平行线的判定和性质(综合篇)
平行线的性质与判定
平行线的性质与判定平行线在几何学中具有重要的性质和判定方法。
本文将介绍平行线的定义、性质以及常见的判定方法,并且给出相应的几何证明。
一、平行线的定义平行线是位于同一平面内并且不会相交的两条直线。
平行线之间的距离在任意两点上保持恒定。
二、平行线的性质1. 平行线具有等夹角性质:当一条直线与两条平行线相交时,所形成的内错角(夹角在两条平行线之间)互相相等,外错角(夹角在两条平行线之外)互相相等。
2. 平行线具有内错角性质:当一条直线与两条平行线相交时,内错角(夹角在两条平行线之间)之和等于180度。
3. 平行线具有对应角性质:当两条平行线被一条交线切割时,所形成的对应角(位于两条平行线的同一侧,一条在交线上,另一条在交线外)互相相等。
4. 平行线具有平行四边形性质:在平行四边形中,对边平行且相等,对角线互相等分。
三、平行线的判定方法1. 通过角度判定:若两条直线被一条第三线切割时,相应角、内错角或外错角相等,则可以判定这两条直线是平行的。
2. 通过距离判定:若两条直线上的任意两点之间的距离相等,则可以判定这两条直线是平行的。
3. 通过斜率判定:若两条直线的斜率相等,则可以判定这两条直线是平行的。
四、性质与判定的应用举例1. 平行线的性质在证明中常被用来推导其他几何结论。
例如,在证明三角形相似时,可以利用平行线的对应角性质。
2. 平行线的判定方法在几何问题中起到重要的作用。
例如,在解决平行四边形问题时,可以通过判定四边形的对边平行来证明它是平行四边形。
举例一:判断两条直线是否平行已知直线l1过点A(2, 4)和点B(6, 9),直线l2过点C(-1, 1)和点D(3, 5)。
通过斜率判定来判断直线l1和l2是否平行。
解:直线的斜率可以通过两点的坐标计算得到。
计算直线l1的斜率m1,可以用点斜式公式:m1 = (y2 - y1) / (x2 - x1),代入A(2, 4)和B(6, 9)的坐标:m1 = (9 - 4) / (6 - 2) = 5 / 4同理,计算直线l2的斜率m2,代入C(-1, 1)和D(3, 5)的坐标:m2 = (5 - 1) / (3 - (-1)) = 4 / 4 = 1由于斜率m1 ≠ m2,所以直线l1和l2不平行。
平行线的性质和判定
平行线的性质和判定【知识要点归纳】1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.【课堂过关训练】平行线的性质1.选择题:(1)下列说法中,不正确的是()A.同位角相等,两直线平行; B.两直线平行,内错角相等; C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=12∠CAB,∠ABC=75°,则∠BCA等于( • ) A.36° B.35° C.37.5° D.70°(1) (2) (3)(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余 B.互补 C.相等 D.以上都不对(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(5)如图4,若AB∥CD,则()A.∠1=∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个(4) (5) (6) (7)(7)已知两个角的两边分别平行,并且这两个角的差是90°,•则这两个角分别等于() A.60°,150° B.20°,110° C.30°,120° D.45°,135°(8)如图6所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γ B.β+γ-αC.180°-α-γ+β D.180°+α+β-γ4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交CD于G,求∠1的度数.平行线的判定1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB ∥CD ,EG ⊥AB 于G ,∠1 = 50°,则∠ E = .6.如图6,直线l 1∥l 2,AB ⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 . 8.如图8,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .10.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)图51 A B C D E F GH 图7 1 2 D A C B l 1l 2 图81 A BFC DE G 图6C D F E B A 图912 ACB FGED图102 1BCED 图1112 ABEFDC12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.综合练习:1.若α和β是同位角,且a =30°,则β的度数是( )A .30°B .150°C .30°或150°D .不能确定2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A .30°和150°B .42°和138°C .都等于10°D .42°和138°或都等于10°3.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④4.如图所示,AB ∥EF ,EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D=192°,∠B -∠D=24°,则C图1212 3AB DF∠GEF=__________.5.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.8.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.9.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF10.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.11.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.。
平行线与平行线的性质及判定方法
平行线与平行线的性质及判定方法平行线是指在同一平面内永远不会相交的两条直线。
在数学中,平行线有着许多独特的性质和判定方法,对于几何学的研究和实际应用都具有重要意义。
一、平行线的性质1. 平行线上的两个点到另一直线的距离相等:如果两条直线L₁和L₂平行,那么这两条线上的任意两个点A和B到第三条直线L的距离都是相等的。
2. 平行线的内角和为180度:当一条直线与两条平行线相交时,两对内角之和是180度。
这可以通过数学证明得出。
3. 平行线的外角相等:当两条平行线被一条横截线相交时,这两条平行线的对应外角是相等的。
4. 平行线的平行线仍然平行:如果两条直线L₁和L₂平行,而L₃与L₁平行,那么L₃也与L₂平行。
二、平行线的判定方法1. 直角判定法:如果两条直线上的任意一对相邻内角之一是直角,那么这两条直线是平行线。
这种判定方法是由两条直线的垂直性质推导出来的。
2. 三角形内角和判定法:如果一条直线与一条平行线相交,那么直线上的一对内角与平行线上的一对内角之和为180度时,这两条直线是平行线。
3. 平行线定理:如果两条直线分别与第三条直线相交,并且两对同位角分别相等,那么这两条直线是平行线。
这个定理也被称为同位角定理。
4. 夹角判定法:如果两条直线分别与第三条直线相交,而且同位角相等或互补,则这两条直线是平行线。
5. 平行线公理(欧几里德公理):如果直线上的一点和直线外一点,有且只有一条通过这两个点的平行线。
这个公理是建立在欧几里德几何的基础上的。
以上是常见的一些关于平行线性质的说明和判定方法,通过这些性质和方法,我们可以在几何学中更好地理解和应用平行线。
在实际生活中,平行线也有着广泛的应用,例如建筑设计、道路规划、制图等领域都需要运用到平行线的概念和性质。
总结:在数学中,平行线是指在同一平面内永远不会相交的两条直线。
平行线有许多独特的性质,如平行线上的两个点到另一直线的距离相等、平行线的内角和为180度等等。
《平行线的判定》的数学知识点
《平行线的判定》的数学知识点《平行线的判定》的数学知识点在我们的学习时代,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
掌握知识点有助于大家更好的学习。
下面是店铺为大家收集的《平行线的判定》的'数学知识点,仅供参考,大家一起来看看吧。
1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号‖表示,如AB‖CD,读作AB平行于CD。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
【《平行线的判定》的数学知识点】。
平行线知识点+四大模型(基础资料)
平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°. (2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .练如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。
七年级数学下册教学课件《平行线的判定与性质的综合运用》
(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).
