人教版七年级数学易错题讲解及答案
人教版七年级上册数学易错题集及解析
人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a -一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定, a -可能是正数,0,负数 分析:若a 是正数,则a -就是负数, 若a =0则a -=0若a 是负数,则a -就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数. 错解: 点C 与点A 之间的距离为2, ∴点C 表示的数为5.点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解: 点C 与点A 之间的距离为2,∴点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度. ①点C 在点A 的左侧2个单位长度,则点C 表示的数为5. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-9.3、.计算:200520011171311391951511⨯+⨯+⨯+⨯+⨯错解:原式=2005120011171131131919151511--+-+-+- =200511-=20052004 剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 方法直接去求解.而忽视本题54511=-, 4549151=-结果中分子是4而不是1.故这样做是错的.正解:原式=41⎪⎭⎫ ⎝⎛--+-+-+-⨯2005120011171131131919151511=41)200511(-⨯ =2005501.4、计算: 17391326-⨯.【错解】原式17391313261750721515.2=-⨯+⨯=-+=-【错解剖析】本题错误原因是把173926-看成173926-与的和,而它应是39-与1726-的和. 【正确解答】原式171713913135075152622=-⨯-⨯=--=-. 5、计算:(1)[]24)3(2611--⨯--; 【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136. 错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136. 【错解剖析】错解一中是将41-计算成1得到136,错解二中是去括号符号出错得到136-.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2--÷⨯-.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2⨯-.【正确答案】原式=1-9×14×14=1-916 =716. 6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 8、已知方程24)3(2-=+--m x m m 是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程. 【错解】m =±3.【剖析】忘记m -3≠0这个条件.【正解】(1)由⎩⎨⎧≠-=-0312m m 得m =-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 【错解】 7x -)1(32)1(2121-=--x x x .)1(4)1(3342-=---x x x x . 4433342-=+--x x x x . 32x =-7.x =327- .【剖析】 去中括号时)1(21--x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2x x x ⎡⎤--=-⎢⎥⎣⎦.第一次去括号,得 42x -44)1(233-=-+x x x .第二次去分母,得 84x -6x +3x -3=8x -8. 移项,合并同类项,得 73x =-5.把系数化为1,得 x =735-. 10. 解方程1-x =5.【错解】由1-x =5得到x -1=5.∴x =6.【剖析】去绝对值符号必须考虑正负性x -1=5或x -1=-5. 【正解】由1-x =5得到x -1=5或x -1=-5. ∴x =6或x =-4.11、某水果批发市场香蕉的价格如下表:强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264, 解得:x =32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264,解得:x =32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP=21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式. 错解一:(1)14°41′25″×5=70°205′125″=72°6′25″; (2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″; (2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″; (2)26.29°=26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?A BC PQ APQCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。
人教版七年级数学因式分解易错题及解析
初一数学因式分解易错题例1.18x ³y-21xy ³ 错解:原式=)36(2122y x - 分析:提取公因式后,括号里能分解的要继续分解。
正解: 原式=21xy (36x ²-y ²) =21xy (6x+y )(6x-y ) 例2. 3m ²n (m-2n )[])2(62n m mn --错解:原式=3mn (m-2n )(m-2n )分析:相同的公因式要写成幂的形式。
正解:原式=3mn (m-2n )(m-2n )=3mn (m-2n )² 例3.2x+x+41 错解:原式=)14121(41++x x 分析:系数为2的x 提出公因数41后,系数变为8,并非21;同理,系数为1的x 的系数应变为4。
正解:原式=)148(41++x x =)112(41+x 例4.412++x x 错解:原式=)14141(412++x x =2)121(41+x 分析:系数为1的x 提出公因数41后,系数变为4,并非41。
正解:原式=)144(412++x x =2)12(41+x 例5.6x ()2y x -+3()3x y -错解:原式=3()()[]x x y x y 22+-+- 分析:3()3x y -表示三个()x y -相乘,故括号中2)(x y -与)(x y -之间应用乘号而非加号。
正解:原式=6x ()2x y -+()2x y - =3()2x y -()[]x y x -+2 =3()2x y -()y x + 例6.()8422--+x x错解:原式=()[]242-+x =()22-x 分析:8并非4的平方,且完全平方公式中b 的系数一定为正数。
正解:原式=()22+x -4(x+2) =(x+2)()[]42-+x=(x+2)(x -2)例7.()()223597n m n m --+ 错解:原式=()()[]23597n m n m --+ =()2122n m + 分析:题目中两二次单项式的底数不同,不可直接加减。
人教版七年级数学第一章《有理数》易错题训练 (7)含答案解析
第一章《有理数》易错题训练 (7)一、选择题(本大题共7小题,共21.0分)1.甲、乙、丙三地的海拔高度分别为20米,−15米和−10米,那么最高的地方比最低的地方高().A. 35米B. 30米C. 10米D. 5米2.用四舍五入法得到的近似数2.18×104,下列说法正确的是()A. 它精确到百分位B. 它精确到百位C. 它精确到万位D. 它精确到0.013.对近似数6.28×104描述正确的是()A. 精确到万位B. 精确到百位C. 精确到个位D. 精确到百分位4.下列说法正确的是()A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的绝对值等于这个数本身,那么这个数一定是05.国家统计局公布,2019年我国国内生产总值按年平均汇率折算达到14.4万亿美元,稳居世界第二位,其中14.4万亿用科学计数法可以表示为()亿.A. 1.44X1012B. 1.44×1013C. 1.44×104D. 1.44×1056.国家统计局公布,2019年我国国内生产总值按年平均汇率折算达到14.4万亿美元,稳居世界第二位.其中14.4万亿用科学计算法可以表示为()亿.A. 1.44×1012B. 1.44×1013C. 1.44×104D. 1.44×1057.为表达对新冠肺炎疫情防控工作的支持,全国广大共产党员踊跃捐款,据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为A. 7.68×109元B. 7.68×1010元C. 76.8×108元D. 0.768×1010元二、填空题(本大题共11小题,共33.0分)8.一个数的相反数是−0.25,则这个数的倒数是()A.−4B.4C.−14D.149.如果一个数的绝对值是它的相反数,则这个数一定是()A. 负数B.正数C.非负数D.非正数10. 某地气温开始是6℃,先升高4℃,又下降11℃,这时气温是_________.11. 在227,−(−1),3.14,−|8−22|,−3,−32,−(−13)3,0中,有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m −n −k +t =_____12. 从1、6、−5、−2这四个数中任意选择两个数进行加、减、乘、除中的某一种运算,结果最大的是 (写出算式和结果);13. 计算:2×103×(3×102)3=______________.(结果用科学记数法表示)14. 根据国家统计局统一核算,2019年珠海市实现地区生产总值3435.89亿元,GDP 总量居全省第六.其中数据3435..89亿.用科学记数法表示为_________________. 15. 据“保护长江万里行”考察队统计,仅2006年长江流域废水排放量已经达到163.9亿吨,请将这个数据保留两个有效数字,并用科学计数法表示出来:___________________________。
(完整word版)人教版七年级数学易错题讲解及答案
第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个.⑼ 若0,a =则0ab=. ⑽绝对值等于本身的数是1.二.填空题⑴若1a -=a -1,则a 的取值范围是: . ⑵式子3-5│x │的最 值是 . ⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 .⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= .⑻如果a <b <0,那么1a 1b .⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b ⋅=-,则a 、b 的关系是________.⑾若a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5);②(-5) - (+7)- (-6)+4. ④近似数2.40×104精确到百分位,它的有效数字是2,4;⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小. 四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-有理数·易错题练习一.多种情况的问题(考虑问题要全面) (1)已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________. (4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______;(7)若|a|=|b|,则a,b 的关系是________; (8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a________-a ;a --是一个________数; (2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
七上数学错题
七上数学错题标题:七年级上册数学常见错题及解析引言:数学是一门需要理解和运用的学科,而在学习过程中,学生常常会遇到一些容易出错的题目。
本文将详细介绍七年级上册数学中常见的错题,并给出解析,希望能帮助同学们更好地理解和掌握数学知识。
一、整数运算错误:1. 错题:计算 6 - 9 = ?解析:在整数运算中,减法可以转化为加法,即 6 - 9 可以转化为6 + (-9)。
因此,答案为 -3。
2. 错题:计算 -2 × 3 = ?解析:在整数乘法中,两个负数相乘的结果是正数。
因此,-2 × 3 = -6。
二、分数运算错误:1. 错题:计算 1/3 + 1/4 = ?解析:在分数相加时,需要找到两个分数的公共分母。
对于1/3和1/4,最小公倍数是12。
因此,1/3 + 1/4 = 4/12 + 3/12 = 7/12。
2. 错题:计算2/5 × 3/4 = ?解析:在分数相乘时,直接将两个分数的分子相乘,分母相乘。
因此,2/5 × 3/4 = 6/20 = 3/10。
三、代数式化简错误:1. 错题:化简表达式 2x + 3x + 4x = ?解析:在代数式化简中,相同字母的系数相加即可。
因此,2x + 3x + 4x = (2+3+4)x = 9x。
2. 错题:化简表达式 5a - 2b + 3a + b = ?解析:在代数式化简中,相同字母的系数相加,不同字母的项保持不变。
因此,5a - 2b + 3a + b = (5+3)a + (-2+1)b = 8a - b。
四、几何图形计算错误:1. 错题:计算矩形的面积,长为4cm,宽为3cm,求面积。
解析:矩形的面积可以通过长乘以宽得到。
因此,面积为4cm × 3cm = 12cm²。
2. 错题:计算圆的周长,半径为6cm,求周长。
解析:圆的周长可以通过直径乘以π得到。
因此,周长为2 × 6cm × π ≈ 37.68cm。
人教版七年级上册数学易错题集及解析
