金龟子绿僵菌选择性培养基的筛选

合集下载

适宜金龟子绿僵菌产孢的发酵培养基及其制备和使用方法[发明专利]

适宜金龟子绿僵菌产孢的发酵培养基及其制备和使用方法[发明专利]

(10)申请公布号(43)申请公布日 (21)申请号 201510131011.8(22)申请日 2015.03.25C12N 3/00(2006.01)C12R 1/645(2006.01)(71)申请人河南科技大学地址471000 河南省洛阳市涧西区西苑路48号(72)发明人侯颖 徐建强 林晓民 刘圣明李晓艳(74)专利代理机构洛阳公信知识产权事务所(普通合伙) 41120代理人罗民健(54)发明名称适宜金龟子绿僵菌产孢的发酵培养基及其制备和使用方法(57)摘要适宜金龟子绿僵菌产孢的发酵培养基及其制备和使用方法,涉及一种培养基;所述培养基,包括种子培养基和固体发酵培养基。

所述种子培养基包括固体种子培养基和液体种子培养基;固体种子培养基中含有马铃薯汁1000mL、葡萄糖、KH 2PO 4、MgSO 4和琼脂,余量为水;液体种子培养基中含有蛋白胨、蔗糖、K 2HPO 4、MgSO 4和NaCl,余量为水;所述固体发酵培养基的成分为:麦麸、玉米糁和蒸馏水;其中麦麸和玉米糁的质量比为1:1,蒸馏水的质量为麦麸和玉米糁总质量55-60%。

本发明适宜金龟子绿僵菌产孢的发酵培养基适于金龟子绿僵菌的生长,每克发酵原料可产生1×109以上个孢子;制备的孢子粉萌发率可达95%。

(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书7页 附图1页(10)申请公布号CN 104651294 A (43)申请公布日2015.05.27C N 104651294A1.适宜金龟子绿僵菌产孢的发酵培养基,其特征在于:包括种子培养基和固体发酵培养基;所述种子培养基包括固体种子培养基和液体种子培养基;每升固体种子培养基中含有质量浓度为20%马铃薯汁1000mL、葡萄糖20g、KH2PO43g、MgSO41.5g和琼脂 20g,余量为水;每升液体种子培养基中,含有10 g蛋白胨、10 g蔗糖、0.3 g K2HPO4、0.3 g MgSO4和0.3g NaCl,余量为水;所述固体发酵培养基的成分为:麦麸、玉米糁和蒸馏水;其中麦麸和玉米糁的质量比为1:1,蒸馏水的质量为麦麸和玉米糁总质量55~60%。

对斜纹夜蛾高效绿僵菌的筛选

对斜纹夜蛾高效绿僵菌的筛选

对斜纹夜蛾高效绿僵菌的筛选马丽娟;滕忠才;臧欢;刘廷辉;李瑞军;郭巍;巩兰菊【摘要】对从土壤中分离到的金龟子绿僵菌中生长性状较好的6个菌株,通过测定对黄粉虫幼虫的僵虫率和致死中时,选出3株致病效果好的菌株M7-9、M7-(16-18)、M7-(64-65),再采用点滴法接种对斜纹夜蛾进行毒力测定.结果表明,不同菌株对斜纹夜蛾的毒力与菌株种类有密切关系,3株菌株对斜纹夜蛾的LT50分别为2.70、3.07、5.79d.以此3株菌进行抗高温及抗紫外线试验,菌株M7-9和M7-(16-18)对高温和紫外线都具有较好的抗性,且M7-9对紫外线的抗性强于M7-(16-18),两菌株均具有进一步研究的价值.%Six strains of Metarhizium anisopliae with good growth traits, isolated from soil in Baoding area, were screened against Tenebrio molitor Linnaeus by bioassay. Among them, M7-9, M7-(16-18)and M7-(64-65)strains, which showed higher virulence than other isolates, were selected to test their pathogenicity against Spodoptera li-tura(Fabricius). The LT50 of strain M7-9, M7-(16-18) and M7-(64-65) against S. litura were 2.70, 3.07 and 5. 79 d, respectively. The 3 strains were then treated with the ultraviolet ray and heat. The results demonstrated that the resistance of M7-9 and M7-( 16-18) to high temperature and ultraviolet ray was higher, and the resistance of M7-9 to the ultraviolet ray was higher than that of M7-(16-18). These results suggested that strains M7-9 and M7-(16-18) have better exploitation and application value in the future.【期刊名称】《植物保护》【年(卷),期】2012(038)005【总页数】6页(P78-83)【关键词】金龟子绿僵菌;斜纹夜蛾;生物测定;筛选【作者】马丽娟;滕忠才;臧欢;刘廷辉;李瑞军;郭巍;巩兰菊【作者单位】河北农业大学植物保护学院,河北省农作物病虫害生物防治工程技术研究中心,保定071001;保定学院生化系,保定071000;河北农业大学植物保护学院,河北省农作物病虫害生物防治工程技术研究中心,保定071001;河北农业大学植物保护学院,河北省农作物病虫害生物防治工程技术研究中心,保定071001;河北农业大学植物保护学院,河北省农作物病虫害生物防治工程技术研究中心,保定071001;河北农业大学植物保护学院,河北省农作物病虫害生物防治工程技术研究中心,保定071001;河北省曲周县农牧局,曲周057250【正文语种】中文【中图分类】S476.12斜纹夜蛾[Spodopteralitura (Fabricius)]属鳞翅目(Lepidoptera)夜蛾科(Noctuidae),是一种世界性分布的重要农业害虫,食性广,繁殖力强,发生为害严重[1]。

