α=.从而,楔形体的体积为()d tan 322222an 3R R V αy αR y==--⎰tan 323R α=. 二、旋转体的体积由一平面图形绕这平面内一条定直线旋转一周而成的立体称为旋转体. 设一旋转体是由连续曲线()y f x =,直线x a =和x b =及x 轴所围成的曲边梯形绕x 轴旋转一周而形成的(图5-11),则对任意的[,]x a b ∈,相应于x 处垂直于x 轴的截面是一个圆盘,其面积为2()πf x ,于是旋转体的体积为 ()d 2ba V f x x =π⎰. (5-3-2)图5-11例2 计算由椭圆22221y x ab+=(,a b 为正的常数)所围图形绕x 轴旋转而成的旋转体(称之为旋转椭球体,见图5-12)的体积.图5-12解 这个旋转体实际上就是半个椭圆y =及x 轴所围曲边梯形绕x 轴旋转一周而成的立体,于是由式(5-3-2)得()2222a ab V axa-=π-⎰()d 22222a b axxa=π-⎰2322230ab x a x a ⎛⎫=π⋅- ⎪⎝⎭243a b =π.特别地,当a b =时便得到球的体积343πa .例3 求圆域222()()x b a y b a +-≤>绕x 轴旋转而成的圆环体的体积如图5-13所示.图5-13解 如图5-13,上半圆周的方程为2y b +=1y b -=对应于典型区间[,d ]x x x +上的体积微元为d d 2221()V y y x =π-πd 22((b b x ⎡⎤=π+--⎢⎥⎣⎦4x =π.所以4a aV x -=π⎰8b x =π⎰284ab π=π⋅22a b =2π.第四节 曲线的弧长和旋转体的侧面积一、 平面曲线的弧长首先,我们建立平面曲线弧长的概念.设有平面曲线 A B ,在其上任取分点:11,,,,0n n A M M M M B -== ,连接相邻的两个分点得到n 条线段1i i MM-,1,2,,i n = .以()1,i i iρρM M-=表示线段1i i M M -的长度(见图5-14),记1m ax{}i i nρλ≤≤=,若极限01lim niλi ρ→=∑存在,则定义此极限值为曲线 A B 的长度(即弧长),并称曲线 AB 是可求长的.图5-14下面用微分元素法来推导弧长的计算公式.设 A B 的方程为()y f x =,[,]x a b ∈,且()f x 在[,]a b 上有一阶连续导数.考虑[,]a b 内的典型小区间[,]x x Δx +,相应于此区间的弧长记为Δs ,Δs 近似地等于弦长,即22222()()()()[()()]Δs Δx Δy Δx f x Δx f x ≈+=++-.由微分中值定理,得,222()()[()]),(Δs ξx x Δx Δx f ξΔx ∈'+≈++,此处>0Δx ,故得弧长的微分元素(简称弧微分)为d s ==x =. (5-4-1)从而, AB 的长为as x =⎰. (5-4-2)若曲线弧 AB 的方程由参数方程 (),(),x φt y ψt =⎧⎨=⎩ αt β≤≤,给出,设()(),φt ψt 在[,]αβ上具有连续导数,由于()()d d d d ,x φt t y ψt t ='=',因此对于任意的[,]t αβ∈,典型小区间d []t t t +,上相应弧长元素为d s t =. (5-4-3)所以,曲线弧 AB 的弧长为αs t =⎰. (5-4-4)式(5-4-1)和(5-4-3)即为弧微分公式,这和第二章第五节所推导的弧微分公式是一致的.例1 两端固定于空中的线缆,由于其自身的重量而下垂成曲线形,称之为悬链线.设一悬链线的方程为e +e ()2sh xxa a y a x a a -== (a为正的常数),求其在[,]0a 上一段的长.解 d ds x x == =e +e d 1()2xxa a x -,故 e +e d e+e ee 101()()()2x xxx a a a aaas x a a ---===⎰-. 例2 如图5-15所示,计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩()0a > 的一拱(20t π≤≤)的长度.图5-15解 由于d s t =t=d 2sin2ta t =, 所以d d 2202sin2sin22tts a t a t ππ==⎰⎰22(2cos )820t a a π=-=.如果曲线方程由极坐标方程()()r r θαθβ=≤≤给出,且()r θ存在一阶连续导数,则由 ()cos ,()sin ,x r θθy r θθ=⎧⎨=⎩()αθβ≤≤ 可得()[()cos ]()cos ()sin ,φθr θθr θθr θθ'''==- ()[()sin ]()sin ()cos ,ψθr θθr θθr θθ'''==+从而 ()()()()2222φθψθrθr θ'+'=+'. 