人教版七年级上册数学易错题集及解析人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、精确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和,B正确.正有理数与,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D 正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意是整数,但不是正数.变式:2.下列四种说法:①是整数;②是自然数;③是偶数;④是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级数学上册《有理数》易错题练习-有答案
人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定,a 可能是正数,0,负数分析:若a 是正数,则a就是负数,若a=0 则a=0 若a 是负数,则a 就是正数.2、在数轴上点A表示的数是7.点B,C表示的两个数互为相反数且C与A之间的距离为2,求点B,C 对应的数.错解:点C与点A 之间的距离为2,点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.剖析:点C与点A之间的距离为2,则点C有可能在点A的左侧也有可能在点A右侧.故要分情况讨论.正解:点C与点A 之间的距离为2,点C在点A的左侧2个单位长度或点C在点A的右侧2个单位长度.① 点C在点A的左侧2个单位长度,则点C表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.② 点C在点A的右侧2个单位长度,则点C表示的数为9.点B 和点C 表示的数互为相反数,B 表示的数为-9.1 1 1 13、.计算:1 5 5 9 9 13 13 17 2001 2005错解:原式=1 1 1 1 1 1 1 1 1 15 5 9 9 13 13 17 2001 20051=120052004=2005剖析:由于学生在长期的学习中形成的思维定式,用类似于解1 1 1 1 11 1 1 1 1方法直接去求解.而忽视本12 23 34 2003 2004 2004 20051 4 1 1 4413 13 17 20011 2005题1 1 4,1 1 4结果中分子是4而不是1.故这样做是错的.5 5 5 9 451正解:原式=55991 1 1 156= (1 )4 2005 = 501.=2005174、计算: 391713 . 2617错解】原式 39 13 17 1326 17 507 21 515 .2错解剖析】本题错误原因是把 3917 看成 39与17 的和,而它应是 39与26 2617 17的和. 26正确解答】原式 39 13 17 13 507 17 5151 .26 2 25、计算:1) 14 61 2 ( 3)2 ;错解剖析】错解一中是将 14计算成 1得到163,错解二中是去括号符号出错解】错解一:原式 =1- 16 =1-16 =1+76=13.=6.错解二:原式 =-1- 1 × 6 =-1- 1 ×6 =-1-76 13 =- . 62-9) -7)2-9) -7)13错得到7正确答案】原式 =-1- 1×( 2-9)6 1=-1- 1 ×(-7)6=- 1+ 76 162) ( 1)4 32 22 ( 1)2.2错解】原式 =1- 9÷ 1=-8.错解剖析】没有按照运算顺序计算,而是先计算 22 ( 3)2 .2正确答案】原式 =1-9× 1 × 144=1-916 7=16.1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2y7、用代数式表示下列语句:1)比 x 与 y 的和的平方小 x 与 y 的和的数;a 的 2倍与b 的1 的差除以 a 与b 的差的立方 .32) 错解: 1) x 2y 2x y 2) 2a 13b a b 3. 6、 用代数式表示下列语句:1) 比 x 与 y 的和的平方小 x 与 y 的和的数;剖析: 2)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3正解:(1)(x y) 2 (x y) (2)12a b3 (a b) 3222)a的2倍与b的1的差除以a与b的差的立方.37373剖析:(1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和 再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2 y 2x y .2a1b正解:(1)(x y)2 (x y) (2)33(a b) 38、已知方程 (m 3)x 4 m 2是关于 x 的一元一次方程. 求:(1) m 的值; (2) 写出这个关于 x 的一元一次方程. 【错解】 m=±3. 【剖析】忘记 m-3≠0 这个条件.m 2 1 【正解】(1)由 m 2 1得 m=-3.m 3 0 (2)-6x +4=-5.9、解方程 7x -1 x 1(x 1) 2(x 1).2 23 1 1 2【错解】 7 x - 1 x 1(x 1) 2(x 1).2 2 342x 3x 3(x 1) 4(x 1) . 42x 3x 3x 3 4x 4 . 32x=-7.7x= .3211 【剖析】 去中括号时 1(x 1)漏乘系数 1 ,另外,同样在这一步去括号时忘 22记了考虑符号问题. 【正解】第一次去分母,得142 x - 3 x (x 1) 4(x 1).2第一次去括号,得 42 x - 3x 3(x 1) 4x 4 .2 第二次去分母,得 84 x- 6x + 3x -3=8x-8. 移项,合并同类项,得 73 x =- 5. 把系数化为 1,得x =10. 解方程 x 1 = 5.错解:(1) x 2 y 2x y2) 2a 1b a b 3.32)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3【错解】由x 1=5 得到x- 1=5.∴ x=6.【剖析】去绝对值符号必须考虑正负性x-1=5 或x-1=-5.【正解】由x 1=5得到x- 1=5或x- 1=- 5.∴ x=6 或x=-4.11、某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付264元,请问张强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20 千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32.∴第一次购买32 千克香蕉,第二次购买18 千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20 千克以上但不超过40 千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32(不符合题意,舍去).答:第一次购买14 千克香蕉,第二次购买36 千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体. 错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为 C 、D 也是柱体.图形 C 因为上下底面不平行,所以不是柱体;图形 D 上下底面 大小不等,所以也不是柱体.正确答案: A 和B 是柱体( A 是圆柱, B 是棱柱).13、已知点 B 在直线 AC 上,AB =6,AC =10,P 、Q 分别是 AB 、AC 的中点,求PQ 的长. 错解: PQ=2.错解分析: 这是一道典型的数形结合题, 用几何的思想, 代数的方法进行计算,重点要画 出符合条件的两种图形 ,注重分类的完备性.正确答案:本题 B 点有在线段 AC 上或在射线 CA 上两种可能.由 P 、Q 分别为 AB 、AC 的 11 中点可知 AP = AB =3,AQ = AC =5,所以 PQ =AQ -AP =2 或 PQ =AQ + AP =8.22AP Q B CB P A Q C所以 PQ 的长为 2 或 8.14、 (1)计算 14° 41′ 25;″×5(2)把 26.29 °转化为度、分、秒表示的形式. 错解一 :( 1) 14°41′25″=×750°205′12=5″72°6′2;5″( 2) 26 . 29°= 26°29.′错解二 :( 1) 14°41′25″=×750°205′12=5″91°7′;5″ ( 2) 26 . 29°= 26°2′.9″剖析:角的度量单位度、分、秒之间是六十进制(即满 60 进1),而不是百进制或十进 制,在由大单位化成下一级小单位时应乘以 60,由小单位化成上一级大单位时应除以 60 ,上述错解均因单位间的进制关系不清而致错.正解:( 1)14°41′25″=×750°205′12=5″73°27′;5″ ( 2) 26 . 29°= 26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+ 17′+0.4×60″=26°17′2.4″15、如图,已知∠ AOC =∠ BOC =∠ DOE =90°,问图中是否有与∠ COE 互补的角?错解:观察图形可知,图中没有与∠ COE 互补的角.剖析:图中真的没有与∠ COE 互补的角吗?还是让我们分析后再下结论吧!由∠ AOC =90°可知:∠AOD 与∠COD 互为余角;由∠ DOE=90°可知:∠ COE与∠ COD 互为余角,根据“同角的余角相等”得∠ COE=∠ AOD.可见,要找与∠ COE 互补的角,可转化为找与∠AOD 互补的角,观察图形知:∠ BOD 与∠ AOD 互为补角,因此与∠ COE 互补的角是∠ BOD .由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠ COE 互补的角,它是∠ BOD .思考:图中有没有与∠ COD 互补的角?。
人教版七年级数学上册易错题及解析五
七年级数学(上)易错题及解析(5)16、小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.考点:解一元一次方程.专题:计算题.分析:先根据错误的做法:“方程左边的1没有乘以10”而得到x=4,代入错误方程,求出a的值,再把a的值代入原方程,求出正确的解.解答:解:∵去分母时,只有方程左边的1没有乘以10,∴2(2x-1)+1=5(x+a),把x=4代入上式,解得a=-1.原方程可化为:去分母,得2(2x-1)+10=5(x-1)去括号,得4x-2+10=5x-5移项、合并同类项,得-x=-13系数化为1,得x=13故a=-1,x=13.点评:本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.17、方程2-3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.考点:一元一次方程的解.专题:计算题.分析:先求已知方程的解,再利用倒数关系确定含字母系数方程的解,把解代入方程,可求字母系数k.解答:解:2-3(x+1)=0的解为则的解为x=-3,代入得:解得:k=1.故答案为:1.点评:本题的关键是正确解一元一次方程以及互为倒数的意义;理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.18、AB两地相距600千米,一列慢车从A地开出,每小时行80千米,一列快车从B地开出,每小时行120千米,两车同时开出。
①若同向而行,出发后多少小时相遇?②若相背而行,多少小时后,两车相距800千米?③若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?④若两车同向而行,慢车在快车后面,多少小时后,两车相距760千米?1) x小时相遇,就是共同走了600千米x*80+x120*x=600x=3小时2)x小时,共同走了800-600=200米x*80+x120*x=200x=1小时3)x小时,追上,即快车比慢车多走600千米120*x-600=80*xx=15小时4)x小时,相距760千米,就是快车多走了760-600=160千米120*x-160=80*xx=4小时19、两个长方形的长与宽的比都是2:1,大长方形的宽比小长方形的宽多3厘米大长方形的周长是小长方形周长的2倍,求这两个长方形的面积。
人教版七年级数学上册知识点与易错题汇总
精品基础教育教学资料,仅供参考,需要可下载使用!七年级数学(上)易错题及解析(1)(认真分析,找出易错原因)1、近两年,国际市场黄金价格涨幅较大,中国银行推出“金御鼎”的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为280元/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六、星期日休市)问:(1)本周星期三黄金的收盘价是多少?(2)本周黄金收盘时的最高价、最低价分别是多少?(3)上周,小王以周五的收盘价280元/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?考点:有理数的混合运算;正数和负数.专题:应用题;经济问题.分析:根据上表和题意可列表解答:解:(1)280+(+7)+(+5)+(-3)=289(元/克)(2)最高价是292元/克;最低价是283元/克(3)291×1000×(1-5‰-3‰)-280×1000×(1+5‰)=7272(元)答:赚了7272元.(若分步列式,计算正确,可酌情给分)点评:本题考查有理数的混合运算.解决本题的关键是理解题意,根据题意写出算式.2、每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?考点:正数和负数;有理数的加法.专题:应用题;图表型.分析:(1)由题意可知每袋大米的标准重量为50千克,超过标准重量的记为正数,不足的记为负数,然后相加即可;(2)由题(1)可知10袋大米总计超过5.4千克,然后用10×50+5.4千克即可.解答:解:(1)与标准重量比较,10袋大米总计超过1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量3、小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是15;。
人教版七年级数学上册期末考试易错题-有答案
【点睛】
本题考查的是有理数的加减混合运算熟知有理数的加法法则是解答此题的关键.