海南椰心叶甲病原菌金龟子绿僵菌的分离、鉴定及其生防潜力

海南椰心叶甲病原菌金龟子绿僵菌的分离、鉴定及其生防潜力

海南椰心叶甲病原菌金龟子绿僵菌的分离、鉴定及其生防潜力詹儒林;覃伟权;宋妍;张世清;H H HO;许天委;黄俊生【摘要】椰心叶甲[Brontispa longissima(Gestro)]是椰子的重要害虫,近年来,该虫在海南岛发生普遍,椰子受害严重.由于椰心叶甲受到自然界中某些致病微生物的侵袭,在受害的椰子树心叶上常可发现椰心叶甲僵虫,并发现大部分僵虫表面长出了霉菌,本研究的目的在于从椰心叶甲僵虫表面的霉菌中分离出绿僵菌,并对分离菌株进行鉴定和致病性测定.从僵虫表面刮下孢子或菌丝体,置于绿僵菌选择性培养基(DOA)上培养,挑出真菌菌落,经纯化后,进行生物学特性、菌落生长速率及产孢量的测定,并从PPDA、OMA、V8A和PDA中筛选菌落生长及产孢最适培养基,同时对所分离的菌株进行对椰心叶甲的致病性测定.结果表明,所有分离菌株均鉴定为金龟子绿僵菌[Metarhizium anisopliae(Metschnikoff)],PPDA是菌落生长及产孢的最适培养基,大多数菌株对椰心叶甲有较强的致病力.选取强毒菌株MA4在田间进行防治效果的初步测定,结果表明,该菌株能显著降低椰心叶甲成虫的虫口密度.这些金龟子绿僵菌菌株是首次从海南的椰心叶甲僵虫中分离到的昆虫病原真菌,该菌对海南的椰心叶甲具有很好的生防潜能.%Coconut hispid beetles, Brontispa longissima (Gestro) (Coleoptera:Chrysomelidae) have been prevalent all over Hainan Island in China, and millions of coconut palms were attacked by this pest. The objective of this work was to isolate and identify strains of entomopathogenic fungi from natural infections of B. longissima collected from coconut palms.Conidia or mycelia collected from the surface of beetle cadavers were cultured and the colonies were screened on dodine oatmeal agar medium (DOA). The colony morphology, mycelia growth rate and conidial production were further studied on various agar media: PPDA,OMA, V8A and PDA. In order to confirm whether these isolates were pathogenic to B.longissima, their virulence to the beetles were also tested in laboratory. The results showed two different kinds of strains MA and MB were all identified as Metarhizium anisopliae(Metschnikoff) base on the macromorphological and micromorphological characteristics, and PPDA was the optimal culture medium for vegetative growth and conidial production. Several high virulent strains were screened in vitro, and application on controlling coconut hispid beetles was carried out preliminarily in vivo. The results showed a significant reduction in adult population was caused by the isolate. It was proved that M.anisopliae isolated from the natural infected cadavers of B. longissima have great potential as a means of biocontrol against this serious pest.【期刊名称】《生态学报》【年(卷),期】2007(027)004【总页数】7页(P1558-1564)【关键词】金龟子绿僵菌;分离;鉴定;生物防治;椰心叶甲【作者】詹儒林;覃伟权;宋妍;张世清;H H HO;许天委;黄俊生【作者单位】热带作物生物技术国家重点实验室,海口,571101;中国热带农业科学院环境与植物保护研究所,儋州,571737;中国热带农业科学院南亚热带作物研究所,湛江,524091;中国热带农业科学院椰子研究所,文昌,571201;热带作物生物技术国家重点实验室,海口,571101;中国热带农业科学院环境与植物保护研究所,儋州,571737;热带作物生物技术国家重点实验室,海口,571101;中国热带农业科学院环境与植物保护研究所,儋州,571737;Department of Biology,State University of New York,New Palz,USA,12561;热带作物生物技术国家重点实验室,海口,571101;中国热带农业科学院环境与植物保护研究所,儋州,571737;热带作物生物技术国家重点实验室,海口,571101;中国热带农业科学院环境与植物保护研究所,儋州,571737【正文语种】中文【中图分类】Q16Brontispa longissima (Gestro) was originally described from the Am Islands (Maluku Province) [1].It was native to Indonesia,and also to Papua New Guinea,including the Bismarck Archipelago.It has now spread widely in Australia,Pacific Islands and Asia such asSingapore,Vietnam,Nauru,Thailand and Maldives[1].From 2002,this beetle has spread to Hainan Island.Because of the absence of natural antagonists,it has become a serious and devastating pest on the island.At the beginning,it was prevalent in several important coconut-growing regions such as Haikou,Wenchang and Sanya.In recent years,it has broken out to cover 17 counties and cities,almost 2 million coconut palms were attacked and resulting in heavy losses.Thus,emergency operations were carried out assisted by local governments.It has been proved effectively by introduction and enhancement of parasitoids-Tetrastichus brontispae,Asecodes hispinarum and spraying of entomopathogenic fungi[1].Chemical control was also recommended by using relatively safe pesticides to eliminate the pest before biological control.The entomopathogenic fungus,Metarhizium has been proved effectively in controlling more than 200 species of insect pests[2].However,there are no reports about Metarhizium strains isolated from other insect pests whether can be used to control B.longissima effectively in Hainan.The exploratory surveys for parasitoids in the original home of this pest and the isolation of highly virulent strains have been suggested.In this study,a number of host cadavers of B.longissima were found on the tree,and mycelia and conidia were collected from the cuticle surfaces.Fungi were isolated on the selective medium,and their identification,virulence to B.longissima in vitro and effects of application in vivo were further tested.1.1 Collection of natural infectious and healthy beetlesCoconut hispid beetles ( B.longissima ) were collected from seriously infected regions including Haikou and Wenchang of Hainan Island.Foliar buds of coconut palms infected with beetles were cut down and a number of larvae and adults were picked out.Cadavers were collected and transferred in sterilized Petri dishes,and the healthy ones were transferred into glass bottles for further rearing.Cadavers were used to isolate entomopathogenic fungi,and the living insects were used to perform pathogenic tests for isolated fungus.1.2 Preparation of culture mediaFour different media were prepared:PDA (potato dextrose agar),PPDA ( PDA with 2% peptone),V8A (10% V8 vegetable juice agar) [3],and OMA ( oatmeal agar) medium.DOA medium was prepared as the selective medium by adding selective elements for screening entomopathogenicfungi.The selective elements of DOA medium mainly contained Dodine200μg/ml,Penicillin 100μg/ml,Streptomycin 50μg/ml [4],Carbendazim0.8μg/ml and Metalaxyl 0.5μg/ml.1.3 Isolation and identification of Metarhizium anisopliaeCadavers of coconut hispid beetles including larvae and adults were collected from Wenchang and Haikou.Mycelia or conidia were isolated with sterile needles from cuticle of cadavers and transferred into a 1.5 ml Eppendorf tube containing