所以αs θ=⎰. (5-4-5)例3 求心形线1 (cos )(0)r a θa =+>的全长(见图5-16).图5-16解 由(5-4-5)式有d s θ=θ=θ=.由对称性知02s θπ=⎰d 022cos2θa θπ=⎰ 8sin820θa a π==. *二、 旋转体的侧面积设一旋转体的侧面由一段曲线()()y f x a x b =≤≤绕x 轴旋转一周而得(图5-17).为求其面积A ,我们在[,]a b 上取典型小区间[,d ]x x x +,相应于此区间上的窄带形侧面(图5-17中的阴影部分)可近似地看成弧微分d s 绕x 轴旋转一周而成.于是这一窄带形侧面可以用一个半径为()f x ,高为d s 的圆柱面来近似代替,从而得侧面积的微分元素()(d πd π22A f xs f x x ==.所以2(b aA f x x =π⎰.此处假设()f x 在[,]a b 上可导.图5-17例4 求半径为R 的球的表面积.解 以球心为原点建立一平面直角坐标系,则该球是平面上半圆盘0y ≤≤绕x 轴旋转一周而成的旋转体,其表面积为π2R RA x-=⎰πd π244R Rx -==⎰R R .第五节 定积分在物理学中的应用一、 变力沿直线所做的功由物理学知,若一个大小和方向都不变的恒力F 作用于一物体,使其沿力的方向作直线运动,移动了一段距离s ,则F 所做的功为·W F s =.下面用微分元素法来讨论变力做功问题.设有大小随物体位置改变而连续变化的力()F F x =作用于一物体上,使其沿x 轴作直线运动,力F 的方向与物体运动的方向一致,从x a =移至至>x b a = (见图5-18).在[,]a b 上任一点x 处取一微小位移d x ,当物体从x 移到d x x +时,()F x 所做的功近似等于d ()F x x ,即功元素d d ()W F x x =,于是d ()b aW F x x =⎰. (5-5-1)图5-18例1 一汽缸如图5-19所示,直径为0.20m ,长为1.00m ,其中充满了气体,压强为5981.0⨯Pa.若温度保持不变,求推动活塞前进0.5m 使气体压缩所作的功.图5-19解 根据波义耳(Boyle )定律,在恒温条件下,气体压强p 与体积V 的乘积是常数,即p V k =.由于压缩前气体压强为5981.0⨯Pa ,所以ππ52981198.00000k =⨯⋅⋅=.建立坐标系如图5-19所示,活塞位置用x 表示,当活塞处于x 处时汽缸中气体体积π211()(0.)V x =-,于是压强为2()(1)(0.1)k p x x =-π,从而活塞上的压力为()1k F x p S x==-.故推动活塞所作功为d 05ln 10.50.9800980010W x x π==-π(-)-⎰x 980000ln2 2.13104(J )=π≈⨯.例2 从地面垂直向上发射一质量为m 的火箭,求将火箭发射至离地面高H 处所作的功.解 发射火箭需要克服地球引力做功,设地球半径为R ,质量为M ,则由万有引力定律知地球对火箭的引力为2GM m F =r,其中r 为地心到火箭的距离,G 为引力常数.当火箭在地面时,r R =,引力为2G M m R.另一方面,火箭在地面时,所受引力应为m g ,其中g 为重力加速度,因此2m g =GM m R, 故有 2=gR G M,于是22=m gR F r.从而,将火箭从r R =发射至r R H =+处所做功为d 111222R H RW r RR H +⎛⎫==- ⎪+⎝⎭⎰m gRm gR r .例3 地面上有一截面面积为20A =m 2,深为4 m 的长方体水池盛满水,用抽水泵把这池水全部抽到离池顶3m 高的地方去,问需做多少功?图5-20解 建立坐标系如图5-20所示.设想把池中的水分成很多薄层,则把池中全部水抽出所做的功W 等于把每一薄层水抽出所做的功的总和.在[0,4]上取小区间[x ,x +d x ],相应于此小区间的那一薄层水的体积为2d 0x m 3,设水的密度1310ρ=⨯kg ·m -3,故这层水重为d 4210g x ⨯ kg ,将它抽到距池顶3m 高处克服重力所做功为d d 4210(3)x g x W ⨯⋅⋅=+.从而,将全部水抽到离池顶3m 高处所做的功为4023 1.9632424510()d 10x W x g x x ⎛⎫=⨯⋅+⋅=⨯⋅⨯+ ⎪⎝⎭⎰639210J .()=⨯ (其中-29.8m s g =⋅)二、液体静压力由帕斯卡(Pascal )定律,在液面下深度为h 的地方,液体重量产生的压强为p ρg h =,其中ρ为液体密度,g 为重力加速度.