14.(新东方)已知abc为有理数且它们在数轴上的位置如图所示.
(1)断:a_____0b_____0c_____0(填“<”或“=”或“>”)
(2)若 求 的值.
【答案】(1)<>>;(2)4
2.(2021·山东七年级期末)计算 的值等于()
A. B. C. D.
【答案】D
【分析】
根据有理数的减法法则计算可得.
【详解】
解: =
故选:D.
【点睛】
本题主要考查有理数的减法解题的关键是掌握有理数减法法则:减去一个数等于加上这个数的相反数.
3.(【新东方】【2021.5.20】【WZ】【初一下】【初中数学】【WZ00145】)若 且 则 的值等于()
【易错2例题】有理数的减法
2.(2021·西安市第五十三中学七年级期末)计算
(1) ;(2) .
【答案】(1) ;(2) .
【分析】
(1)先将有理数减法转化为加法再按加法进行计算即可;
(2)先将有理数减法转化为加法然后利用加法的结合律先将整数与整数相加分数与分数相加.
【详解】
解:(1) ;
(2) .
(6)原式 .
(7)原式 .
(8)原式 .
【点睛】
本题考查有理数的加减混合运算正确运用法则和运算律是解题的关键.
10.(1.有理数(题型篇))已知|a|=2|b|=5
(1)求a+b;
(2)若又有a>b求a+b.
【答案】(1)7或-3或3或-7(2)-3或-7
【分析】
(1)先根据绝对值求出a、b的值再计算a+b;
2020-2021学年人教版七年级数学下册第五章《相交线与平行线》易错题(解析版)
2020-2021学年人教版七年级数学下册第五章《相交线与平行线》易错题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)∠=︒,1.如图,直线l与直线AB相交,将直线1l沿AB的方向平移得到直线2l,若160则2∠的度数为()A.100︒B.110︒C.120︒D.130︒【答案】C【解析】【分析】先利用平移的性质得到l1∥l2,则根据平行线的性质得到∥3=120°,然后根据对顶角的性质得到∥2的度数.【详解】解:∥直线l1沿AB的方向平移得到直线l2,∥l1∥l2,∥∥1+∥3=180°,∥∥3=180°−60°=120°,∥∥2=∥3=120°.故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等,同时也考查了平行线的性质.2.如图,2∠的同旁内角是( )A .3∠B .4∠C .5∠D .1∠【答案】B【解析】【分析】 两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【详解】解:由图可得,∥2与∥4是BD 与EF 被AB 所截而成的同旁内角,∥∥2的同旁内角是∥4,故选B .【点睛】此题主要考查了同旁内角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.如图,CD⊥AB,BC⊥AC,垂足分别是D,C,则表示点C 到线段AB 的距离的是()A.线段AC的长度B.线段BC的长度C.线段CD的长度D.线段BD的长度【答案】C【解析】【分析】直接根据点到直线距离的定义即可得出结论.【详解】解:直线外一点到直线的垂线段的长度,叫做点到直线的距离,∴点C到线段AB的距离是线段CD的长度.故选C.【点睛】本题考查的是点到直线距离,熟知点到直线距离的定义是解答此题的关键.4.如图,将一块含有45角的直角三角板的两个顶点放在一把直尺的对边上,如果125∠,那么2=∠的度数是()A.30B.25C.20D.15【答案】C【分析】根据平行线的性质求出∥3,再根据直角三角板的性质得出∥2的度数即可.【详解】根据题意,标注如下图所示∥直尺两边平行,∥∥3=∥1=25°,∥∥2+∥3=45°,∥∥2=20°,故选C.【点睛】本题考查了平行线的性质的应用,能求出∥3的度数是解此题的关键,注意:两直线平行,内错角相等.5.如图,不能说明AB//CD的有()⊥⊥DAC=⊥BCA;⊥⊥BAD=⊥CDE;⊥⊥DAB+⊥ABC=180°;⊥⊥DAB=⊥DCBA.1个B.2个C.3个D.4个【答案】C【分析】选项∥∥DAC 和∥BCA 属于内错角,选项∥∥BAD 和∥CDE 属于同位角,选项∥∥DAB 和∥ABC 属于同旁内角,根据两直线平行的三大定理进行判断,选项∥不符合两直线平行的判定定理,不能判定哪两条直线平行.【详解】选项∥∥∥DAC=∥BCA ∥AD∥BC (内错角相等,两直线平行);选项∥∥∥BAD=∥CDE∥AB∥CD (同位角相等,两直线平行);选项∥∥∥DAB+∥ABC=180°∥AD∥BC (同旁内角互补,两直线平行);选项∥不符合两直线平行的判定定理,不能判定哪两条直线平行.故选C .【点睛】本题考查了两直线平行的判定定理:(一)同位角相等,两直线平行;(二)内错角相等,两直线平行;(三)同旁内角互补,两直线平行.找准两个角是同位角,内错角还是同旁内角,然后再进行判断.6.如图,,,AB BC BC CD EBC BCF ⊥⊥∠=∠,则ABE ∠和FCD ∠的关系是( )A .不是同位角但相等B .是同位角且相等C .是同位角但不相等D .不是同位角也不相等【答案】A【分析】首先根据垂直可得∥ABC=∥DCB=90°,再根据等角的余角相等可得∥ABE=∥FCD.【详解】解:∥AB∥BC,BC∥CD,∥∥ABC=∥DCB=90°,∥∥EBC=∥BCF,∥∥ABE=∥FCD.故选A.【点睛】此题主要考查了垂直定义,以及余角的性质,关键是掌握等角的余角相等.7.如图,如果AB⊥EF,EF⊥CD,下列各式正确的是()A.⊥1+⊥2−⊥3=90°B.⊥1−⊥2+⊥3=90°C.⊥1+⊥2+⊥3=90°D.⊥2+⊥3−⊥1=180°【答案】D【分析】根据平行线的性质,即可得到∥3=∥COE,∥2+∥BOE=180°,进而得出∥2+∥3-∥1=180°.【详解】∥EF∥CD∥∥3=∥COE∥∥3−∥1=∥COE−∥1=∥BOE∥AB∥EF∥∥2+∥BOE=180°,即∥2+∥3−∥1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.8.如图,图⊥是一个四边形纸条ABCD,其中AB⊥CD,E,F 分别为边AB,CD 上的两个点,将纸条ABCD 沿EF 折叠得到图⊥,再将图⊥沿DF 折叠得到图⊥,若在图⊥中,⊥FEM=26°,则⊥EFC 的度数为()A.52°B.64°C.102°D.128°【答案】C【解析】【分析】先由折叠得:∥BEF=2∥FEM=52°,由平行线的性质得∥EFM=26°,如图∥中,根据折叠和平行线的性质得,∥MFC=128°,根据角的差可得结论.【详解】如图∥,由折叠得:∥BEF=2×26°=52°,如图∥,∥AE∥DF,∥∥EFM=26°,∥BMF=∥DME=52°,∥BM∥CF,∥∥CFM+∥BMF=180°,∥∥CFM=180°-52°=128°,由折叠得:如图∥,∥MFC=128°,∥∥EFC=∥MFC-∥EFM=128°-26°=102°,故选C.【点睛】本题考查了平行线的性质、翻折变换的性质等知识;熟练掌握平行线和翻折变换的性质得出相等的角是解决问题的关键.9.已知命题A:“若a a=”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.a=1B.a=0C.a=﹣1﹣k(k为实数)D.a=﹣1﹣k2(k为实数)【答案】D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∥a=1>0,故选项A不符合题意,∥a=0,故选项B不符合题意,∥a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∥a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键.10.如图,AB⊥DC,ED⊥BC,AE⊥BD,那么图中与⊥ABD面积相等的三角形有()A.1个B.2个C.3个D.4个【答案】C【分析】根据等高模型,同底等高的三角形的面积相等即可判断;【详解】解:∥AE∥BD,∥S∥ABD=S∥BDE,∥DE∥BC,∥S∥BDE=S∥EDC,∥AB∥CD,∥S∥ABD=S∥ABC,∥与∥ABD面积相等的三角形有3个,故选C.【点睛】本题考查平行线的性质、等高模型等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共7小题,每小题3分,共21分)11.若//a b,//l a,则l与b的位置关系是__________________.【答案】//l b【分析】由平行线的传递性,两条直线都与a平行,则这两条直线也平行,即可解答;【详解】解:由平行线的传递性可知:∥//a b,//l a,∥//l b.故答案为//l b.【点睛】本题考查了平行线的传递性,掌握两条直线都与同一条直线平行,则这两条直线也平行是解题的关键.12.下列各种说法中错误的是______(填序号)⊥过一点有且只有一条直线与已知直线平行;⊥在同一平面内,两条不相交的线段是平行线段;⊥两条直线没有交点,则这两条直线平行;⊥在同一平面内,若直线AB⊥CD,直线AB与EF相交,则CD与EF相交.【答案】∥∥∥.【解析】【分析】根据平行线的定义,结合各项进行判断即可.【详解】解:∥经过直线外一点,有且只有一条直线与已知直线平行,原说法错误,故该项错误;∥在同一平面内,两条不相交的线段不一定是平行线段,原说法错误,故该项错误;∥没有说明在同一平面内,故本项错误;∥在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,说法正确,故本项正确;故答案为∥∥∥.【点睛】本题考查了平行线的知识,平行一般指的是直线平行,在同一平面内,两条线段即使不相交,也不一定是平行线段.13.如图,已知AB⊥CD,⊥A=70°,则⊥1的度数是_____度.【答案】110【分析】首先根据平行线的性质,得∥A的内错角是70°,再根据邻补角的定义,得∥1的度数是180°﹣70°=110°.