sterile distilled water.Conidial suspension(5×104 conidia/ml) was prepared and 100μl of it were transferred and incubated on a Petri dish containing 15ml DOA medium at temperature of (28±2)℃.Three days later,daily checks were performed up to the tenth day.Discs of the fungal colonies appearing on each Petri dish was then transferred to test tubes containing PPDA medium,and incubated under the same conditions described above.Purification of every strain was carried out under an inverted Olympus microscope.A single conidium on the surface of water agar medium was picked up with a sterile capillary tube and transferred onto PPDA medium for obtaining pure culture.Identification of the isolates were performed at a species level according to the papers or books such as published by Pu zhelong[2],Hawksworth[5],Roddam et al[6],and Zimmerman[7].The strains were identified by evaluation of the macromorphological characteristics of the colonies ,such as diameter,color,mycelia texture and other fearures,as well as the micromorphological characteristics,such as the aspects ofhypha,conidiophore,conidial fructification and conidium,which were detected under biological microscope.1.4 Tests on biological characters of isolated strains1.4.1 Tests on colony growth rate and conidia production on different culture mediumAll strains were cultured in Petri dishes containing PDA,PPDA,V8A and OMA medium.After five days of incubation,the daily colony diameter was measured by crisscross method up to the tenth day.The average of the increases in colony diameter per day was considered as the growth rate. Conidia were harvested from 15 days old cultures by surface scraping.Homogenous spore suspensions were made by placing harvested spores in 20 ml sterile distilled water in glass bottles containing 0.1% Tween80,and then were agitated on a vortex for 30 Sec.Spore concentrations were determined using a haemocytometer.The procedure was replicated three times for each strain.1.4.2 Tests on colony macromorphological aspectsAll isolates were cultured on the optimal medium (PPDA) according to above results.After 4 days,daily checks of different colony color and mycelia texture were carried out and documented by photography.The sizes of 50 conidia of each strain were measured under a Leica microscope and average values were compared for all strains.1.5 Tests on virulence to B.longissima and preliminary applying on adults in vivoAll isolates were cultured and maintained on PPDA medium.Conidia were harvested and its suspensions (1×108conidia ml-1 ) were prepared.Twentyadults or larvae of B.longissima reared for 1 week were sprayed with 3 ml conidial suspension respectively and then placed into glass bottles and fed by fresh coconut leaf buds (replaced once every 3 days).The glass bottle was capped with a plastic lid with several tiny punctures to allow aeration for insects living and incubated at ambient temperatures of 25-30℃.Each isolate was repeated 3 times on adults or larvae.The control was only sprayed with 3 ml of sterile water containing 0.1% Tween-80.After rearing for 9 days,dead beetles was put down and mortalities were calculated for every strain.All dead beetles were transferred to Petri dishes in humid ambient to see whether have mycosis growth on the surface. Preliminary effect tests of application on adults in vivo were carried out in Sanjiang farm of Haikou,where coconut palms were infected seriously by B.longissima.The conidial suspension were prepared by mixing 80% plant oil and 20% paraffine,and adjusted to the conidia concentratio n of ≥1×109 conidia ml-1.The suspensions (20ml per-tree) were brushed with brush on the surface of bud leaves of 10 coconut palms two times after an interval of 20 days.The trials were repricated three times in the same experiment area.Controls were also brushed only by 80% plant oil and 20% paraffine.2.1 Strains isolationFrom a number of cadavers (Fig.1),21 filamentous fungal colonies were isolated on DOA medium from different Petri dish (Fig.2).The isolate from different Petri dish was regarded as a strain,respectively.All of these strains were purified and transferred to PPDA medium for further identification.As a result,all isolates were identified as Metarhizium anisopliae,and no anyother species such as Beauveria spp or others were detected. According to the macromorphological characteristics,we found there were two distinct strains based on the differences in colony morphology and acervuli,and were thus recorded as MA(13 strains) and MB(8 strains) isolates.After 5 days of incubation,The colony of all MA strains on PPDA medium were almost entirely covered with acervuli but few acervuli in all MB strains under the same conditions( Fig.3).However,there was no difference in conidial shape between the two kinds of isolates:cylindrical with obtuse ends ,slightly narrowing in the center( Fig.4),and the conidial width(2.5-3μm) and length (5-8μm)as well as the structure of conceptacles were no different from those described by Pu Zhelong.2.2 Screening of optimal culture medium for isolates with colony growth and conidia productionThe results showed PPDA was the optimal culture medium for colony growth and conidia production for both MA and MB strains.The results were summarized in Fig.5 (only show testing results of MA4 and MB4,the others were as same as the two strains).Colony growth rate on PPDA media was faster than the others,especially during 1 to 3days.Otherwise,there was no significantly difference in colony growth rate on other media.The average conidial production of MA4(others were as the same as th is strain) strain was 2.62×109 conidia ml-1 on PPDA media,which was significantly more than 2.68×108 conidia ml-1 