即液面下的物体受液体的压强与深度成正比,同一深度处各方向上的压强相等.面积为A 的平板水平置于水深为h 处,平板一侧的压力为p ρg h A =. 下面考虑一块与液面垂直没入液体内的平面薄板,我们来求它的一面所受的压力.设薄板为一曲边梯形,其曲边的方程为,()()y f x a x b =≤≤,建立坐标系如图5-21所示,x 轴铅直向下,y轴与液面相齐.当薄板被设想分成许多水平的窄条时,相应于典型小区间d [,]x x x +的小窄条上深度变化不大,从而压强变化也不大,可近似地取为ρg x ,同时小窄条的面积用矩形面积来近似,即为d ()f x x ,故小窄条一面所受压力近似地为d d ()p ρg x f x x=⋅.图5-21从而d ()b ap ρgx f x x =⎰. (5-5-2)例4 一横放的圆柱形水桶,桶内盛有半桶水,桶端面半径为0.6m ,计算桶的一个端面上所受的压力.图5-22解 建立坐标系如图5-22所示,桶的端面圆的方程为22360.x y +=.相应于[,d ]x x x +的小窄条上的压力微元d 2p ρg xx =,所以桶的一个端面上所受的压力为060.p x xx =⎰20633(.)ρg =314110N .≈⨯()其中3110ρ=⨯kg·m -3,98-2m s .g ⋅=. 三、引力由物理学知,质量分别为12,m m ,相距为r 的两质点间的引力的大小为122m m F Gr=,其中G 为引力系数,引力的方向沿着两质点的连线方向.对于不能视为质点的两物体之间的引力,我们不能直接利用质点间的引力公式,而是采用微元法,下面举例说明.例5 一根长为l 的均匀直棒,其线密度为ρ,在它的一端垂线上距直棒a 处有质量为m 的质点,求棒对质点的引力.图5-23解 建立坐标系如图5-23所示,对任意的[,0)x l ∈,考虑直棒上相应于d [,]x x x +的一段对质点的引力,由于d x 很小,故此一小段对质点的引力可视为两质点的引力,其大小为d d G 22m ρx F a x=+,其方向是沿着两点,(0)a 与(),0x 的连线的,当x 在(),0l 之间变化时,d F 的方向是不断变化的.故将引力微元d F 在水平方向和铅直方向进行分解,分别记为d ,d x y F F ,则d 32G d 22()x m ρxF F x x a ==+,d 32G d 22()y m ρa F F x xa =-=-+.于是,直棒对质点的水平方向引力为32d 022()l x x F G m ρx xa =+⎰32d 2222()()2l G m ρa x a x -=++⎰1222()0l G m ρa x -=-+1(G m ρa=-.铅直方向引力为d 30222()l y x F G m ρa a x =-+⎰12l G m ρa -=-G m ρl =.注意 此例如果将直棒的线密度改为()ρρx =,即直棒是非均匀的,当()ρx 为已知时,直棒对质点的引力仍可按上述方法求得. 四、平均值我们知道,n 个数值12,,,n y y y 的算术平均值为121()n y y y y n=+++ . 在许多实际问题中,需考连续函数在一个区间上所取值的平均值,如一昼夜间的平均温度等.下面将讨论如何规定和计算连续函数()f x 在[,]a b 上的平均值. 先将区间[,]a b n 等分,分点为1<<<0n a x x x b == ,每个小区间的长度为Δx b an=-,()f x 在各分点处的函数值记为1,2,,()()i i y f x i n == .当Δx 很小(即n 充分大)时,在每个小区间上函数值视为相等,故可以用12,,,n y y y 的平均值121()n y y y n+++ 来近似表达()f x 在[,]a b 上的所有取值的平均值.因此,称极限值121lim()n n y y y y n→∞=+++为函数()f x 在[,]a b 上的平均值.由于12lim n n y y y b ay b a n →∞+++-=-120limnx y y y x b a∆→+++=∆-011lim ()ni x i f x x b a ∆→==∆-∑,故1()d bay f x x b a =-⎰.(5-5-3)式(5-5-3)就是连续函数()f x 在[,]a b 上的平均值的计算公式.例6 计算纯电阻电路中正弦交流电sin m i I ωt =在一个周期π2T =ω上的功率的平均值(简称平均功率).解 设电阻为R ,则电路中的电压为m U iR I R tω==sin ,功率为2sin 2m N Ui t I R ω==.