【详解】解:∥AB∥CD,∥A=70°,∥∥2=∥A=70°,∥∥1=180°﹣70°=110°.【点睛】此题考查平行线的性质,邻补角,解题关键在于得到∥A 的度数.14.如图,AEFC 是折线,AB//CD ,那么⊥1,⊥2,⊥3,⊥4的大小所满足的关系式为_______________;【答案】2314180∠+∠=∠+∠+︒或2314180∠+∠-∠-∠=︒【分析】首先过点E 作//EM AB ,过点F 作//FN CD ,由//AB CD ,即可得//////AB EM FN CD ,根据两直线平行,内错角相等与两直线平行,同旁内角互补即可求得1AEM ∠=∠,180MEF NFE ∠+∠=︒,2NFC ∠=∠,则可求得1∠、2∠、3∠、4∠的大小所满足的关系式.【详解】解:过点E 作//EM AB ,过点F 作//FN CD ,//AB CD ,//////AB EM FN CD ∴,1AEM ∴∠=∠,180MEF NFE ∠+∠=︒,4NFC ∠=∠,2MEF AEM ∠=∠-∠,3NFE NFC ∠=∠-∠,2314180∴∠+∠=∠+∠+︒或2314180∠+∠-∠-∠=︒.故答案为:2314180∠+∠=∠+∠+︒或2314180∠+∠-∠-∠=︒.【点睛】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用与辅助线的作法.15.如图,将一个长方形纸条折成如图的形状,若已知1130∠=︒,则2∠=_________︒.【答案】65【分析】如下图,利用∥1的大小和平行,先求解出∥3的大小,再利用∥3和∥2以及∥2折叠部分的大小总共为平角来求解∥2的大小.【详解】如下图∥∥1=130°,∥∥3=50°∥图形是折叠而来,∥∥2=∥4∥∥3+∥2+∥4=180°∥∥2+∥4=130°∥∥2=65°故答案为:65.【点睛】本题考查了折叠问题及平行线的性质,折叠部分是完全相同的,即折叠部分的角度是相等的,这是一个隐含条件,解题过程中不可遗漏.16.如果4条直线两两相交,最多有_________个交点,最少有_________个交点.【答案】6, 1【分析】根据相交线的特点,可得答案.【详解】解:最多交点个数为(1)2n n-=44-1=62⨯(),最少有1个交点.故答案为6,1..【点睛】本题考查了相交线,关键是考虑全面,不要漏解.17.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有_________次出现三角形ACD的一边与三角形AOB的某一边平行.【答案】8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∥BAD=45°;(2)如图2,当AC边与OB平行时,∥BAD=90°+45°=135°;(3)如图3,DC边与AB边平行时,∥BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∥BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∥BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∥BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∥BAD=30°,(8)如图8,DC边与AO边平行时,∥BAD=30°+45°=75°;综上所述:∥BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.三、解答题(本大题共6小题,共49分)18.如图,在ABC 中,40B ∠=︒,70C ∠=︒,AD 是⊥ABC 的角平分线,点E 在BD 上,点F 在CA 的延长线上,EF AD ∥,求F ∠的度数.【答案】35°【分析】由三角形内角和定理可知BAC ∠的度数,由角平分线的性质可知DAC ∠的度数,根据两直线平行同位角相等可求解.【详解】解:(1)∥40B ∠=︒,70C ∠=︒,∥70BAC ∠=︒,∥AD 是ABC 的角平分线,∥1352DAC BAC ∠=∠=︒,∥EF AD ∥,∥35F DAC ∠=∠=︒.【点睛】本题考查了平行线的性质,综合运用三角形内角和定理,角平分线的性质,平行线的性质是解题的关键.19.如图所示:(1)若//DE BC ,13∠=∠,90CDF ∠=︒,求证:FG AB ⊥.(2)若把(1)中的题设“//DE BC ”与结论“FG AB ⊥”对调,所得命题是否是真命题?说明理由.【答案】(1)详见解析;(2)是真命题.【分析】(1)利用平行线的性质以及结合平行线的判定方法分析得出答案;(2)利用平行线的性质以及结合平行线的判定方法分析得出答案.【详解】解:(1)证明://DE BC (已知), 12∠∠∴=.(两直线平行,内错角相等), 13∠=∠(已知), 23∴∠=∠(等量代换), //DC FG ∴.(同位角相等,两直线平行), 90BFG FDC ∴∠=∠=︒.(两直线平行,同位角相等), FG AB ∴⊥.(垂直的定义);(2)是真命题,理由如下:FG AB ⊥(已知), 90BFG FDC ∴∠=︒=∠,//DC FG ∴.(同位角相等,两直线平行), 23∴∠=∠.(两直线平行,同位角相等), 13∠=∠(已知), 12∠∠∴=.(等量代换), //DE BC ∴.(内错角相等,两直线平行).【点睛】此题主要考查了平行线的判定与性质,正确掌握相关判定与性质是解题关键. 20.已知,如图,⊥1=⊥ACB ,⊥2=⊥3,FH⊥AB 于H ,求证:CD⊥AB .证明:⊥⊥1=⊥ACB (已知)⊥DE⊥BC ( )⊥⊥2= ( )⊥⊥2=⊥3(已知)⊥⊥3=⊥CD⊥FH ( )⊥⊥BDC =⊥BHF ( )又⊥FH⊥AB(已知)⊥ ()⊥CD⊥FH⊥⊥BHF=⊥BDC=90°()即CD⊥AB()【答案】同位角相等,两直线平行;∥BCD,两直线平行,内错角相等;∥BCD;同位角相等,两直线平行;两直线平行,同位角相等;∥BHF=90°,垂直的定义;两直线平行,同位角相等;垂直的定义.【解析】【分析】先根据,∥1=∥ACB得出DE∥BC,故可得出∥2=∥BCD,根据∥2=∥3得出∥3=∥BCD,所以CD∥FH,再由垂直的定义得出∥BHF=90°由平行线的性质即可得出结论.【详解】∥∥1=∥ACB(已知),∥DE∥BC(同位角相等,两直线平行),∥∥2=∥BCD.(两直线平行,内错角相等).∥∥2=∥3(已知),∥∥3=∥BCD∥CD∥FH(同位角相等,两直线平行),∥∥BDC=∥BHF(两直线平行,同位角相等)又∥FH∥AB(已知),∥∥BHF=90°(垂直的定义).∥CD∥FH∥∥BDC=∥BHF=90°,(两直线平行,同位角相等)∥CD∥AB(垂直的定义).故答案为:同位角相等,两直线平行;∥BCD,两直线平行,内错角相等;∥BCD;同位角相等,两直线平行;两直线平行,同位角相等;∥BHF=90°;垂直的定义;两直线平行,同位角相等;垂直的定义.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.21.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键.22.问题情境1:如图1,AB⊥CD,P是ABCD内部一点,P在BD的右侧,探究⊥B,⊥P,⊥D之间的关系?小明的思路是:如图2,过P作PE⊥AB,通过平行线性质,可得⊥B,⊥P,⊥D之间满足关系.(直接写出结论)问题情境2如图3,AB⊥CD,P是AB,CD内部一点,P在BD的左侧,可得⊥B,⊥P,⊥D之间满足关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB⊥CD,⊥ABE与⊥CDE两个角的角平分线相交于点F(1)如图4,若⊥E=80°,求⊥BFD的度数;(2)如图5中,⊥ABM=13⊥ABF,⊥CDM=13⊥CDF,写出⊥M与⊥E之间的数量关系并证明你的结论.(3)若⊥ABM=1n⊥ABF,⊥CDM=1n⊥CDF,设⊥E=m°,用含有n,m°的代数式直接写出⊥M=.【答案】问题情境1:∥B+∥BPD+∥D=360°,∥P=∥B+∥D;(1)140°;(2)16∥E+∥M=60°(3)360m2nM︒︒-∠=【分析】问题情境1:过点P作PE∥AB,根据平行线的性质,得到∥B+∥BPE=180°,∥D+∥DPE=180°,进而得出:∥B+∥P+∥D=360°;问题情境2:过点P作EP∥AB,再由平行线的性质即可得出结论;∥,∥根据∥中的方法可得出结论;问题迁移:(1)如图4,根据角平分线定义得:∥EBF=12∥ABE,∥EDF=12∥CDE,由问题情境1得:∥ABE+∥E+∥CDE=360°,再根据四边形的内角和可得结论;(2)设∥ABM=x,∥CDM=y,则∥FBM=2x,∥EBF=3x,∥FDM=2y,∥EDF=3y,根据问题情境和四边形内角和得等式可得结论;(3)同(2)将3倍换为n倍,同理可得结论.【详解】问题情境1:如图2,∥B+∥BPD+∥D=360°,理由是:过P作PE∥AB,∥AB∥CD,PE∥AB,∥AB∥PE∥CD,∥∥B+∥BPE=180°,∥D+∥DPE=180°,∥∥B+∥BPE+∥D+∥DPE=360°,即∥B+∥BPD+∥D=360°,故答案为∥B+∥P+∥D=360°;问题情境2如图3,∥P=∥B+∥D,理由是:过点P作EP∥AB,∥AB∥CD,∥AB∥CD∥EP,∥∥B=∥BPE,∥D=∥DPE,∥∥BPD=∥B+∥D,即∥P=∥B+∥D;故答案为∥P=∥B+∥D;问题迁移:(1)如图4,∥BF、DF分别是∥ABE和∥CDE的平分线,∥∥EBF=12∥ABE,∥EDF=12∥CDE,由问题情境1得:∥ABE+∥E+∥CDE=360°,∥∥E=80°,∥∥ABE+∥CDE=280°,∥∥EBF+∥EDF=140°,∥∥BFD=360°﹣80°﹣140°=140°;(2)如图5,16∥E+∥M=60°,理由是:∥设∥ABM=x,∥CDM=y,则∥FBM=2x,∥EBF=3x,∥FDM=2y,∥EDF=3y,由问题情境1得:∥ABE+∥E+∥CDE=360°,∥6x+6y+∥E=360°,16∥E=60﹣x﹣y,∥∥M+∥EBM+∥E+∥EDM=360°,∥6x+6y+∥E=∥M+5x+5y+∥E,∥∥M=x+y,∥16∥E+∥M=60°;(3)如图5,∥设∥ABM=x,∥CDM=y,则∥FBM=(n﹣1)x,∥EBF=nx,∥FDM =(n﹣1)y,∥EDF=ny,由问题情境1得:∥ABE+∥E+∥CDE=360°,∥2nx+2ny+∥E=360°,∥x+y=360m2n︒︒-,∥∥M+∥EBM+∥E+∥EDM=360°,∥2nx+2ny+∥E=∥M+(2n﹣1)x+(2n﹣1)y+∥E,∥∥M=360m2n︒︒-;故答案为∥M=360m2n︒︒-.