初中数学平行线的性质与判定
初中数学平行线的性质与判定一、引言平行线是初中数学中的重要概念,它在几何学中具有许多重要的性质和应用。
了解平行线的性质和判定方法,对于进行几何证明和解题都有着重要的指导意义。
本文将从平行线的性质和判定方法两个方面进行探讨,以帮助初中学生更好地理解和掌握平行线的相关知识。
二、平行线的性质1. 平行线的定义在平面上,任意两条直线如果永不相交,那么我们称它们是平行线。
2. 平行线的唯一性平面上,通过一点可以画无数条与已知直线平行的直线,但经过一点存在且只存在一条与已知直线平行的直线。
3. 平行线的性质1:对应角相等如果一组平行线被一条截线所切,那么它们所对应的内角和外角分别相等。
4. 平行线的性质2:同位角相等如果两条平行线被一条截线所切,那么它们所对应的同位角相等。
5. 平行线的性质3:内错角互补如果两条平行线被一条截线所切,那么它们所对应的内错角互补,即角的度数之和为180度。
三、平行线的判定方法1. 直线与直线的判定两条直线如果有一点与一直线上的两个角分别相等,那么这两条直线平行。
2. 角与直线的判定如果两条直线上的内角或外角、同位角或内错角相等,那么这两条直线平行。
3. 举例说明例如,已知直线l与直线m分别与一直线n相交,且∠A = ∠B和∠C = ∠D,则可以得出直线l与直线m平行。
四、平行线的应用1. 平行线的应用1:解题在解题中,平行线常常被用来求解线段比例关系、求解角度关系等。
通过运用平行线的性质和判定方法,我们可以更加简洁地解决一些几何问题。
2. 平行线的应用2:建筑设计在建筑设计中,平行线的应用非常广泛。
建筑师常常利用平行线的性质来设计建筑物的立面和空间布局,使其更加美观和合理。
3. 平行线的应用3:地理测量在地理测量中,平行线广泛应用于测量线段的长度和角度的测量。
利用平行线的性质和判定方法,地理测量师可以更准确地进行测量和勘测工作。
五、结论通过对初中数学平行线的性质和判定方法的讨论,我们可以看到平行线在几何学和实际生活中的重要性。
平行线的判定和性质
平行线的判定和性质平行线是几何中一个非常基本的概念,它在数学的研究和应用中具有重要的地位。
通过判定两条直线是否平行,我们可以深入了解平行线的性质和特点。
本文将介绍平行线的判定方法和相关性质。
一、平行线的判定1. 直线与直线的判定给定两条直线L₁和L₂,要判定它们是否平行,有以下几种方法:a) 角度判定法:如果两条直线的锐角、直角或钝角相等,那么它们是平行线。
b) 垂直判定法:如果一条直线与第二条直线的所有垂线都相等或成比例,那么它们是平行线。
c) 斜率判定法:如果两条直线的斜率相等且不为无穷大,则它们是平行线。
2. 直线与平面的判定给定一条直线L和一个平面P,要判定直线和平面是否平行,有以下几种方法:a) 垂直判定法:如果直线L和平面P的所有垂线都相等或成比例,那么它们是平行的。
b) 法线判定法:如果一条直线与平面的法线平行,那么它们是平行的。
二、平行线的性质平行线具有以下重要性质:1. 平行线的定义平行线是在同一个平面上不相交且不同于的两条直线。
2. 平行线与平移平行线之间可以进行平移变换,即将一条平行线沿着与之平行的方向平移,得到的仍然是一条平行线。
3. 平行线的夹角平行线之间的夹角为0度,即平行线之间没有交点。
4. 平行线的性质a) 平行线具有传递性:如果直线L₁与直线L₂平行,直线L₂与直线L₃平行,则直线L₁与直线L₃也平行。
b) 平行线与截线:如果一条直线与两条平行线相交,那么这两条直线所截线段的比例相等。
c) 平行线与转角:如果两条直线与平行线相交,它们所成转角相等。
d) 平行线与干涉线:如果两组平行线相互交错,即一组平行线与另一组平行线交叉相交,所交干涉线与平行线相交产生的内、外交角相等。
5. 平行线与平行四边形平行线所围成的四边形称为平行四边形。
平行四边形具有以下性质:a) 对边平行:平行四边形的对边都是平行线。
b) 对角线平分:平行四边形的对角线互相平分。
c) 同底角对顶角相等:平行四边形的同底角对顶角相等。
平行线的判定与性质综合
)
) )
(2)已知: CD∥EF, ∠AGD= ∠ACB. 求证: ∠1= ∠2
(3)已知:∠AGD= ∠ACB
∠1= ∠2.
求证: CD∥EF.
解: ∠A与∠F 理由如下: ∵∠1=∠2 (已知) ∠1=∠3 (对顶角相等) ∴ ∠2=∠3(等量代换)
如图,已知,分别和直线,交于点,,分别和直线,交于点,, 点在上(点与,,三点不重合). 如果点在,两点之间运动时,,,之间有何数量关系请说 明理由; 如果点在,两点外侧运动时,,,有何数量关系(只须写出 结论).