一个周期上的平均功率为d d 2221sin sin 2T ωI R ωN R ωt t ωt I t Tπ==π⎰⎰22m md()0220sin 2(1cos 2)442ωωR R ωt ωt ωt ωt I I ππ⎡⎤=-=-⎢⎥ππ⎣⎦⎰22m m22mU I R I ==2m m ,其中m m U I R =表示最大电压,也称为电压峰值,即纯电阻电路中正弦交流电的平均功率等于电流与电压的峰值的乘积的一半.通常交流电器上标明的功率就是平均功率,而交流电器上标明的电流值都是另一种特定的平均值,常称为有效值.一般地,周期性非恒定电流i 的有效值是这样规定的:当电流()i t 在一个周期T 内在负载电阻R 上消耗的平均功率等于取固定值I 的恒定电流在R 上消耗的功率时,称这个固定值为()i t 的有效值.电流()i t 在电阻R 上消耗的功率为()()()()N t U t i t i t R =⋅=2.它在[0,T )上的平均值为d d 221()()T T R N i t R t i t tTT==⎰⎰.而固定值为I 的电流在R 上消耗的功率为2N I R =,因此d 22()T R I R i t t T =⎰, 即I =.例7 求正弦电流s (n )i m i I t t ω=的有效值.解12221s i n 2ωI ωt ωπ⎛⎫ ⎪=⎪π ⎪⎝⎭⎰2m I122sin 242ωωt ωt π⎡⎤⎡⎤⎢⎥=-⎢⎥π⎣⎦⎢⎥⎣⎦2mI=.叫做函数()f x 在[,]a b 上的均方根.第六节 定积分在经济学中的应用一、 最大利润问题设利润函数()()()πx =R x C x -,其中x 为产量,()R x 是收益函数,()C x 是成本函数,若()π,(),()x R x C x 均可导,则使()πx取得最大值的产量x 应满足()()()π0x R x C x '='-'=,即()().R x C x '='因此总利润的最大值在边际收入等于边际成本时取得.例1 设某公司产品生产的边际成本2181()00C x x x '=-+,边际收益为23()00R x x '=-,试求公司的最大利润.解 由于d ππd ()()()()x x R x C x x'''==-223181(00)(00)x x x =---+215100x x=-+,故利润微分元素为d πd 2151()(00)x x xx =-+.产量为0x 时,利润为πd 0200()(15100)x x x xx =-+⎰.另一方面,令π()0x '=,得21525x ±==(负值舍去). 又当20x =时,()π152<0x x "=-,故20x =时,利润取得最大值,最大利润为πd 202(20)(15100)x xx =-+⎰322015(100)230x xx =-+ 23333.≈.二、资金流的现值与终值1. 连续复利概念设有一笔数量为0A 元的资金存入银行,若年利率为r ,按复利方式每年计息一次,则该笔资金t 年后的本利和为0(1)(1,2,)tt A A r t =+= .如果每年分n 次计息,每期利率为r n,则t 年后的本利和为*01(1,2,)n tt r A A t n ⎛⎫=+= ⎪⎝⎭ .当n 无限增大时,由于e lim (1)n r n r n→∞+=,故e *00lim lim (1)n t r t t n n r A A A n→∞→∞=+=.称公式e 0r tt A A = (5-6-1)为0A 元的现值(即现在价值)在连续复利方式下折算为t 年后的终值(将来价值)的计算公式.公式(5-6-1)可变形为e0r tt A A -= (5-6-2)称(5-6-2)式为t 年末的t A 元的资金在连续复利方式下折算为现值的计算公式.建立资金的现值和终值概念,是为了对不同时点的资金进行比较,以便进行投资决策. 2. 资金流的现值与终值.将流出企业的资金(如成本、投资等)视为随时间连续变化,称之为支出流.类似地,将流入企业的资金(如收益等)视为随时间连续变化,称之为收入流.资金的净流量为收入流与支出流之差.企业单位时间内,资金的净流量称为收益率.设某企业在时段[]0T ,内的t 时刻的收益率为连续函数()f t ,下面我们按连续复利(年利率为r )方式来求该时段内的收益总现值和总终值. 在[]0T ,上取典型小区间[,d ]t t t +,该时段内收益近似为d ()f t t ,其t 时刻现值为 ed ()r tf t t -.这就是收益总现值的微分元素,故收益总现值为ed 0()T r tP f t t -=⎰. (5-6-3)又由于[,d ]t t t +时段内收益d ()f t t 折算为t T =时刻的终值为 ed ()()T t rf t t -,故收益总终值为ed ()0()T T t rF f t t -=⎰. (5-6-4)当收益率()f t k =(k 为常数)时,该资金流称为稳定资金流或均匀流.