【点睛】本题主要考查了平行线的性质和角平分线、n等分线及四边形的内角和的运用,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算,解题时注意类比思想的运用.23.如图1,已知直线PQ⊥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,⊥PAC=50°,⊥ADC=30°,AE平分⊥PAD,CE平分⊥ACD,AE与CE相交于点E.(1)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分⊥AA1D1,CE平分⊥ACD1,A1E与CE相交于E,⊥PAC=50°,⊥A1D1C=30°,求⊥A1EC 的度数.(2)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(1)相同,求此时⊥A1EC的度数.【答案】(1)130°;(2)40°.【分析】(1)直接利用角平分线的性质结合平行线的性质得出∥CAE以及∥ECA的度数,进而得出答案;(2)直接利用角平分线的性质结合平行线的性质得出∥1和∥2的度数,进而得出答案.【详解】解:(1)如图所示:∥∥A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∥∥QA1D1=30°,∥∥PA1D1=150°,∥A1E平分∥AA1D1,∥∥PA1E=∥EA1D1=75°,∥∥PAC=50°,PQ∥MN,∥∥CAQ=130°,∥ACN=50°,∥CE平分∥ACD1,∥∥ACE=25°,∥∥A1EC =360°-25°-130°-75°=130°;(2)如图所示:过点E作FE∥PQ,∥∥A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∥∥QA1D1=30°,∥A1E平分∥AA1D1,∥∥QA1E=∥2=15°,∥∥PAC=50°,PQ∥MN,∥∥ACN=50°,∥CE平分∥ACD1,∥∥ACE=∥ECN=∥1=25°,∥∥A1EC =∥1+∥2=15°+25°=40°.【点睛】此题主要考查了角平分线的定义以及平行线的性质等知识,正确应用平行线的性质是解题关键.。
初中数学七年级下册易错题汇总大全附答案带解析
初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。
正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。
人教版七年级上册数学 有理数易错题(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
七年级数学上册:易错题及解析(5)人教版
七年级数学上册:易错题及解析(5)人教版(认真分析,找出易错原因)16、小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.考点:解一元一次方程.专题:计算题.分析:先根据错误的做法:“方程左边的1没有乘以10”而得到x=4,代入错误方程,求出a 的值,再把a的值代入原方程,求出正确的解.解答:解:∵去分母时,只有方程左边的1没有乘以10,∴2(2x-1)+1=5(x+a),把x=4代入上式,解得a=-1.原方程可化为:去分母,得2(2x-1)+10=5(x-1)去括号,得4x-2+10=5x-5移项、合并同类项,得-x=-13系数化为1,得x=13故a=-1,x=13.点评:本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.17、方程2-3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.考点:一元一次方程的解.专题:计算题.分析:先求已知方程的解,再利用倒数关系确定含字母系数方程的解,把解代入方程,可求字母系数k.解答:解:2-3(x+1)=0的解为则的解为x=-3,代入得:解得:k=1.故答案为:1.点评:本题的关键是正确解一元一次方程以及互为倒数的意义;理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.18、AB两地相距600千米,一列慢车从A地开出,每小时行80千米,一列快车从B地开出,每小时行120千米,两车同时开出。
①若同向而行,出发后多少小时相遇?②若相背而行,多少小时后,两车相距800千米?③若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?④若两车同向而行,慢车在快车后面,多少小时后,两车相距760千米?1) x小时相遇,就是共同走了600千米x*80+x120*x=600x=3小时2)x小时,共同走了800-600=200米x*80+x120*x=200x=1小时3)x小时,追上,即快车比慢车多走600千米120*x-600=80*xx=15小时4)x小时,相距760千米,就是快车多走了760-600=160千米120*x-160=80*xx=4小时19、两个长方形的长与宽的比都是2:1,大长方形的宽比小长方形的宽多3厘米大长方形的周长是小长方形周长的2倍,求这两个长方形的面积。
人教版七年级数学上册考题易错汇总及答案解析
人教版七年级数学上册考题易错汇总及答案解析1.下表是某年 1 月份我国几个城市的平均气温,在这些城市中,平均气温最低的城市是()城市北京上海沈阳广州太原平均气温﹣5.6°C2.3°C﹣16.8°C17.6°C﹣11.2°CA.北京B.沈阳C.广州D.太原【考点】有理数大小比较.【解答】﹣16.8<﹣11.2<﹣5.6<2.3<17.6,∴在这些城市中,平均气温最低的城市是沈阳,故选:B.2.据报告,70 周年国庆正式受阅人数约 12000 人,这个数据用科学记数表示()A.12×104 人B.1.2×104 人C.1.2×103 人D.12×103 人【考点】科学记数法-表示较大的数.【解答】12000 用科学记数法表示为 1.2×104.故选:B.3.下列各式中,大小关系正确的是()A.0.3<﹣B.﹣>﹣C.﹣>﹣D.﹣(﹣)=﹣【考点】相反数;绝对值;有理数大小比较.【解答】A. ,故本选项不合题意;B.∵,∴,故本选项不合题意;C.∵,∴,故本选项不合题意;D. ,故本选项不合题意. 故选:B.4.已知 a>0,b<0,且|a|<|b|,则下列关系正确的是()A.b<﹣a<a<﹣bB.﹣a<b<a<﹣bC.﹣a<b<﹣b<aD.b < a<﹣b<a【考点】绝对值;有理数大小比较.【解答】∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>0,﹣a<b,∴b<﹣a<a<﹣b. 故选:A.5.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则 a﹣b 的值为()A.24B.14C.24 或 14D.以上都不对【考点】绝对值;有理数的加法;有理数的减法.【解答】∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当 a=5,b=﹣19 时,a﹣b=5+19=24,当 a=﹣5,b=﹣19 时,a﹣b=14.综上所述:a﹣b 的值为 24 或 14.故选:C.6.有理数 m,n 在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③;④﹣n﹣m>0.A.1 个B.2 个C.3 个D.4 个【考点】数轴;有理数的加法;有理数的减法.【解答】由数轴知,n<0<m,|n|>|m|,∴m+n<0,n﹣m<0,,﹣n﹣m>0,∴正确的有:①③④共 3 个. 故选:C.7.﹣的倒数是()A.﹣B.C.﹣D.【考点】倒数.【解答】﹣的倒数是﹣,故选:A.8.已知 a,b,c 为有理数,且 a+b﹣c=0,abc<0,则的值为()A.﹣1B.1C.1 或﹣1D.﹣3【考点】绝对值;有理数的减法;有理数的乘法.【解答】∵a+b﹣c=0,∴c﹣b=a,c﹣a=b,a+b=c,∵abc<0,分两种情况:①a、b、c 三个数都是负数,则原式=+﹣=﹣1﹣1+1=﹣1,②a、b、c 三数中有 2 个正数、1 个负数,即 c 是正数,原式=+﹣=﹣1+1﹣1=﹣1,故选:A.9.下列几种说法中,正确的是()A.有理数的绝对值一定比 0 大B.有理数的相反数一定比 0 小C.互为倒数的两个数的积为 1D.两个互为相反的数(0 除外)的商是 0【考点】相反数;绝对值;倒数;有理数的乘法;有理数的除法.【解答】A.有理数的绝对值不一定比 0 大,也可能等于 0,错误;B.有理数的相反数不一定比 0 小,0 的相反数还是 0,错误;C.互为倒数的两个数的积为 1,正确;D.两个互为相反的数(0 除外)的商应该是﹣1,错误;故选:C.10.在代数式中,整式的个数是()A.3B.4C.5D.6【考点】整式.【解答】、3xy、﹣、﹣是整式,故选:B.11.在代数式x﹣y,3a,a2﹣y+ ,,xyz,,中有()A.5 个整式B.4 个单项式,3 个多项式C.6 个整式,4 个单项式D.6 个整式,单项式与多项式个数相同【考点】整式.