思考5: 已知,如图,BE平分∠ABD,DE平分 ∠1+∠2 =90° ∠BDC,DG平分∠CDF, 求证:1)AB CD 2)BE DG C 3)ED GD A G E 4 3 6 5 2 1 B D F
平行线的判定与性质的 综合运用
判定两直线平行的方法有三种:
(1)定义法;在同一平面内不相交的两条直线是平行线。 (2)平行公理推论(平行的传递性):两条直线都和第三条直 线平行,这两条直线也平行。 b C (3)在同一平面内:因为a⊥c,a⊥b;
所以b//c (4)三种角判定(3种方法): 同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。 在这六种方法中,定义一般不常用。 A C E
训练二
如图,AB∥CD,AD∥BC,试探求∠B与∠D, ∠A与∠C的关系? D
C
A
B
(变式)如果 AB ∥ CD ,且 ∠ B= ∠ D ,你能推 理得出AD∥BC吗?
题组训练(1)
1.如图,已知∠1=∠2,∠A=76°,求∠ABC的度数。 D
平行线的性质及判定
平行线的性质及判定定 义示例剖析平行线的概念:在同一平面内,永不相交的两条直线称为平行线.用“∥”表示.∥a b ,∥AB CD 等.平行线的性质:两直线平行,同位角相等; 两直线平行,内错角相等; 两直线平行,同旁内角互补.若∥a b ,则12∠=∠; 若∥a b ,则23∠=∠;若∥a b ,则34180∠+∠=︒.平行线的判定:同位角相等,两直线平行; 内错角相等,两直线平行;若12∠=∠,则∥a b ;ba 4321ba 4321知识互联网思路导航题型一:平行线的定义、性质及判定同旁内角互补,两直线平行. 若23∠=∠,则∥a b ;若34180∠+∠=︒,则∥a b .平行公理:经过直线外一点,有且只有一条直线与这条直线平行.简单说成:过一点有且只有一条直线与已知直线平行.过直线a 外一点A 做∥b a ,∥c a ,则b 与c 重合.平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.简单说成:平行于同一条直线的两条直线平行.若∥,∥b a c a ,则∥b c .【例1】 ⑴ 两条直线被第三条直线所截,则( )A .同位角相等B .内错角相等C .同旁内角互补D .以上都不对⑵ 1∠和2∠是同旁内角,若145∠=︒,则2∠的度数是( ) A .45︒ B .135︒ C .45︒或135︒ D. 不能确定⑶ 如图,下面推理中,正确的是( )A .∵180A D ∠+∠=°,∴AD BC ∥B .∵180CD ∠+∠=°,∴AB CD ∥ C .∵180A D ∠+∠=°,∴AB CD ∥ D .∵180A C ∠+∠=°,∴AB CD ∥⑷ 如图,直线a ∥b ,若∠1=50°,则∠2=( )A .50°B .40°C .150°D .130°⑸ 如图,直线AB CD ∥,EF CD ⊥,F 为垂足,如果20GEF ∠=°,则1∠的度数是( )A .20°B .60°C .70°D .30°⑹ 如图,直线a b ∥,点B 在直线b 上,且AB BC ⊥,155∠=°,则2∠的度数为______(c )b aAc b a典题精练DCBAba 21DGF1E CB A⑺ 如图,1∠和2∠互补,那么图中平行的直线有( )A .a b ∥B .c d ∥C .d e ∥D .c e ∥⑻ 将一直角三角板与两边平行的纸条如图所示放置,下列结论:①12∠=∠;②34∠=∠;③2490∠+∠=°;④45180∠+∠=°,其中正确的个数( )A .1B .2C .3D .4 ⑼ 如图,直线12l l ∥,AB CD ⊥,134∠=°,那么2∠的度数是 .⑽ 将一张长方形纸片按如图所示折叠,如果164∠=°,那么2∠等于 .【铺垫】多选题:下列说法错误的有( )A :不相交的两条直线是平行线.B :两条直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.C :三条直线a 、b 、c .若a b ∥,b c ∥,则a c ∥;同理,若a b ⊥,b c ⊥,则a c ⊥.D :已知α∠的两边与β∠的两边平行,若48α∠=°,则48β∠=°.E :若AB CD ∥,CD EF ∥,则AB EF ∥.理由是等量代换. F :有公共端点且没有公共边的两个角是对顶角.21ba CBA1234521l 2l 1DCB A2121edc baG :同一平面内垂直于同一条直线的两条直线平行.【例2】 ⑴ 如图,∥AB CD ,B D ∠=∠,请说明12∠=∠,请你完成下列填空,把解答过程补充完整.解:∵,∴( ). ∵, ∴ (等量代换). ∴ (同旁内角互补,两直线平行). ∴( ).⑵ 填空,完成下列说理过程.如图,DP 平分ADC ∠交AB 于点P ,90DPC ∠=︒,如果∠1+∠3=90°,那么∠2和∠4相等吗?说明理由.解:∵DP 平分ADC ∠, ∴∠3=∠ ( ) ∵APB ∠= °,且90DPC ∠=︒,∴∠1+∠2=90°. 又∵∠1+∠3=90°,∴∠2=∠3. ( )∴∠2=∠4.⑶ 如图,已知DE AC ∥,DF AB ∥,求A B C ∠+∠+∠度数.解:∵DE AC ∥( ),∴C ∠= ( ), 3∠= ( ) 又∵DF AB ∥( ) ∴B ∠= ( ) A ∠= ( ) ∴3A ∠=∠( )∴123A B C BDC ∠+∠+∠=∠+∠+∠=∠= ( )【例3】 ⑶ 如图,已知直线AB CD ∥, 115C ∠=°,25A ∠=°,则E ∠的度数为 度.⑵ 如图,不添加辅助线,请写出一个能判定EB AC ∥的 条件: . AB CD ∥180BAD D ∠+∠=°B D ∠=∠BAD ∠+180=°12∠=∠4321FEDCBA21D C BA AE图3EDC B AF PD C B A4321321 ABCDEG H M F⑶ 如图,点E 在AC 的延长线上,给出下列条件:① 12∠=∠;② 34∠=∠;③ A DCE ∠=∠; ④ D DCE ∠=∠;⑤ 180A ABD ∠+∠=°; ⑥ 180A ACD ∠+∠=°;⑦ AB CD =. 