onOMA ,1.96×108 conidia ml-1 on PDA and 1.85×108 conidia ml-1onV8.However,the last three media showed no significant differences inconidial production(Fig.6).2.3 Pathogenicity to B.longissima and application effects in vivoAll strains both MA(13 strains) and MB(8 strains) were showed pathogenic to B.longissima according to the testing results.The mortality ranged from 52% to 100% either in adults or larvae,showing significantly higher than the control.Isolates of MA2,MA3,MA4,MA8,MA9,MB2,MB4,MB5,MB6 and MB7,were high pathogenic to B.longissima (Table 1) among of all strains.In moist condition,conidia and mycelia were observed on the surface of cadavers and identified as the same fungi species used in the initial inoculation.The mortality of the control was only 20% and 30% in adults and larvae,respectively,and few mycelia growth were found on cadavers.The results showed that the strains isolated from natural occurring endomopathogenic fungi in B.longissima were pathogenic to B.longissima and most of strains were highly virulent to the beetles.In this study,the high virulent strain of MA4 were employed to apply on controlling B.longissima in vivo.The averages of adult beetles population taken before application varied from 55.2 to 19.0 after 90 days and to 11.8 after 120 days,and cadavers with mycosis were found at more than 90% trees,while few changes occurred at controls,which the adult beetles population density taken varied from 45.2 to 48.0 and to 46.7 at the same time detection (Fig.7),and few cadavers were found.From the cadavers of B.longissima collected from Haikou and Wenchang of Hainan,21 filamentous fungi were isolated and identified as Metarhizium anisopliae.PPDA was the optimal culture medium for colonygrowth and conidia production among PPDA,PDA,OMA and V8A.M.anisopliae has already been isolated naturally from soils[6,8,9] and insects[10~12] in different regions of the world.And M.anisopliae had ever been applied to against the coconut leaf hispid [13,14].However,it was the first time that strains of M.anisopliae were isolated from B.longissima in Hainan Island of China.Our studies proved that these isolates were pathogenic to B.longissima based on the symptoms after inoculation of the beetles with these isolates.In pathogenic tests,the mortality in treatments was significantly higher than the control.In addition,fungal outgrowth was found on the surface of dead beetles in humid condition,but not in the control.A high pathogenic strain of MA4 were employed to apply in vivo,with which caused significantly reduction in the adult population.The results showed the great potential of M.anisopliae as a means of biological against the coconut leaf hispid.Recently,the effective strategies on B.longissima control were performed in Hainan,involved rearing of natural antagonists of T.brontispae,A.hispinarum and spraying insecticides.As an important part of integrated pest management (IPM) strategy,M.anisopliae could be widely used due to few harmful side effects caused by it.M.anisopliae can be considered as promising for biocontrol on coconut hispid beetles by reducing the pest population and lessening the dependence on chemical control.*通讯作者Correspondingauthor.E-mail:***************【相关文献】[1]Singh S P,Rethinam P.Coconut hispid beetle Brontispa longissima (Gestro) (Coleoptera:Chrysomelidae).Cord,2004,Vol.20,1~20.[2]Pu zhelong.Insect pathology.Guangzhou:Guangdong Science&Technology,Press,1994.8,360.[3]Ho H H,Ann P J,Chang H S.The Genus Phytophthora in Taiwan.Taipei.Published by Institute of Botany,Academia Sinica,1995,1~86.[4]Chase A R,Osborme L S,Ferguson V M.Selective isolation of the entomopathogenic fungi,Beauveria bassiana and Metarhizium anisopliae from an artificial potting medium.Flo Entol,1986,69:285~292.[5]Hawksworth D L.Mycologist's handbook.England:CAB Press,1971.[6]Roddam L F,Rath A C.Isolation and characterization of Metarhizium anisopliae and Beauveria bassiana from Subantartic Macquarie Island.J Invertebr Pathol,1997,69:285~288.[7]Zimmerman G.The entomopathogenic fungus Metarhizium anisopliae and its potential as a biological agent.Pesticide Science,1993,37:375~379.[8]Tarasco E,Bievre C de,Papierok B,et al.Occurrence of entomopathogenic fungi in soils in Southern Italy.Entomologica,Bari,1997,31:157~166.[9]Tigano-Milani M S,Faria M R de,Martins I,et al.Ocorr ncia natural de Beauveria bassiana (Bals) Vuill,Metarhizium anisopliae (Metsch) Sorok.e Paecilomyces sp.em solos de diferentes regi es do Brasil.An Soc Entomol Brasil,1993,22:391~393.[10]Hern ndez-Crespo P,Santiago-lvarez C.Entomopathogenic fungi associated with natural populations of the Moroccan Locust Dociostaurus maroccanus (Thunberg) (Orthoptera:Gomphocerinae) and other Acridoidea in Spain.Biocontrol Science and Technology,1997,7:357~363.[11]Poprawiski T J,Yule W N.Incidence of fungi in natural populations of Phyllophaga spp.and susceptibility of Phyllophaga anxia (Le Conte) (COL.Scarabalidae) to Beauveria bassiana and Metarhizium anisopliae (Deuteromycotina).J Appl Ent,1991,112:359~365. [12]Samsinakova A.Beauveria globulifera (Speg) Pic Jako Parasit Klistete Ixodes ricinus.L Zoologie List,1956,6:329 330.[13]Marshall K J,Vargo A M ,Fatuesi S .Application of a New Strain of Metarhizium anisopliae (FungiImperfecti) as a Means of Biological Control Against the Coconut Leaf Hispid,Brontispa Longissima (Coleoptera:Hispidae) in Samoa.Research Extension Series College of Tropical Agriculture and Human Resourse,University of Hawaii,Cooperative Extension Service (USA),1991,11:137~140.[14]Wikardi E A.Protects for controlling coconut hispids with Metarhizium sp.[Plesis pareichei,and Brontispa longissima].Pemberitaan Lembaga TanamanInd.Bogor:Lembaga,1982.8(44):35~38.。