【解答】单项式有:3a,xyz,共 3 个.多项式有x﹣y,a2﹣y+ 共3 个,所以整式有 6 个. 故选:D.12.下列说法错误的是()A.﹣ x3y 的系数是﹣B.0 是单项式C. xy2 的次数是 2D.3x2﹣9x﹣1 的常数项是﹣1【考点】单项式;多项式.【解答】A.﹣x3y 的系数是﹣,故正确;B.0 是单项式,故正确;C. 的次数为 3,不是 2,故错误;D.3x2﹣9x﹣1 的常数项是﹣1,故正确;故选:C.13.多项式﹣ x3y2﹣x5y2+8 的最高次项是()A.x5y2B.﹣x5y2C.D.8【考点】多项式.【解答】多项式﹣x3y2﹣x5y2+8 的最高次项是﹣x5y2,故选:B.14.去括号正确的是()A.﹣(a﹣1)=a+1B.﹣(a﹣1)=a﹣1C.﹣(a﹣1)=﹣a+1D.﹣(a﹣1)=﹣a﹣1【考点】去括号与添括号.【解答】﹣(a﹣1)=﹣a+1,正确,故选项 C 符合题意;故选:C.15.下列代数式是同类项的是()A. 与 x2yB.2x2y 与 3xy2C.xy 与﹣xyzD.x+y 与 2x+2y【考点】同类项.【解答】A. 与 x2y,所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确;B.2x2y 与 3xy2,所含字母相同,但相同字母的指数不同,不是同类项,故本选项错误;C.xy 与﹣xyz,所含字母不尽相同,不是同类项,故本选项错误;D.x+y 与 2x+2y 是多项式,不是同类项,故本选项错误. 故选:A.16.将四张边长各不相同的正方形纸片按如图方式放入矩形 ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示. 设右上角与左下角阴影部分的周长的差为 l.若知道 l 的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④【考点】整式的加减.【解答】设①、②、③、④四个正方形的边长分别为 a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道 l 的值,则不需测量就能知道正方形④的周长,故选:D.17.若 x=2 是关于 x 的一元一次方程 ax﹣2=b 的解,则 3b﹣6a+2 的值是()A.﹣8B.﹣4C.8D.4【考点】一元一次方程的解.【解答】将 x=2 代入一元一次方程 ax﹣2=b 得 2a﹣b=2∵3b﹣6a+2=3(b﹣2a)+2∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4 即 3b﹣6a+2=﹣4故选:B.18.小明在解方程去分母时,方程右边的﹣1 没有乘 3,因而求得的解为 x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【考点】解一元一次方程.【解答】根据题意,得:2x﹣1=x+a﹣1,把 x=2 代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.19.下列四组变形中,属于移项变形的是()A.由 5x+10=0,得 5x=﹣10B.由,得 x=12C.由 3y=﹣4,得D.由 2x﹣(3﹣x)=6,得 2x﹣3+x=6【考点】等式的性质;解一元一次方程.【解答】A、移项得出 5x=﹣10,故本选项正确;B 、去分母得出 x=12,故本选项错误; C、方程的两边除以 3 得出,y=﹣,故本选项错误; D、去括号得出 2x ﹣3+x=6,故本选项错误;故选:A.20.方程去分母得() A.3(2x+3)﹣x=2(9x﹣5)+6B.3(2x+3)﹣6x=2(9x﹣5)+1 C.3(2x+3)﹣x=2(9x﹣5)+1 D.3(2x+3)﹣6x=2(9x﹣5)+6【考点】解一元一次方程.【解答】方程的两边都乘以 6 可得:3(2x+3)﹣6x=2(9x﹣5)+6.故选:D.21.解方程 4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得 4x﹣4﹣x=2x+1;②移项,得 4x+x﹣2x=4+1;③合并同类项,得 3x=5;④化系数为 1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【考点】解一元一次方程.【解答】方程 4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得 4x ﹣4﹣x=2x+1;②移项,得 4x﹣x﹣2x=4+1;③合并同类项,得 x=5;④化系数为 1,x=5.其中错误的一步是②. 故选:B.22.某班组每天需生产 50 个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了 6 个零件,结果比规定的时间提前 3 天并超额生产 120 个零件,若设该班组要完成的零件任务为 x 个,则可列方程为()A. B.C. D.【考点】由实际问题抽象出一元一次方程.【解答】实际完成的零件的个数为 x+120,实际每天生产的零件个数为 50+6,所以根据时间列的方程为:=3,故选:C.23.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 10 人不能上车,若每辆客车乘 43 人,则只有 1 人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④【考点】由实际问题抽象出一元一次方程.【解答】根据总人数列方程,应是 40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④. 故选:D.24.如图,将正方体的表面展开,得到的平面图形可能是()A.B.C.D.【考点】几何体的展开图.【解答】A.平面图形有凹字形,不能围成正方体,故本选项不合题意;B.平面图形能围成正方体,故本选项符合题意;C.平面图形不能围成正方体,故本选项不合题意;D..平面图形不能围成正方体,故本选项不合题意;故选:B.25.用平面去截正方体,在所得的截面中,不可能出现的是()A.七边形B.六边形C.平行四边形D.等边三角形【考点】认识立体图形;截一个几何体.【解答】∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴在所得的截面中,不可能出现的是七边形,故选:A.26.下列图形折叠后能得到如图的是()A.B.C.D.【考点】展开图折叠成几何体.【解答】A.折叠后①,②,③相邻,故此选项正确;B.折叠后①与③是相对面,不可能是①,②,③相邻,故此选项错误;C.折叠后①与③是相对面,不可能是①,②,③相邻,故此选项错误;D.折叠后②与③是相对面,不可能是①,②,③相邻,故此选项错误.故选:A.27.在图中,∠ACE 的补角、余角分别是()A.∠ECB、∠ECDB.∠ECD、∠ECBC.∠ACB、∠ACDD.∠ACB、∠ACD【考点】余角和补角.【解答】∠ACE 的补角是∠ECB,∠ACE 的余角是∠ECD. 故选:A.28.如图是某个几何体的展开图,则这个几何体是()A.三棱柱B.四棱柱C.四棱锥D.三棱锥【考点】几何体的展开图.【解答】观察图形可知,这个几何体是三棱柱. 故选:A.29.下列说法正确的是()A.两点之间的所有连线中,直线最短B.若点 P 是线段 AB 的中点,则 AP=BPC.若 AP=BP,则点 P 是线段 AB 的中点D.若 CA=3AB,则 CA=CB【考点】线段的性质:两点之间线段最短;两点间的距离.【解答】A、两点之间的所有连线中,线段最短,故本选项错误;B、根据线段中点的定义可知,若 P 是线段 AB 的中点,则 AP=BP,故本选项正确;C、如图:AP=BP,但 P 不是线段 AB 的中点,故本选项错误;D、如图:AB=1,AC=3,此时 CA=CB,故本选项错误.故选:B.30.下列说法中正确的有()①射线比直线小一半;②连接两点的线段叫两点间的距离;③过两点有且只有一条直线;④两点之间所有连线中,线段最短A.1 个B.2 个C.3 个D.4 个【考点】直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;两点间的距离.【解答】①射线比直线小一半,根据射线与直线都无限长,故这个说法错误;②连接两点的线段的长度叫两点间的距离,此这个说法错误;③过两点有且只有一条直线,此这个说法正确;④两点之间所有连线中,线段最短,此这个说法正确;故正确的有 2 个.故选:B.31.直线 a 上有 5 个不同的点 A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【考点】直线、射线、线段.【解答】根据题意画图:由图可知有 AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共 10 条.故选:D.32.某公司员工分别在 A、B、C 三个住宅区,A 区有 30 人,B 区有 15 人,C 区有 10 人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A 区B.B 区C.C 区D.A、B 两区之间【考点】两点间的距离.【解答】∵当停靠点在 A 区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在 B 区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在 C 区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在 A、B 区之间时,设在 A 区、B 区之间时,设距离 A 区 x 米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当 x=0 时,即在 A 区时,路程之和最小,为 4500 米;综上,当停靠点在 A 区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在 A 区.