能说明AC BD ∥的条件有 .⑶ 如图,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知1260∠=∠=°,GM 平分HGB ∠交直线CD 于点M . 则3∠=( )A .60°B .65°C .70°D .130°【例4】 ⑴ 已知:如图1,CD 平分ACB ∠,DE BC ∥,80AED ∠=°,求EDC ∠. ⑵ 已知:如图2,1C ∠=∠,2∠和D ∠互余,BE FD ⊥于G .求证:AB CD ∥.图1 图2【备选1】⑴如图1,一个宽度相等的纸条折叠一下,如果1100∠=︒,则2∠的度数是 .⑵如图2,把一张四边形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若AB CD ∥,AD BC ∥,15DBC ∠=︒,则BOD ∠= .⑶如图3,直线1l 、2l 分别和3l 、4l 相交,若1∠与3∠互余,2∠与3∠的余角互补,4110∠=︒, 那么3∠= .图1图2图3⑷如右图,已知AB CD ∥,AD BC ∥,60B ∠=︒,50EDA ∠=︒, 则CDO ∠= .EDCBA21G F EDCB A21B CDEOA 4321l 3l 4l 1l 24321EDCB AAED【备选2】已知,如图,DE BC ⊥于E ,FG BC ⊥于G ,12∠=∠.求证:EH AC ∥.【备选3】如图,已知AB 、CD 分别垂直EF 于B 、D ,且60FCD ∠=︒,130∠=︒,求证:BM AF ∥.【备选4】如图,已知12180∠+∠=,3B ∠=∠,试判断AED ∠与ACB ∠的大小关系,并对结论进行证明.【例5】 如图,已知:AB ∥CD ,直线EF 分别交AB 、CD 于点M 、N ,MG 、NH 分别平分AME ∠、CNE ∠. 求证:MG ∥NH . 从本题我能得到的结论是:【选讲】下列条件中,位置关系互相垂直的是( )①对顶角的角平分线;②邻补角的平分线;③平行线的同位角的平分线;④平行线的内错角的平分线;⑤平行线的同旁内角的平分线. A .①② B .③④ C .①⑤ D .②⑤1A MFE DCB思路导航题型二:基本模型中平行线的证明N MHG F E D C BA 图3G HF 21E B DAC123ABD E F模 型示例剖析若∥a b ,则12∠=∠若∥∥a b c ,则1213180,∠=∠∠+∠=︒若∥a b ,则123∠=∠+∠若∥a b ,则123360∠+∠+∠=︒【例6】 已知:如图∥AB CD ,点E 为其内部任意一点,求证:BED B D ∠=∠+∠.【例7】 如图,已知AB DE ∥,80ABC ∠=︒,140CDE ∠=︒,求BCD ∠的度数.ab21a bc321ba 321ab321典题精练FEDCBAA BCDEEDCBA321 Bb C DM ca【拓展】如图所示,已知直线a b ∥,直线c 和直线a 、b 交于C 、D 两点,在C 、D 之间有一点M ,如果点M 在C 、D 之间运动,问1∠、2∠、3∠之间有怎样的关系? 这种关系是否发生变化?试着证明你的结论.【例8】 如图,已知3180DCB ∠+∠=,12∠=∠,:4:5CME GEM ∠∠=,求CME ∠的度数.训练1. 已知ABC ∠的两边AB ,BC 分别与DEF ∠的两边DE ,EF 平行,问ABC ∠与DEF ∠有何关系?证明你的结论.从这道题目中,你能得到怎样的结论?训练2. 如图,∥AB CD ,150∠=︒,2110∠=︒,则3∠= .训练3. 已知:如图,AB 、CD 被EF 所截,EG 平分BEF ∠,FG平分EFD ∠,且1290∠+∠=︒. 证明:AB CD ∥. 思维拓展训练(选讲)A B D C1 2 3NMF 21E B A C 训练4. 已知:如图,AD BC ⊥于点D ,EG BC ⊥于点G ,1E ∠=∠.证明:AD 平分BAC ∠.题型一 平行线的定义、性质及判定 巩固练习【练习1】 已知如图,1C ∠=∠,2B ∠=∠,MN 与EF 平行吗?为什么?【练习2】 ⑴ 如图1,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是 .⑵ 如图2,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是 . ⑶ 如图3,直线m n ∥,155∠=°,245∠=°,则3∠的度数为( ) A .80° B .90° C .100° D .110°【练习3】 ⑶ 已知:如图1,110D ∠=°,70EFD ∠=°,12∠=∠,求证:3B ∠=∠.证明:∵110D ∠=°,70EFD ∠=°(已知)∴180D EFD ∠+∠=° ∴AD ∥ ( ) 又∵12∠=∠(已知)∴ ∥ ( )∴ ∥ ( ) ∴3B ∠=∠( ) 复习巩固图2 图221ba l 图3nm 321图1DC B A图1321F E DCB A 1GED CBA⑵ 如图2,EF AD ∥,12∠=∠,70BAC ∠=°.将求AGD ∠的过程填写完整. 解:∵EF AD ∥,∴2∠= ( ) 又∵12∠=∠ ∴13∠=∠( )∴AB ∥ ( )∴BAC ∠+ 180=°( ) 又∵70BAC ∠=° ∴AGD ∠= .【练习4】 如图,已知DA AB ⊥,DE 平分ADC ∠,CE 平分BCD ∠,1290∠+∠=°,求证:BC AB ⊥.题型二 基本模型中平行线的证明 巩固练习【练习5】 已知:如图,点E 为其内部任意一点,BED B D ∠=∠+∠. 求证:∥AB CD .ED CBA图2132G A E B D FCFABCD E。
平行线的性质与判定
02 平行线判定方法
同位角相等法
定义
两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行。
图形语言
∵∠1=∠5(已知),∴a∥b(同位角相等,两直线 平行)。
符号语言
∵∠1=∠5,∴a∥b。