例2 某公司投资100万元建成1条生产线,并于1年后取得经济效益,年收入为30万元,设银行年利率为10%,问公司多少年后收回投资.解 设T 年后可收回投资,投资回收期应是总收入的现值等于总投资的现值的时间长度,因此有ed 0.1030100T tt -=⎰,即 0.1300(1e )100t --=. 解得455.0T =,即在投资后的4.055年内可收回投资.习 题 五1.求下列各曲线所围图形的面积:(1)212y x =与228x y += (两部分都要计算); (2)1y x=与直线y x =及2x =;(3)e e ,x x y y -==与直线1x =;(4)ln y x =,y 轴与直线()ln ,ln 0y a y b b a ==>>; (5)抛物线2y x =和22y x =-+;(6)sin ,cos y x y x ==及直线,44x x ππ=9=;(7)抛物线243y x x =-+-及其在3(0,)-和3,(0)处的切线;(8)摆线sin 1cos (),()x a t t y a t =-=-的一拱2(0)t π≤≤与x 轴; (9)极坐标曲线3ρa si n φ=; (10)极坐标曲线2cos ρa φ=.2.求下列各曲线所围成图形的公共部分的面积: (1)()1cos r a θ=+及2cos r a θ=;(2)r θ=及22in r θ=.3.已知曲线2()f x x x =-与()g x ax =围成的图形面积等于29,求常数a .4.设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B 求这截锥体的体积.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.6.求下列旋转体的体积:(1)由2y x =与23y x =围成的平面图形绕x 轴旋转;(2)由3,2,0y x x y ===所围图形分别绕x 轴及y 轴旋转; (3)星形线222333x y a +=绕x 轴旋转. 7.求下列曲线段的弧长: (1)22,20y x x =≤≤;(2)ln ,y x x =≤≤(3)2,22x y t x π-π-≤=≤π⎰, . 8.设星形线的参数方程为33,,cos sin 0x a t y a t a ==>,求(1)星形线所围面积;(2)绕x 轴旋转所得旋转体的体积; (3)星形线的全长.9.求对数螺线e a θr =相应于0θ=到θφ=的一段弧长.10.求半径为R ,高为h 的球冠的表面积.11.求曲线段31(0)y x x =≤≤绕x 轴旋转一周所得旋转曲面的面积:12.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功? 13.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.14.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少.15.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力.16.求下列函数在[,]a a -上的平均值.(1)()f x =(2)()2f x x =. 17.求正弦交流电sin 0i I ωt =经过半波整流后得到电流00sin 0.I ωt t ωi t ωωπ⎧≤≤⎪=⎨π2π⎪≤≤⎩,,, 的平均值和有效值.18.已知电压3sin2()u t t =,求(1)()u t 在02π⎡⎤⎢⎥⎣⎦,上的平均值; (2)电压的均方根值.19.设某企业固定成本为50,边际成本和边际收入分别为2()14111,()1002C x x x R x x ''=-+=-.试求最大利润.20.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为2()C x '=(万元/百台),边际收入为72()R x x '=-(万元/百台)):(1)求生产量为多少时总利润最大?(2)在总利润最大的基础上再生产100台,总利润减少多少?21.某企业投资800万元,年利率为5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.22.某父母打算连续存钱为孩子攒学费,设银行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱.。