故选:A.33.如图,点 O 在 AB 上,∠AOC=120°,OD,OE 分别为∠AOC.∠BOC 的角平分线,图中大于 0°小于 180°的角中,相等的共有()对.A.6B.5C.4D.3【考点】角平分线的定义.【解答】∵∠AOC=120°,OD,OE 分别为∠AOC.∠BOC 的角平分线,∴∠AOD=∠COD=∠BOC=60°,∠COE=∠BOE=30°,∴∠AOC=∠BOD=120°,∴图形中相等的角共有 5 对,故选:B.34.如图,在△ABC 中,∠C=90°,点 D,E 分别在边 AC,AB 上.若∠B=∠ADE,则下列结论正确的是()A.∠A 和∠B 互为补角B.∠B 和∠ADE 互为补角C.∠A 和∠ADE 互为余角D.∠AED 和∠DEB 互为余角【考点】余角和补角.【解答】∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A 和∠ADE 互为余角. 故选:C.35.有理数 x 在数轴上的位置如图所示,化简|x|﹣3|2﹣x|得 .【考点】数轴;绝对值.【解答】根据题意得 x>2,∴2﹣x<0,∴|x|﹣3|2﹣x|=x﹣3(x﹣2)=x﹣3x+6=﹣2x+6.故答案为:﹣2x+6.36.下列说法:①若|a|=﹣a,则 a 为负数;②若|a|﹣|b|=a+b,则 a>0>b;③若 a>0,a+b>0,ab≤0,则|a|>|b|;④若|a+b|=|a|﹣|b|,则 ab≤0,其中正确的是 .【考点】绝对值;有理数的加法;有理数的乘法.【解答】:①若|a|=﹣a,则 a 为非正数,即 a 为 0 或负数,所以①不正确,;②若|a|﹣|b|=a+b,则 a>0>b,不正确,因为当 a=b=0 时,原等式成立;③若 a>0,a+b>0,ab≤0,则|a|>|b|,正确,因为异号两数相加取绝对值较大的加数的符号;④若|a+b|=|a|﹣|b|,则 ab≤0,正确,因为 a,b 两个数异号,或者其中一个数为 0 即可.故答案为③④.37.单项式的系数是;次数是 .【考点】单项式.【解答】根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是 3.38.多项式 x+7 是关于 x 的二次三项式,则 m= .【考点】多项式.【解答】∵多项式是关于 x 的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即 m≠﹣2,综上所述,m=2,故填空答案:2.39.当 k=时,关于 x,y 的代数式 x6﹣5kx4y3﹣4x6+3x4y3+3 合并后不含x4y3 项.【考点】合并同类项.【解答】关于 x,y 的代数式 x6﹣5kx4y3﹣4x6+3x4y3+3 合并后不含 x4y3 项,即﹣5kx4y3 与 3x4y3 合并以后是 0,∴﹣5k+3=0,解得.故答案为:.40.小马在解关于 x 的一元一次方程=3x 时,误将﹣2x 看成了+2x,得到的解为 x=6,请你帮小马算一算,方程正确的解为 x= .【考点】解一元一次方程.【解答】当 x=6 时,=3×6,解得:a=8,∴原方程是=3x,解得:x=3. 故答案为:3.41.小华同学在解方程 5x﹣1=()x+3 时,把“()”处的数字看成了它的相反数,解得 x=2,则该方程的正确解应为 x= .【考点】解一元一次方程.【解答】设()处的数字为 a,根据题意,把 x=2 代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为 x=.故答案为:.42.已知关于 x 的方程 2mx﹣6=(m+2)x 有正整数解,则整数 m 的值是 .【考点】解一元一次方程.【解答】解关于 x 的方程 2mx﹣6=(m+2)x,得:x= .∵x 为正整数,∴为正整数,又∵m 是整数,∴m﹣2 是 6 的正约数,∴m﹣2=1,2,3,6,∴m=3,4,5,8.43.为了倡导居民节约用水,自来水公司规定:居民每户用水量在 8 立方米以内,每立方米收费 0.8 元;超过规定用量的部分,每立方米收费 1.2 元.小明家 12 月份水费为 18 元,求小明家 12 月份的用水量,设小明家 12 月份用水量为 x 立方米,根据题意,可列方程为 .【考点】由实际问题抽象出一元一次方程.【解答】∵8×0.8=6.4<18,∴x>8,根据题意,可列方程为:8×0.8+1.2(x﹣8)=18,故答案为:8×0.8+1.2(x﹣8)=18.44.王强从 A 处沿北偏东 60°的方向到达 B 处,又从 B 处沿南偏西 25°的方向到达 C 处,则王强两次行进路线的夹角为度.【考点】方向角.【解答】由图可知,∠ABD=60°(两只线平行,内错角相等)由因为∠2=25°所以∠1=60°﹣25°=35°. 故答案为:35°.45.已知关于 x、y 的单项式xm﹣ny2 与单式﹣xym 是同类项,试求整式﹣[5m﹣(2mn+2n﹣3n)]﹣( mn﹣3n)的值.【考点】同类项;整式的加减-化简求值.【解答】∵单项式xm﹣ny2 与单式﹣xym 是同类项,∴m﹣n=1,m=2,解得,m=2,n=1,﹣[5m﹣(2mn+2n﹣3n)]﹣( mn﹣3n)=﹣m+ (2mn+2n﹣3n)﹣( mn﹣3n)=﹣m+mn+n﹣ n﹣ mn+3n=﹣m﹣ mn+ n,当 m=2,n=1 时,原式=﹣×2﹣×2×1+ ×1=﹣ .46.已知有理数 a,b 在数轴上的位置如图所示,解决以下问题:(1)化简:2b+a+|3b﹣a|﹣|2a﹣b|;(2)已知(3x﹣6)2+|2﹣2y|=2b+a+|3b﹣a|﹣|2a﹣b|,请你求出代数式 3xy+2(x2+2y)﹣3(xy+x2)的值.【考点】数轴;绝对值;整式的加减-化简求值.【解答】(1)观察数轴可知:b<0,a>0,∴3b﹣a<0,2a﹣b>0,∴2b+a+|3b﹣a|﹣|2a﹣b|=2b+a+a﹣3b﹣(2a﹣b)=2a﹣b﹣2a+b =0;(2)∵(3x﹣6)2+|2﹣2y|=2b+a+|3b﹣a|﹣|2a﹣b|=0,又∵(3x﹣6)2≥0,|2﹣2y|≥0,∴,∴x=2,y=1;∴3xy+2(x2+2y)﹣3(xy+x2),=﹣x2+4y,=﹣22+4×1,=0.47.设 a,b,c,d 为有理数,=ad﹣bc,当=10 时,求代数式 2(x﹣2)﹣3(x+1)的值.【考点】有理数的混合运算;整式的加减;解一元一次方程.【解答】根据题中的新定义运算方法得:6x﹣4(3x﹣2)=10,去括号得:6x﹣12x+8=10,解得:x=,∴2(x﹣2)﹣3(x+1)=2x﹣4﹣3x﹣3=﹣x﹣7=﹣()﹣7=.∴代数式 2(x﹣2)﹣3(x+1)的值是.48.图 1 是由一副三角板拼成的图案,根据图中提供的信息,解答下列问题:(1)图 1 中,∠EBC 的度数为;(2)能否将图 1 中的三角板 ABC 绕点 B 逆时针旋转 ? 度(0°<幔?90°,如图 2),使旋转后的∠ABE=2∠DBC?若能,求出 ? 的度数,若不能,请说明理由;(3)能否将图 1 中的三角板 ABC 绕点 B 顺时针旋转 ? 度(0°<幔?90°,如图 3),使旋转后的∠ABE=2∠DBC?请直接回答,不必说明理由;答:(填“能”或“不能”)【考点】角的计算.【解答】(1)∠EBC=∠ABC+∠EBD=60°+90°=150°;(2)第一种情况:若逆时针旋转 ? 度(0<幔?60°),如图 2:据题意得 90°﹣幔?2(60?得幔?30°,∴∠EBC=90°+(60°﹣30°)=120°;第二种情况,若逆时针旋转 ? 度(60°≤幔?90°),据题意得 90°﹣幔?2(﹣?60?得幔?70°,∴∠EBC=90°﹣(70°﹣60°)=80°;故∠EBC=∠120°或80°;(3)若顺时针旋转 ? 度,如图 3,据题意得 90°+幔?2(60°+ ?得幔僵?30°∵0<幔?90°,幔僵?30°不合题意,舍去.。
人教版七年级数学易错题(含解析)
七年级数学易错题1、a 一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定,a 可能是正数,0,负数分析:若a 是正数,则a 就是负数,若a =0则a =0若a 是负数,则a 就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数.错解:点C 与点A 之间的距离为2,点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解:点C 与点A 之间的距离为2,点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度.①点C 在点A 的左侧2个单位长度,则点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9.点B 和点C 表示的数互为相反数,B 表示的数为-9.3、.计算:200520011171311391951511错解:原式=2005120011171131131919151511=200511=20052004剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211方法直接去求解.而忽视本题54511,4549151结果中分子是4而不是1.故这样做是错的.正解:原式=412005120011171131131919151511=41)200511(=2005501.4、计算:17391326.【错解】原式17391313261750721515.2【错解剖析】本题错误原因是把173926看成173926与的和,而它应是39与1726的和.【正确解答】原式171713913135075152622.5、计算:(1)24)3(2611;【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136.