内错角相等法
定义
两条直线被第三条直线所截,如果内错角相等,那么这两条直线 平行。
图形语言
∵∠2=∠6(已知),∴a∥b(内错角相等,两直线平行)。
在罗巴切夫斯基几何中,通过直线外一点,可以作无数条不与该直线相交的直线,即存在多条“平行线”。
罗巴切夫斯基几何中的平行线性质
在罗氏几何中,平行线之间的距离可以无限缩小,三角形的内角和小于180度等。
黎曼几何中平行线理论
黎曼几何的基本假设
黎曼几何认为空间中不存在绝对的平行线,所有直线最终都会相交。这种观念与我们的日常经验相符 ,比如在地球表面,经线最终会在两极相交。
学生可以提出自己在学习过程 中遇到的问题和疑惑,并寻求 老师和同学的帮助和建议。
教师点评及建议
教师可以对学生的自我评价报告进行点评 ,肯定学生的努力和进步,指出需要改进 的地方,并提供具体的建议和指导。
教师可以鼓励学生积极参与课堂互动和 讨论,激发学生的学习兴趣和主动性, 培养学生的自主学习能力和合作精神。
相交线定义
在同一平面内,两条有且仅有一个交点的直线称为相交线。
平行线与相交线性质联系与区别
联系
平行线和相交线都是描述两条直线在 同一平面内的位置关系。
区别
平行线永不相交,没有交点;相交线 有一个交点。
典型例题解析
解析
此说法不正确。两条直线不相交并不意味着它们一定平行,因为它们可能不在同一平面内 。只有在同一平面内且不相交的两条直线才能称为平行线。
平行线的判定和性质(综合篇)
平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②把握推理论证的格式。
二、例题:这部份内容所涉及的题目主若是从已知图形中识别出对顶角、同位角、内错角或同旁内角。
解答这种题目的前提是熟练地把握这些角的概念,关键是把握住这些角的大体图形特点,有时还需添加必要的辅助线,用以突出大体图形的特点。
上述类型题目大致可分为两大类。
一类题目是判定两个角相等或互补及与之有关的一些角的运算问题。
其方式是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主若是“由角定线”,也确实是依照某些角的相等或互补关系来判定两直线平行,解此类题目必需要把握好平行线的判定方式。
例1.如图,已知直线a,b,c被直线d所截,假设∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角概念)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。
数学中的平行线与角平行线的性质与判定
数学中的平行线与角平行线的性质与判定在几何学中,平行线和角平行线是数学中重要的概念。
了解它们的性质和判定方法,能够帮助我们解决各种几何问题。
本文将详细介绍平行线和角平行线的性质及判定方法。
一、平行线的性质平行线是指在同一个平面上永远不会相交的两条直线。
平行线有以下性质:1. 平行线上的任意两条线段之间的距离始终相等。
2. 平行线上的任意两个角的对应角相等(即对应角相等定理)。
3. 平行线与平面上的第三条直线相交时,所形成的对应角相等(即同位角相等定理)。
二、平行线的判定根据平行线的性质,我们可以通过以下方法进行平行线的判定:1. 中学常用的判定平行线的方法是利用两条平行线与第三条直线所形成的内错角和外错角互补的性质。
如果两条直线分别与第三条直线形成的内错角和外错角互补,那么这两条直线就是平行线。
2. 当两条直线被一条横截直线所截成的内错角相等时,这两条直线是平行线。
3. 两个平行线分别与一条横截直线所形成的同位角相等时,这两条直线是平行线。
三、角平行线的性质角平行线是指在两条平行线之间形成的角,又称为同旁内角。
角平行线有以下性质:1. 同位角:在两条平行线之间,两个相交的直线分别与平行线所形成的内错角或外错角相等。
2. 内错角与外错角互补:在两条平行线之间,两个相交的直线所形成的内错角与所形成的外错角互补,即它们的度数和为180度。
四、角平行线的判定判定角平行线的方法有以下几种:1. 钳形定理:当两条平行线被一条横截线所截,所形成的内错角相等时,这两条平行线与横截线所形成的对应角也相等,即这两条平行线是角平行线。
2. 内错角与外错角互补定理:当两条平行线被一条横截线所截,所形成的内错角与外错角互补时,这两条平行线是角平行线。
3. 同位角定理:当两条平行线被两个相交的直线所截,所形成的对应角相等时,这两条平行线是角平行线。
综上所述,平行线和角平行线在数学中具有重要的性质和判定方法。
掌握了这些性质和方法,我们能够更好地理解和应用几何学知识,解决各种与平行线和角平行线相关的问题。
(完整版)《平行线的判定与性质的综合运用》教学课件
6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°, ∠GPC=80°,GH平分∠MGB,求∠1的度数.
解:∵∠2=∠3=70°(已知), ∴AB∥CD(内错角相等,两直线平行), ∴∠BGP=∠GPC(两直线平行,内错角相等), ∵∠GPC=80°(已知), ∴∠BGP=80°(等量代换), ∴∠BGM=180°-∠BGP=100°(平角的定 义),
(完整版)《平行线的判定与性质的综合运用》教学课件
平行线的性质
第2课时 平行线的判定与性质的综合运用
导入新课
讲授新课
当堂练习
课堂小结
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
A.80° B.65° C.60°
D.55°
3.如图,BD⊥AB,BD⊥CD,则∠a的度 数是( A ) A.50° B.40° C.60° D.45°
4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请
完成填空:
A 解:过点C作CF∥AB, 则_∠__B__=_∠__1__ ( 两直线平行,内错角相等 ). C
B
1
F
2
又∵AB∥DE,AB∥CF,
D
E
∴__C_F__∥__D_E____(平行于同一直线的两条直线平行 ).