金龟子绿僵菌的液固双相发酵研究

金龟子绿僵菌的液固双相发酵研究
河 南 农 业科 学 , 2 0 1 3 , 4 2 ( 2 ) : 9 3 - 9 7
J o u r n a l o f He n a n Ag r i c u l t u r a l S c i e n c e s
金 龟 子 绿 僵 菌 的液 固双 相 发 酵 研 究
许 天 委 , 张世 清 , 黄 俊 生。
的优 点 , 先 生产 大 量 的菌 丝 或 芽 生孢 子 ,缩 短 了菌
子产 量和 菌丝生 长 量 , 试验 设计 3个重 复 , 以筛选 最
优 的液体 发酵 培养基 。
1 . 2 . 2 固体 培养基 的 筛选 将 菌 块 移接 到 最 优 的
s h a l l o w t r a y f e r me n t a t i o n , wh e n s o l i d c u l t u r e me d i u m F( r i c e 3 0 0 g , b r o k e n r i c e 6 0 0 g , H2 O 5 0 9 , 6 ,
Ab s t r a c t :M e t ar hi z i u m an i s o pl i ae i s a n i mpo r t a nt p e s t — p a t ho ge ni c f un gu s .Th i s e x pe r i me nt c a r -
KH 2 PO4 - K2 HPO4 b u f f e r 0 .0 5 , s u c r o s e 0 . 5 ) wi t h t h i c k n e s s o f 1 . 3 c m wa s e mp l o y e d , t h e
生孢子产 量和菌丝 生长量均 最高 , 分别达 到 4 . 3 ×1 O 。 个/ L、 5 . 9 9 g / L 。 固体 发 酵 时 , 浅 盘 发 酵 方 法 优

金龟子绿僵菌选择性培养基的筛选

金龟子绿僵菌选择性培养基的筛选
维普资讯

7 一 6
江苏农业科学
20 0 7年第 5期
金龟子绿僵菌选择性培养基 的筛选
程 子路 ,詹儒林 ,许天委 ,宋 妍 ,郭立佳 张世 清 黄俊 生 , ,
(.中国热带农业科学院环境与植物保护研究所, 1 海南儋州 5 13 ; .中国热带农业科学院南亚热带作物研究所 , 777 2 广东湛江 54 9 ) 20 1
2 11 选择 性培 养基 上 的成 菌 落数 ..
对绿 僵 菌在
选择性培 养 基 上 形成 的 目标 菌 落 数 量进 行方 差分
析, 发现 I 号培养 基与 Ⅵ号培养基 差异不显 著 , 与其
余 培养基 差异显 著 。 Ⅱ号培养基 与Ⅶ号培养 基差异
不 显著 , 与其余 培养 基 差异 显 著 。 Ⅲ号 培养 基 除与
按表 1配制 各 种培 养基 , P D 以 P A培 养 基作 为
对 照 。各培 养基灭 菌后 倒 入 直径 为 9 c 的培养 皿 m 中, 制成平板 备用 。
1 4 方 法 .
数量 的多少 , 影 响其 防治 持效 性 的关 键 。土 壤是 是