定积分及其应用

定积分及其应用


b
b
b
f ( x)dx f (t)dt f (u)du .
a
a
a
2o. 当 T 0, 分点个数 n ;但反之不然 .
3o. 若 f 在 [a, b] 的某一个积分和的极限 不存在 ,
或若 f 在 [a, b] 的某两个积分和的极限 都存在但 极限值 不相等 ,则 f ( x) 在 [ a , b ] 上不可积 .
dx x
1dx, 03
4
0
3
1 sin3
dx x
3
.
第44页
例 5
估计积分
2
4
sin xdx的值. x
解 f ( x) sin x , x [ , ]
x
42
0 x , x tan x.
2
f ( x)
x cos x sin x x2
cos x( x tan x) x2
第26页
怎样的分法,也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当|| T || 0 时,和 S 总趋于
确定的极限I ,我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限
n
b
a
f ( x)dx
I
lim ||T ||0 i 1
f (i )xi
积分和 或黎曼和
T 0 i 1
f (i )xi
n
lim
f (a b a i) b a
.
n i1
n
n
第29页
例1
利用定义计算定积分
1 x2dx. 0
解 xi
T 把 [0,1] n xi xi1

高等数学,第五节,定积分的应用

高等数学,第五节,定积分的应用

2 3
图 6-18
S1
从而
1 1 a
0
2 2 (1 x ) ax dx
1 1 a 0
1 1 x x 3 ax 3 3 3 a3
2 1 3 1 a 3
1 此题由于S1 S 2 便于计算,用S1 ( S1 S 2 )来求a的值, 2 比直接用计算S1和S2再令其相等求a的值要简便,因此
y
y f ( x)
o
a
x
b
x
图 6-21
设x [a, b],在x处用垂直于x轴的平面截旋转体,截得的旋
转体的截面是一个以f ( x)为半径的原,则该截面面积为
S ( x) f ( x)
2
因此,该旋转体的体积为
V S ( x)dx
a
b
b
a
f ( x)
S f ( x) g ( x) dx
f ( x)
y
当f ( x) g ( x)的符号不定时,如图 6 10所示,即两条曲线
的交点为c (a, b), 此时区域D的面积
g ( x)
S
f ( x) g ( x) dx a
c

b
c
f ( x) g ( x) dx

sin x cos x,所以面积为
S 2 sin x cos x dx 4 (cos x sin x)dx 2 (sin x cos x)dx
0 0




4
(sin x cos x)
例4

4 0
( cos x sin x)

定积分的应用共29页

定积分的应用共29页

22.11.2019
12
目录
上页
下页
返回
一、平面图形的面积
若函数 f (x) 、 g(x) 在[a,b] 上连续,且 f (x) g(x) ,
则由曲线 y f (x) 、 y g(x) 及直线 x a 、 x b 所围
成的平面图形的面积为 Aabf(x)g(x)dx
其中面积 A 的元素为 d A f (x) g(x)d x .
a
c1
c2
22.11.2019
3
目录
上页
下页
返回
一般地,由曲线 y f (x) ,直线 x a , x b 及 x 轴所围成的曲边梯形的面积 S 可表示为
S
b
|
f
(x) | dx
.
a
类似地,由曲线 x ( y) ,直线 y c , y d 及
y 轴所围成的曲边梯形的面积 S (如图 5-13 所示)可
22.11.2019
10
目录
上页
下页
返回
二、定积分的元素法
1. 什么问题可以用定积分解决 ?
1) 所求量 U 是与区间[a , b]上的某分布 f (x) 有关的 一个整体量 ;
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
22.11.2019
ax
bx
19
目录
上页
下页
返回
特别 , 当考虑连续曲线段
轴旋转一周围成的立体体积时, 有 y
当考虑连续曲线段
oa x
x
y f (x)
绕 y 轴旋转一周围成的立体体积时, 有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
d
S = ∫c [ϕ 右 ( y) −ϕ 左 ( y)]dy .
d
S = ∫a [ f 上 ( x) − f 下 ( x)]dx . S = ∫c [ϕ 右 ( y) −ϕ 左 ( y)]dy .
b
d
计算抛物线y 与 = 所围成的图形的面积. 例1 计算抛物线 2=x与y=x2所围成的图形的面积. 画图; 画图 解 (1)画图; (2)确定在 轴上的投影区间:[0, 1]; 确定在x轴上的投影区间 确定在 轴上的投影区间: , ;
面积表示为定积分要通过如下步骤:
(1)把区间[a , b]分成 n 个长度为 ∆x i 的小区间, 的小区间,
个小窄曲边梯形, 相应的曲边梯形被分为 n 个小窄曲边梯形,第 i
∆A 的近似值 ∆Ai ≈ f (ξ i )∆xii,=1 ∈ ∆x ; (2)计算 i ξi i
求和, (3) 求和,得A的近似值A ≈ ∑ f (ξ i )∆xi; 求极限, 的精确值. (4) 求极限,得A的精确值.
2
b
旋转椭球体可以看作是由半个椭圆 解 旋转椭球体 可以看作是由半个椭圆 y = b a 2 − x 2及 x 轴围成的图形绕x轴旋转而成的立体. 轴围成的图形绕 轴旋转而成的立体. 轴旋转而成的立体 旋转椭球体的体积为
a
b 2 (a 2 − x 2 )dx V = ∫− a πy 2dx = ∫− a π 2 a
曲边扇形的面积: 曲边扇形的面积:S =
∫α
β
1 [ϕ (θ )]2 dθ ( ρ =ϕ (θ ), α ≤θ ≤ β ) . 2
例4 计算阿基米德螺线ρ=aθ (a>0)上相应于θ从0变 上相应于 变 的一段弧与极轴所围成的图形的面积. 到2π 的一段弧与极轴所围成的图形的面积.