∴∠E=∠__2__(两直线平行,内错角相等).
∴∠B+∠E=∠1+∠2(等式的性质),
即∠B+∠E=∠BCE.
5.已知:如图,AD⊥BC于D,EG⊥BC与G, ∠E=∠3,试问:AD是∠BAC的平分线吗?若是, 请说明理由.
人教版数学第5章平行线的性质与判定及辅助线模型
平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。
平行线的判定及性质
平行线的判定及性质 Prepared on 22 November 2020平行线的判定及性质(一)【知识要点】一.余角和补角:1、如果两个角的和是直角,称这两个角互余. ∵αβ+= 90o ∴αβ与互为余2、如果两个角的和是平角,称这两个角互补. ∵αβ+= 180o ∴αβ与互为补角 二.余角和补角的性质: 同角或等角的余角相等 同角或等角的补角相等. 三.对顶角的性质: 对角相等.四.“三线八角” :1、同位角 2、内错角 3、同旁内角 五.平行线的判定: 1、同位角相等, 两直线平行.2、内错角相等, 两直线平行.3、同旁内角互补, 两直线平行.4、同平行于一条条直线平行.5、同垂直一条直线的两条直线平行. 六.平行线的性质:1. 两直线平行,同位角相等;2. 两直线平行, 内错角相等;3. 两直线平行, 同旁内角互补.【典型例题】一、余角和补角例1. 如图所示,互余角有_________________________________; 互补角有_________________________________;变式训练:1. 一个角的余角比它的的13还少20o ,则这个角为_____________。
2. 如图所示,已知∠AOB 与∠COB 为补角,OD是∠AOB 的角平分线,OE 在∠BOC 内,∠BO=12∠EOC, ∠DOE=72o, 求∠EOC 的度数。
二、“三线八角”例2 (1) 如图,哪些是同位角内错角同旁内角(2) 如图,下列说法错误的是( )A. ∠1和∠3是同位角B. ∠1∠5是同角C. ∠1和∠2是内角D. ∠5和∠6是内错角(3)如图,⊿ABC 中,DE 分别交B 、A 于D 和E,则图中共有ED CB A O AB C DE F1 2 3 4 567 8 2 3 4 5 6 11 23同位角 对,内错角 对,同旁内角 。
三、平行线的判定例3如右图 ① ∵ ∠1=∠2∴ _____∥_____, ( ) ② ∵ ∠2=_____∴ ____∥____, (同位角相等,两直线平行) ③ ∵∠3+∠4=180o∴ ____∥_____, ( ) ∴ AC ∥FG , ( )变式训练:1.如图, ∵ ∠1=∠B∴ ∥_____, ( ) ∵ ∠1/∠2∴ _____∥_____, ( ) ∵ ∠B +_____=180o ,∴ AB ∥EF ( )例4. 如图,已知AE 、CE 分别平分∠BAC 和∠ACD, ∠1和∠2互余,求AB ∥CD ,变式训练:如图,已知直线a 、b 、e ,且∠1=∠2,∠3+∠4=180o, 则a ∥c 平行吗五、平行线的性质例5 如图所示,AB ∥EF ,若∠ABE=32°,∠ECD=160°,求 ∠BEC 的度数。
平行线和垂直线的性质和判定
平行线和垂直线的性质和判定平行线和垂直线是几何中常见的概念和性质,在数学学科中扮演着重要的角色。
本文将详细介绍平行线和垂直线的性质以及如何进行判定,旨在帮助读者更好地理解和应用这些概念。
一、平行线的性质和判定平行线是指在同一个平面上没有任何交点的直线。
下面我们将介绍平行线的一些性质和判定方法。
1. 平行线的性质:(1)平行线与同一直线的交线对应的内角相等。
例如,直线AB和直线CD平行,则直线AB和直线CD分别与第三条直线EF相交,在这种情况下,角A和角E相等,角B和角F相等,角C和角D相等。
(2)平行线与同一直线的交线对应的同位角相等。
同位角是指两条直线上相对于同一直线的对应角。
如果直线AB和直线CD平行,它们与第三条直线EF相交,那么角A和角C是同位角,角B和角D是同位角,它们的度数相等。
2. 平行线的判定方法:(1)同位角相等法:如果两条直线上同位角相等,则它们是平行线。
这个方法基于平行线的性质,通过观察同位角的度数是否相等来判断直线的平行性。
(2)斜率相等法:如果两条直线的斜率相等,则它们是平行线。
直线的斜率是斜率运算对直线的特定定义,利用斜率相等可以判断直线是否平行。
二、垂直线的性质和判定垂直线是指两条直线之间的夹角为90度的直线。
下面我们将介绍垂直线的一些性质和判定方法。
1. 垂直线的性质:(1)垂直线与同一直线的交线对应的内角为90度。
例如,直线AB和直线CD垂直,则直线AB和直线CD分别与第三条直线EF相交,在这种情况下,角A与角E之间的夹角、角B与角F之间的夹角以及角C与角D之间的夹角都是90度。
2. 垂直线的判定方法:(1)斜率互为负倒数法:如果两条直线的斜率互为负倒数,则它们是垂直线。
这个方法基于垂直线的性质,通过观察直线的斜率是否满足斜率互为负倒数的关系来判断直线是否垂直。
(2)直角三角形判定法:如果两条直线上某一对对应角的度数之和为90度,则它们是垂直线。
通过观察直线与第三条直线所形成的直角三角形,判断其内角的度数之和是否为90度,从而确定直线的垂直性。
初步认识平行线的性质和判定方法
初步认识平行线的性质和判定方法平行线是初中数学中一个非常重要的概念,它在几何学中占据着重要的地位。
初步认识平行线的性质和判定方法,能够帮助我们更好地理解和运用这一概念。
本文将从平行线的定义、性质以及判定方法三个方面进行论述。
一、平行线的定义在几何学中,我们称两条直线为平行线,意味着它们在同一平面上,并且永远不会相交。
这是平行线最基本的定义。
需要注意的是,两条平行线之间的距离始终相等,在图形排列中有很重要的应用。
二、平行线的性质1. 平行线具有等角折射性质:当两条平行线被一条横线(称为割线)切割时,所产生的对应角相等。