个 相对复 杂 的环境 , 病原菌 受到诸 多 因素 的影响 ,
Ⅷ 号培 养基 差异 不显 著外 , 与其 他 培养基 差 异都显
维普资讯
程子路 等 : 金龟子绿僵菌选择性培养基的筛选
Ⅱ Ⅲ Ⅳ V Ⅵ Ⅶ m
一 7 一 7
燕 麦片 3 , 5g 琼脂 5g结晶紫 10 gm , , 0 / l 多菌灵 0 8 / l . g m , 青霉素 1 g m , 0 0 /l 硫酸链霉素 10 / l 1 0 l 0 gm , 0m 水 0

高毒力杀蝗绿僵菌的紫外线诱变选育

高毒力杀蝗绿僵菌的紫外线诱变选育

高毒力杀蝗绿僵菌的紫外线诱变选育程辉彩1,敦冬梅2,张丽萍1,张根伟1,董 超1,崔冠慧1(1.河北省生物研究所,河北石家庄050081;2.石家庄职业技术学院,河北石家庄050081)摘要:以金龟子绿僵菌M 105复壮菌株M 1053为出发菌株,通过紫外线诱变选育,获得P r1酶活是出发菌株1.36倍的诱变株M 105-52。

经测定,诱变株的遗传性能稳定,紫外线抗性和杀蝗毒力均有显著提高。

关键词:杀蝗绿僵菌;紫外线;诱变选育中图分类号:S433 2 文献标志码:A 文章编号:1002-1302(2008)03-0106-02收稿日期:2007-10-08基金项目:河北省科技攻关项目(编号:05820121D )。

作者简介:程辉彩(1974 ),女,河北栾城人,硕士,助理研究员,主要从事微生物农药研究。

Te:l (0311)83014879;E -m ai:l hu icai ch eng @163.co m 。

蝗灾危害范围广泛,与水灾、旱灾并称为严重威胁我国农牧业生产、影响人民生活的三大自然灾害。

长期以来,我国防治蝗灾仍然以化学农药为主,如有机磷类、菊酯类及其复配制剂等,化学农药在蝗灾的控制中发挥了重要作用,但同时也给环境安全带来了较大隐患。

绿僵菌(M etarhiz i u m )是一种有效的蝗虫生防制剂,为蝗虫体内寄生病原真菌,对蝗蝻和成虫均有效。

作为专用性生物杀虫剂,绿僵菌对昆虫天敌无害,无二次中毒,不污染环境,可持续有效控制蝗虫种群在经济受害水平以下[1-6]。

紫外线诱变是一种使用时间长、效果好、设备简单、所需费用少、突变随机性强、可在短时间内获得大量突变体的常用诱变选育方法。

本试验以研究室保存的M 105菌株虫体复壮后进行紫外线诱变,以选育高毒力杀蝗绿僵菌菌株,为制备田间具有高防效菌剂奠定基础。

1 材料与方法1.1 试验材料1.1.1 菌种 金龟子绿僵菌(M etarhizium anisop li ae )M 105,为本研究室保存。

不同来源金龟子绿僵菌菌株生物学特性

不同来源金龟子绿僵菌菌株生物学特性

不同来源金龟子绿僵菌菌株生物学特性苏文晶【摘要】选择不同地理、寄主来源的15株金龟子绿僵菌(Metarhizium ankopliae)菌株,对各菌株菌落形态、生长速度、产孢量等生物学性状进行比较.结果表明:(1)根据菌丝质地和颜色、产孢能力、孢子颜色等将15株菌株分为6类,其中A、B、C类菌株分别有3、3、6株,D、E、F各有1株.(2)不同金龟子绿僵菌菌株的生长速度在初期(10 d以内)差异显著,MaQZ-01、MaJGZ-01和MaFZ-0,菌株10 d时菌落直径均超过6 cm,显著快于其他菌株;到生长后期(15 d),由于进入了产孢阶段,除Ma-20、MaJGSTR-01菌落直径较小外,其他菌株差异不显著.(3)不同菌株产孢量差异显著,MaQZ-01、MaZPTR-04和MaSHTR-05菌株产孢量显著高于其他菌株,分别达到0.147×109、0.145×109和0.137×109个·cm-2.综合生长速度与产孢量两项指标,MaQZ-01菌株具备生长迅速、产孢量大等优良生产性能,可作为优良菌株进一步在害虫防治中加以利用.【期刊名称】《亚热带农业研究》【年(卷),期】2015(011)002【总页数】5页(P123-127)【关键词】金龟子绿僵菌;生物学特性;菌落形态;生长速度;产孢量【作者】苏文晶【作者单位】泉州市森林病虫防治检疫站,福建泉州362000【正文语种】中文【中图分类】S476.12Key words:Metarhiziumanisopliae; biological characteristics; colonial morphology; growth speed; sporulation绿僵菌[Metarhizium (Metsch.) Sorokin]是虫生真菌的重要类群之一,寄主范围广,能寄生8个目30个科约200种昆虫、螨类及线虫[1]。