2 3 π = 4 a 2π 3 . 3
a a

b2 a2
[a x −
2
1 3
x 3 ]a a −
= 4 π ab 3
2
.
所围成的图形, 轴及y轴 例8由y=x3, x=2, y=0所围成的图形, 分别绕 轴及 轴 = = , = 所围成的图形 分别绕x轴及 旋转, 计算所得两个旋转体的体积. 旋转, 计算所得两个旋转体的体积. 解:绕x轴旋转所得旋转体的体积为
V x = ∫ πy dx = ∫ πx 6 dx
2 0 0
2
2
1 7 = πx 7
2
2 0
128 = π 7
2 8 2 3
绕y轴旋转所得旋转体的体积为
V y = 2 ⋅ π ⋅ 8 − ∫ πx dy = 32π − π ∫ y dy
0 0
8
3π 3 y5 8 = 64π = 32π − 0 5 5
4axdx V = ∫ πy dx = ∫ π 4axdx
x0 2 0
x0
0
= 2aπ x
= 2aπx
2 x0 0
2 0
V = ∫aπ [ f ( x)]2 dx . 旋转体的体积: 旋转体的体积:
旋转体(旋转椭球体 的体积 旋转体 旋转椭球体)的体积. 旋转椭球体 的体积.
y2 = x + 1 所成的图形绕 轴旋转而成的 所成的图形绕x轴旋转而成的 例7 计算由椭圆 2 2 a b
A=∫
2

0
1 2 [2a(2 + cos θ )] dθ 2
2
= 2a


0
(4 + 4 cos θ + cos θ )dθ
= 18πa
2
.
二、体积
1.旋转体的体积 1.旋转体的体积 旋转体都可以看作是由连续曲线y= 旋转体都可以看作是由连续曲线 =f(x)、直线 =a、 、直线x= 、 a=b及x轴所围成的曲边梯形绕 轴旋转一周而成的立体. 轴所围成的曲边梯形绕x轴旋转一周而成的立体 = 及 轴所围成的曲边梯形绕 轴旋转一周而成的立体. •旋转体的体积元素 旋转体的体积元素 考虑旋转体内点x处垂直于 轴的厚度为dx的切片 处垂直于x轴的厚度为 的切片, 考虑旋转体内点 处垂直于 轴的厚度为 的切片, 作为切片体积的近似值, 用圆柱体的体积π[f(x)]2dx作为切片体积的近似值, 作为切片体积的近似值 于是体积元素为 于是体积元素为 dV=π[f(x)]2dx. = . •旋转体的体积 旋转体的体积
1 2 解 : A = 2 ( 8 − x − x ) dx 1 ∫0 2
2 2
= 2∫
2
0
2
8 − x dx − ∫ x dx
2 2 0
2
2
8 = 2 ∫ 8 − x dx − 0 3 π
= 16∫
4 cos 2 tdt − 8 0 3
4 = 2π + 3
A2 = (2
2 )2π
4 − S1 = 6π − 3
n
b
个小窄曲边梯形的面积为 ∆Ai ,则 A = ∑ ∆Ai ;
n
n
i =1
A = lim ∑ f (ξ i )∆xi= ∫ f ( x )dx . λ →0 a
i =1
比较 lim ∑ f (ξ i )∆xi λ →0
i =1
n
与∫a f ( x )dx
b
b
两式,我们发现一个事实, 两式,我们发现一个事实,即左边的极限式子与右边 的定积分表达式有很好的对应。 的定积分表达式有很好的对应。我们让
S =∫0 (aθ) dθ 2 1 a 2[ 1 θ 3]2π = 0
2
.
2π 1
曲边扇形的面积: 曲边扇形的面积:S =
∫α
β
1 [ϕ (θ )]2 dθ ( ρ =ϕ (θ ), α ≤θ ≤ β ) . 2
例5 计算心形线ρ=2a(2+cosθ)(a>0)所围成的图形的 + 所围成的图形的 面积. 面积. 解
一 问题的提出 二 定积分的元素法