这是平行线最重要的性质之一,也是判定平行线的基础。
2. 平行线具有交错性质:当一条直线与两条平行线相交时,所产生的内错角互为补角,外错角互为补角。
这一性质在证明平行线相关定理时经常使用。
3. 平行线具有等比例性质:当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例保持不变。
这个性质在割线定理中有广泛的应用。
三、平行线的判定方法根据平行线的性质,我们可以利用不同的条件来判定两条直线是否平行。
1. 定理一:同位角相等法则同位角是指两条平行线被一条割线切割所形成的对应角。
如果两个对应角相等,那么这两条直线就是平行线。
这个方法在证明平行线定理时经常使用。
2. 定理二:内错角补角法则当两条平行线被一条割线切割时,所形成的内错角互为补角。
如果两个内错角互为补角,那么这两条直线是平行线。
3. 定理三:等角斜线法则当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例相等。
根据这一比例关系,我们可以判定两条直线是否平行。
通过以上三个判定方法,我们可以初步认识平行线的性质和判定方法。
在实际应用中,我们可以结合具体的问题和知识点,灵活运用这些方法,解决与平行线相关的几何问题。
综上所述,平行线是几何学中的重要概念,具有丰富的性质和判定方法。
通过对平行线的初步认识,我们可以更好地理解、运用和证明涉及平行线的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。
二、例题:这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角。
解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征。
上述类型题目大致可分为两大类。
一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。
其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主要是“由角定线”,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。
例1.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角定义)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。
因此又可得AD//BC,最后再运用平行线性质和已知条件便可推出∠EBC=∠DBC。
证明:∵∠2+∠BDC=180°(平角定义)又∵∠2+∠1=180°(已知)∴∠BDC=∠1(同角的补角相等)∴AE//FC(同位角相等两直线平行)∴∠EBC=∠C(两直线平行内错角相等)又∵∠A=∠C(已知)∴∠EBC=∠A(等量代换)∴AD//BC(同位角相等,两直线平行)∴∠ADB=∠CBD(两直线平行,内错角相等)∠ADF=∠C(两直线平行,同位角相等)又∵DA平分∠BDF(已知)∴∠ADB=∠ADF(角平分线定义)∴∠EBC=∠DBC(等量代换)∴BC平分∠DBE(角平分线定义)说明:这道题反复应用平行线的判定和性质,这是以后在证题过程中经常使用的方法,见到“平行”应想到有关的角相等,见到有关的角相等,就应想到能否判断直线间的平行关系。
把平行线的判定与性质紧密地结合在一起也就是使直线平行和角相等联系在一起,这样解题能得心应手,灵活自如。
三、小结:证明角相等的基本方法1、第一章、第二章中已学过的关于两个角相等的命题:(1)同角(或等角)的余角相等;(2)同角(或等角)的补角相等;(3)对顶角相等;(4)两直线平行,同位角相等;内错角相等;同旁内角互补。
以上四个命题是我们目前论证两个角相等的武器,但是何时用这些武器,用什么武器,怎样使用,这是遇到的一个具体问题,需要认真进行分析。
首先必须分析,在题设中给出了哪些条件,与其相关的图形是什么!其次再分析一下要证明的两个角在图形的具体位置,与已知条件有什么关联,怎样运用一次推理或几个一次推理的组合而来完成题设到结论的过渡。
例3,如图∠1=∠2=∠C,求证∠B=∠C。
分析:题设中给出三个相等的角,其中∠2和∠C是直线DE和BC被AC所截构成的同位角,由∠2=∠C则DE//BC。
再看题中要证明的结论是∠B=∠C,由于∠C=∠1,所以只要证明∠1=∠B,而∠1与∠B是两条平行直线DE,BC被直线AB所截构成的同位角,∠1=∠B是很显然的,这样我们就理顺了从已知到求证的途径:证明:∵∠2=∠C(已知),∴DE//BC(同位角相等,两直线平行),∴∠1=∠B(两直线平行,同位角相等),又∵∠1=∠C(已知),∴∠B=∠C(等量代换)。
例4、已知如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D。
分析:要证明∠A=∠C,∠B=∠D,从这四个角在图中的位置来看,每一组既不构成同位角,也不是内错角或同旁内角,由此不可能利用题设中的平行关系,经过一次推理得到结论,仍然如同例10一样通过等角进行转化,从题设条件出发,由AB//CD,且AB与CD被直线BC所截,构成了一对同旁内角,∠B、∠C,因此∠B+∠C=180o,同时∠B又是另一对平行线AD、BC被直线AB所截,构成的一对同旁内角∠B、∠A,∠B+∠A=180o,通过∠B的中介,就可以证明得∠A=∠C。
同理,也可得到∠B=∠D,整个思路为:证明:AD//BC(已知),∴∠A+∠B=180o(两直线平行,同旁内角互补),∵AB//CD(已知),∴∠B+∠C=180o(两直线平行,同旁内角互补),∴∠A=∠C(同角的补角相等),同理可证∠B=∠D。