错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136.【错解剖析】错解一中是将41计算成1得到136,错解二中是去括号符号出错得到136.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2.【正确答案】原式=1-9×14×14=1-916=716.6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)yxyx22(2)3312b a b a.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x,而不应该是y xyx22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b ab a .正解:(1))()(2y xy x(2)3)(312b a ba 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)yx yx22(2)3312b ab a.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x,而不应该是y xyx22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b aba .正解:(1))()(2y xy x (2)3)(312b aba8、已知方程24)3(2mx m m是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程.【错解】m=±3.【剖析】忘记m-3≠0这个条件.【正解】(1)由312m m得m=-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x .【错解】 7x -)1(32)1(2121x x x.)1(4)1(3342x x xx.4433342x x x x .32x=-7.x=327.【剖析】去中括号时)1(21x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2xx x .第一次去括号,得 42x -44)1(233xx x .第二次去分母,得 84x-6x +3x -3=8x -8.移项,合并同类项,得 73x =-5.把系数化为1,得x =735.10.解方程1x =5.【错解】由1x=5得到x-1=5.∴x=6.【剖析】去绝对值符号必须考虑正负性x-1=5或x-1=-5.【正解】由1x=5得到x-1=5或x-1=-5.∴x=6或x=-4.11、某水果批发市场香蕉的价格如下表:购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元张强两次共购买香蕉50千克(第二次多于第一次),共付264元,请问张强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP =21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式.错解一:(1)14°41′25″×5=70°205′125″=72°6′25″;(2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″;(2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″;(2)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?ABCPQ AP QCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)
有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择
(1)若a是负数,则a________-a; 是一个________数;
(2)已知 则x满足________;若 则x满足________;若x=-x, x满足________;
在有理数的乘除乘方中字母带入的数多为1,0,-1,进行检验
(6)一个数的平方是1,则这个数为________;用符号表示为:若 则x=_______;
一个数的立方是-1,则这个数为_______;
倒数等于它自身的数为_______;
三.一些易错的概念
(1)在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.
并用“>”连接起来.
8.填空:
(1)如果-x=-(-11),那么x=________;
(2)绝对值不大于4的负整数是________;
(3)绝对值小于4.5而大于3的整数是________.
9.根据所给的条件列出代数式:
(1)a,b两数之和除a,b两数绝对值之和;
(2)a与b的相反数的和乘以a,b两数差的绝对值;
(1)当他卖完这八套儿童服装后是盈利还是亏损?
(2)盈利(或亏损)了多少钱?
有理数·易错题整理
1.填空:
(1)当a________时,a与-a必有一个是负数;
(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;
(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;
人教版七年级数学易错题讲解及答案
⑴(-42.75)×(-27.36)-(-72.64)×(+42.75)
⑵ ⑶
⑷⑸ ⑹
有理数·易错题练习
一.多种情况的问题(考虑问题要全面)
(1)已知一个数的绝对值是3,这个数为_______;
此题用符号表示:已知 则x=_______; 则x=_______;
(2)绝对值不大于4的负整数是________;
(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.
2.用“有”、“没有”填空:
在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.
3.用“都是”、“都不是”、“不都是”填空:
(1)所有的整数________负整数;
-(-4) -3.14 -
五.易错计算① ②
③ -22-(1- ×0.2)÷(-2)3
④( )×(-60)
⑤
⑥
⑦
六.应用题
1.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,-3,+2,+1,-2,-1,0,-2.(单位:元)
(3)绝对值小于4.5而大于3的整数是________.
(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;
(5)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;
(6) 平方得 的数是____;此题用符号表示:已知 则x=_______;
(7)若|a|=|b|,则a,b的关系是________;
12.写出绝对值不大于2的整数.
13.由|x|=a能推出x=±a吗?
14.由|a|=|b|一定能得出a=b吗?
15.绝对值小于5的偶数是几?
16.用代数式表示:比a的相反数大11的数.
17.用语言叙述代数式:-a-3.
18.算式-3+5-7+2-9如何读?
19.把下列各式先改写成省略括号的和的形式,再求出各式的值.
(1)(-7)-(-4)-(+9)+(+2)-(-5);
(2)(-5)-(+7)-(-6)+4.
20.判断下列各题是否计算正确:如有错误请加以改正;
(2)小学里学过的数________正数;
(3)带有“+”号的数________正数;
(4)有理数的绝对值________正数;
(5)若|a|+|b|=0,则a,b________零;
(6)比负数大的数________正数.
4.用“一定”、“不一定”、“一定不”填空:
(1)-a________是负数;
(5)现规定一种新运算“*”:a*b= ,如3*2= =9,则( )*3=()
(6)判断:(注意0的问题)①0除以任何数都得0;( )
②任何一个数的平方都是正数,( )③a的倒数是 .( )
④两个相反的数相除商为-1.( )⑤0除以任何数都得0.( )
⑥有理数a的平方与它的立方相等,那么a=1;
四.比较大小
(2)当a>b时,________有|a|>|b|;
(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;
(4)|x|+|y|________是正数;
(5)一个数________大于它的相反数;
(6)一个数________小于或等于它的绝对值;
5.把下列各数从小到大,用“<”号连接:
(2)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.
(3)若|a-1|+|b+2|=0,则a=_______;b=________;(属于“0+0=0”型)
(4)下列代数式中,值一定是正数的是( )
A.x2B.|-x+1| C.(-x)2+2 D.-x2+1
若 ____;
(3)有理数a、b在数轴上的对应的位置如图所示: 则( )
A.a + b<0 B.a + b>0; C.a-b = 0 D.a-b>0
(4)如果a、b互为倒数,c、d互为相反数,且 ,则代数式2ab-(c+d)+m2=_______。
(5)若ab≠0,则 的值为_______;(注意0没有倒数,不能做除数)
(3)一个分数的分母是x,分子比分母的相反数大6;
(4)x,y两数和的相反数乘以x,y两数和的绝对值.
10.代数式-|x|的意义是什么?
11.用适当的符号(>、<、≥、≤)填空:
(1)若a是负数,则a________-a;
(2)若a是负数,则-a_______0;
(3)如果a>0,且|a|>|b|,那么a________ b.