金龟子绿僵菌发酵培养基响应面优化-精品文档资料

金龟子绿僵菌发酵培养基响应面优化-精品文档资料

金龟子绿僵菌发酵培养基响应面优化金龟子绿僵菌(Metarhizium anisopliae)是一类重要的昆虫病原真菌,它作为生物防治制剂具有环境安全性好、昆虫不易产生抗性等特点。

此外,绿僵菌的寄主广泛性和广谱性使得其成为一种研究昆虫病原真菌侵染寄主过程的重要模式生物[1-2]。

目前,植物病害在全球范围内每年造成高达数千亿美元的损失,而其中又以昆虫病害最为严重。

金龟子绿僵菌具有寄生范围广、无残毒、后效期长等特点,已成为国内外杀菌、除虫的一线药物之一[3-4]。

然而,在金龟子绿僵菌发酵生产过程中,菌体生物量低,生产成本高,发酵周期长等问题限制了其推广应用[5-7];因此,对金龟子绿僵菌发酵培养基优化及条件探索具有重大意义。

本研究以金龟子绿僵菌NJYHWG 3820为试验菌株,应用响应面法系统考察了影响金龟子绿僵菌生物量的培养基成分,得到了最佳培养基配方,从而提高了生物量。

1 材料与方法1.1 菌种金龟子绿僵菌:Metarhizium anisopliae NJYHWG 3820,由笔者课题组保藏。

1.2 培养基斜面培养基:马铃薯200 g/L,蔗糖20 g/L,琼脂15~20 g/L,自然pH值。

种子培养基:蔗糖10 g/L,酵母膏10 g/L,KH2PO4 5 g/L,MgSO4 2 g/L,pH值6.5。

发酵培养基:蔗糖10 g/L,酵母膏10 g/L,KH2PO4 5 g/L,MgSO4 2 g/L,pH值6.5。

1.3 主要试剂和仪器蔗糖、葡萄糖、麦芽糖、乳糖、木糖、甘油、可溶性淀粉、蛋白胨、酵母膏、牛肉浸膏、甘氨酸、琼脂粉,由国药集团化学试剂XX公司提供;FeSO4?7H2O、MgSO4?7H2O、NaCl、K2HPO4?3H2O、CaCl2、NaNO3、CuSO4、CaCO3,由广东汕头市西陇化工厂提供;马铃薯,市售。

电热恒温培养箱,上海跃进医疗器械厂;灭菌锅,华粤行仪器XX公司;医用净化工作台,苏州净化设备厂;鼓风电热恒温干燥箱,上海试验仪器厂XX公司;台式高速离心机,德国艾本德股份公司;电子天平,瑞士梅特勒-托利多仪器XX公司;基础分析型纯水机,青岛富勒姆科技XX公司。

一株绿僵菌的分离_鉴定及其生物学特性的初步研究

一株绿僵菌的分离_鉴定及其生物学特性的初步研究
84
2011 年第 33 卷第 2 期 中国麻业科学 PLANT FIBER SCIENCES IN CHINA
文章编号:1671- 3532(2011)02- 0084- 05
一株绿僵菌的分离、鉴定及其生物学特性的 初步研究
严智燕,薛召东,曾粮斌,杨瑞林 (中国农业科学院麻类研究所,湖南 长沙 410205)
且具有分隔和分枝(见图 3)。 2.2.2 分生孢子形态
分生孢子梗分枝,为圆柱状瓶梗,孢子单胞,链状排列,分生孢子单生,长椭圆形,两端钝圆,大 小约为,5~8×2~3μm。
根据菌株培养特征的观察以及光学显微镜下的形态学观察,结合培养特征分析,鉴定该菌为金 龟子绿僵菌,将其编号为 Ma10。 2.2 生理生化特性的初步研究 2.2.1 培养基的筛选
Key words:Metarhizium anisopliae; isolate; identify; biological characteristics
前言
蛴螬是为害农林植物的重要的地下害虫之一,其发生普遍,为害严重,且化学防治难度大。因此采 用生物防治等方法防治害虫是十分必要的。绿僵菌(Metarhizium anisopliae)是一类广谱性昆虫病原真 菌,其致病力强,分布范围广,寄主范围至少包括 8 个目 200 余种昆虫及一些螨类和线虫 [1],且对蛴 螬等地下害虫也有很强的毒力,利用绿僵菌制剂来防治地下害虫已得到许多学者的重视[2- 3]。
表 2 Ma10 在不同培养基上的产孢量 Tab.2 The effect of different culture mediums on the spore yield of Ma10
培养基种类
PDA
SDAY
查氏培养基

椰子织蛾高毒力金龟子绿僵菌菌株的筛选

椰子织蛾高毒力金龟子绿僵菌菌株的筛选

椰子织蛾高毒力金龟子绿僵菌菌株的筛选孙晓东;李富恒;阎伟;李朝绪;吕朝军;覃伟权【摘要】椰子织蛾是为害热带地区棕榈科植物的重要害虫,本试验对从海南省陵水县采集的椰子织蛾僵虫上分离得到的4株金龟子绿僵菌进行了分子生物学鉴定,并测定了其对椰子织蛾3龄幼虫的室内生物活性,筛选出了高毒力菌株 LS-Y1。