问题的提出(Introduction)
考虑曲边梯形面积计算问题
曲边梯形由连续曲线
y
y = f ( x ) ( f ( x ) ≥ 0) 、 x
轴与两条直线 x = a 、
y = f ( x)
x = b 所围成。 所围成。
b
o a
b x
A = ∫a f ( x)dx.
V = ∫aπ [ f ( x)]2 dx .
b
2 V 旋转体的体积: 旋转体的体积: = ∫aπ [ f ( x)] dx .
b
抛物线y 及直线x= 例6 把抛物线 2=4ax及直线 =x0(x0>0)所围成的图形绕 及直线 所围成的图形绕 x轴旋转, 计算所得旋转体的体积. 轴旋转, 轴旋转 计算所得旋转体的体积. 解: 所得旋转体的体积为32π Nhomakorabea∫0

(1 − 3cos t + 3cos2 t − cos3 t )dt = 5π2a3 .
绕y轴 转 旋 体 积 旋 的 转 体
可看作平面图OABC 与OBC
2a 2a
y
轴旋转构成旋转体的体积之差. 分别绕 y轴旋转构成旋转体的体积之差
2 Vy = ∫ π x2 ( y)dy − ∫ π x1 ( y)dy 2 0 0
为被积表达式, 3 ) 以所求量 U 的元素 f ( x )dx 为被积表达式 , 上作定积分, 在区间 [ a , b ]上作定积分 , 得 U = 的积分表达式. 即为所求量 U 的积分表达式 .
∫a f ( x )dx ,
b
这个方法通常叫做元素法. 这个方法通常叫做元素法. 元素法 常见应用方向有: 常见应用方向有: 平面图形的面积;体积;平面曲线的弧长; 平面图形的面积;体积;平面曲线的弧长; 水压力;引力等. 功;水压力;引力等.
2.平行截面面积为已知的立体的体积 2.平行截面面积为已知的立体的体积 设立体在x轴上的投影区间为 , , 立体内垂直于x 设立体在 轴上的投影区间为[a, b], 立体内垂直于 轴上的投影区间为 轴的截面面积为A(x). 轴的截面面积为 . 立体的体积元素为 A(x)dx. . 立体的体积为
b
dS= [f上(x)− f下(x)]dx, − ,
因此平面图形的面积为
S = ∫a [ f上 (x) − f下 ( x)]dx .
S = ∫a [ f上 (x) − f下 ( x)]dx . S = ∫ [ϕ 右 ( y) −ϕ 左 ( y)]dy . c
讨论: 讨论: 由左右两条曲线x= 由左右两条曲线 =ϕ左(y)与 与 x=ϕ右(y)及上下两条直线 =d与y=c 及上下两条直线y= 与 = = 及上下两条直线 所围成的平面图形的面积如何表 示为定积分? 示为定积分? 提示: 提示: 面积元素为[ 面积元素为 ϕ右(y)−ϕ左(y)]dy, − , 面积为
b
d
ϕ 左 ( y) = 1 y 2, ϕ 右 ( y) = y + 4 .
2
(4)计算积分 计算积分
S = ∫− 2 ( y + 4 − 1 y 2 )dy 2
= [ 1 y 2 + 4 y − 1 y 3 ]4 2 = 18 − 2 6
4
例3 求由曲线 y = 1 x 2 与x2+y2=8(两部分都要计算) 所围 8(两部分都要计算 两部分都要计算) 2 成的面积
B x = x2 ( y) 2a C x = x1 ( y ) A o 2πa x
= π∫ a2 (t − sin t )2 ⋅ asin tdt

π
− π∫ a2 (t − sin t )2 ⋅ asin tdt
0
π
= πa
相关文档
最新文档