例5、已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:∠1=∠2。
分析:要证明∠1=∠2,而从图中所示的∠1和∠2的位置来看,根据题设或学过的定义、公理、定理无法直接证明这两个角相等,因我们可将视野再拓广一下,寻找一下∠1、∠2与周边各角的关系,我们看到直线AD与GE被直线AE所截,形成同位角∠1、∠E;被AB所截,形成内错角∠2、∠3;而题设明确告诉我们∠3=∠E,于是目标集中到证明AD//GE,根据题设中AD⊥BC,EG⊥BC,我们很容易办到这一点,总结一下思路,就可以得到以下推理程序:证明:∵ AD⊥BC于D(已知),∴∠ADC=90o(垂直定义),∵EG⊥BC于G(已知),∴∠EGD=90o(垂直定义),∴∠ADC=∠EGD(等量代换),∴EG//AD(同位角相等,两直线平行),∴∠1=∠E(两直线平行同位角相等),∠2=∠3(两直线平行内错角相等),又∵∠E=∠3(已知),∴∠1=∠2(等量代换)。
四、两条直线位置关系的论证。
两条直线位置关系的论证包括:证明两条直线平行,证明两条直线垂直,证明三点在同一直线上。
1、学过证明两条直线平行的方法有两大类(一)利用角;(1)同位角相等,两条直线平行;(2)内错角相等,两条直线平行;(3)同旁内角互补,两条直线平行。
(二)利用直线间位置关系:(1)平行于同一条直线的两条直线平行;*(2)垂直于同一条直线的两条直线平行。
例6、如图,已知BE//CF,∠1=∠2,求证:AB//CD。
分析:要证明AB//CD,由图中角的位置可看出AB与CD被BC所截得一对内错角∠ABC和∠DCB,只要证明这对内错角相等,而图中的直线位置关系显示,∠ABC=∠1+∠EBC,∠BCD=∠2+∠FCB,条件中又已知∠1=∠2,于是只要证明∠EBC=∠BCF。
证明:∵ BE//CF(已知),∴∠EBC=∠FCB(两直线平行,内错角相等)∵∠1=∠2(已知),∴∠1+∠EBC=∠2+FCB(等量加等量其和相等),即∠ABC=∠BCD(等式性质),∴AB//CD(内错角相等,两直线平行)。
例7、如图CD⊥AB,EF⊥AB,∠1=∠2,求证:DG//BC。
证明:∵CD⊥AB于D(已知),∴∠CDB=90o(垂直定义),∵EF⊥AB 于F(已知),∴∠EFB=90o(垂直定义),∴∠CDB=∠EFB(等量代换),∴CD//EF(同位角相等,两直线平行),∴∠2=∠DCB(两直线平行,同位角相等)又∵∠1=∠2(已知),∴∠1=∠DCB(等量代换),∴DG//BC(内错角相等,两直线平行)。
说明:从以上几例我们可以发现,证明两条直线平行,必须紧扣两直线平行的条件,往往归结于求证有关两个角相等,根据图形找出两直线的同位角、内错角或同旁内角,设法证明这一组同位角或内错角相等,或同旁内角互补。
而证明两角相等,又经常归于证明两直线平行。
因此,交替使用平行线的判定方法和平行线的性质就成为证明两直线平行的常用思路。
2、已经学过的证明两直线垂直的方法有如下二个:(1)两直线垂直的定义(2)一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。
(即证明两条直线的夹角等于90o而得到。
)例8、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。
分析:这是一个与例14同样结构的图形,但证明的目标却是两条直线垂直。
证明CD⊥AB,根据“一条直线垂直于两条平行线中的一条,必垂直于另一条。
”又由于已知条件EF⊥AB,只要证明EF//CD,要证EF//CD,结合图形,只要证明∠2=∠DCB,因为∠1=∠2,只需证明∠DCB=∠1,而∠DCB与∠1是一对内错角,因而根据平行线的性质,就需证明DG//BC,要证明DG//BC根据平行线的判定方法只需证明∠3=∠B,而这正是题设给出的条件,整个推理过程经过以下几个层次:证明:∵∠3=∠B(已知),∴DG//BC(同位角相等,两直线平行)∴∠1=∠DCB(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠DCB=∠2(等量代换),∴DC//EF(同位角相等,两直线平行),有括号部分的五步也可以用以下证法:接DC//EF(同位角相等,两直线平行),又∵EF⊥AB(已知),∴CD⊥AB(一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。
)3、\已经学过的证明三点共线的方法在前面的几讲中已分析过,若证明E、O、F三点共线,通常采用∠EOF=180o,利用平角的定义完成三点共线证明。
此方法不再举例。
五、一题多解。
例9、已知如图,∠BED=∠B+∠D。
求证:AB//CD。
法(一)分析:要证明AB//CD,从题设中条件和图形出发考虑,图形中既不存在“三线八角”,又不存在与AB、CD同时平行的第三条直线或与AB、CD同时垂直的直线,这样就无法利用平行线公理的推理或平行线的判定方法来证明两条直线平行。
能不能为此创造条件呢?如果我们能够在图中添置一条直线,使这条直线和AB、CD中的一条平行,那么我们就有可能证明它也平行于另一条,从而得到AB//CD。
根据平行公理,经过直线外一点,有且只有一条直线与这条直线平行,所以这样的直线是存在的。
接下来的问题是:过哪一点作这条平行线,考虑题设中的已知条件,三个角的关系围绕着E点展开的,因而选择E点作AB的平行线是较为理想的位置。
证明:过点E作EF//AB,∴∠B=∠1(两直线平行,内错角相等),∵∠BED=∠1+∠2(全量等于部分之和),∴∠2=∠BED-∠1(等式性质),又∵∠BED=∠B+∠D(已知),∴∠D=∠BED-∠B(等式性质)∴∠2=∠D(等量代换)∴EF//CD(内错角相等,两直线平行),∵EF//AB(作图),∴AB//CD(平行于同一直线的两直线平行)。