试验结果表明,经 NCBI BLAST 比对,4株菌株的 rDNA-ITS 序列与 GenBank中已知基因序列相似性分别为99%、100%、99%、99%。

菌株 LS-Y1处理椰子织蛾3龄幼虫后6 d 的 LC50为4.41×106个/mL。

6.25×106、1.25×107、2.5×107、5×107和1×108个/mL 浓度处理下,金龟子绿僵菌 LS-Y1对椰子织蛾3龄幼虫的 LT50分别为5.77、4.88、4.43、3.82和3.36 d。

该菌株对椰子织蛾幼虫具有较高毒力,具有较好的生防潜力。

%Opisina arenosella Walker is an important insect pest on palm plants in the tropical area of China.In order to find efficient biocontrol agent against O .arenosella ,four Metarhizium anisopliae strains with good cul-tural characters were obtained from dead overwintering O .arenosella larvae collected from Lingshui,Hainan Province.The strains were identified by molecular method and their toxicities against the 3rd instar of O.arenosella were investigated in laboratory.Strain LS-Y1 demonstrated high toxicity againstO .arenosella .NCBI BLAST with the rDNA-ITS fragments from the four tested strains revealed that the nucleotide sequences of these genes have the similarity of 99%,100%,99% and 99% with the sequences ofJN377427.1,NR132017.1,FJ545278.1, FJ545294.1,respectively.LC50 value of LS-Y1 on the 3rd instar larvae of O .arenosella was 4.41×106 conidia/mL 6days after treatment.The LT50 values of LS-Y1 on the 3rd instar larvae ofO .arenosella at the spores concentra-tions of6.25×106 ,1.25×107 ,2.5×107 ,5×107 and 1×108 conidia/mL were 5.77d,4.88 d,4.43 d,3.82 d and 3.36 d,respectively.These results showed that the strain LS-Y1 was highly toxic against O .arenosella larvae, which was the promising candidate in the biological control of O .arenosella .【期刊名称】《植物保护》【年(卷),期】2016(042)006【总页数】4页(P215-218)【关键词】金龟子绿僵菌;椰子织蛾;分子鉴定;毒力【作者】孙晓东;李富恒;阎伟;李朝绪;吕朝军;覃伟权【作者单位】中国热带农业科学院椰子研究所,文昌 571339; 东北农业大学生命科学学院,哈尔滨 150030;东北农业大学生命科学学院,哈尔滨 150030;中国热带农业科学院椰子研究所,文昌 571339;中国热带农业科学院椰子研究所,文昌571339;中国热带农业科学院椰子研究所,文昌 571339;中国热带农业科学院椰子研究所,文昌 571339【正文语种】中文【中图分类】S436.67椰子织蛾(Opisina arenosella Walker)(又称椰子木蛾、黑头履带虫、椰蛀蛾、食叶履带虫[1]),属鳞翅目(Lepidoptera)织蛾科(Oecophoridae),英文名coconut black headed caterpillar,是一种严重为害椰子、槟榔、蒲葵、中东海枣、大王棕等棕榈作物的外来入侵有害生物[2],目前主要分布于印度、泰国、印度尼西亚、马来西亚、斯里兰卡、孟加拉、缅甸、巴基斯坦等地[3]。

金龟子绿僵菌(Metarhizium anisopliae) tetraspanin基因的克隆与序列分析

金龟子绿僵菌(Metarhizium anisopliae) tetraspanin基因的克隆与序列分析

金龟子绿僵菌(Metarhizium anisopliae) tetraspanin基因的克隆与序列分析贺闽1,夏玉先1*1重庆大学生物工程学院基因工程研究中心,重庆(400044)摘要:Tetraspanin蛋白是一类跨膜四次的膜蛋白,本文测序分析金龟子绿僵菌侵染蝗虫表皮阶段的cDNA文库,获得了金龟子绿僵菌的tetraspanin cDNA序列,以cDNA为探针从金龟子绿僵菌的DNA文库中克隆到了tetraspanin基因,并对tetraspanin蛋白进行了结构与进化分析, Soutern-blot分析表明tetraspanin基因在金龟子绿僵菌基因组中以单拷贝形式存在。

关键词:金龟子绿僵菌;tetraspanin;cDNA;DNA;进化分析。

中图分类号:1. 引言昆虫病原真菌是昆虫主要的自然致死因子,真菌生防剂具有触杀性、流行性、对环境安全和不易产生抗药性等特点,因此利用虫生真菌防治害虫越来越受到重视。

金龟子绿僵菌作为一种重要的昆虫病原真菌,国内外对其致病机理进行了大量研究,鉴定出了一些重要毒力基因,涉及真菌粘附并穿透宿主体壁、利用宿主营养、合成毒素以及逃避宿主免疫反应等[1,2,3,4,5,6]。

附着胞是虫生真菌入侵寄主过程中形成的重要侵染结构,能够分泌体壁降解酶和提供机械压力帮助侵染钉穿透昆虫体壁,附着胞的产生对于建立病原真菌与寄主关系是至关重要的。

因此,阐明附着胞形成分化的分子机制,能够为开发安全高效的真菌杀虫剂、挖掘昆虫病原真菌应用潜力提供科学依据。

Tetraspanin广泛表达于真核生物,是一类含204-344个氨基酸的细胞表面糖蛋白。

哺乳动物中已发现的tetraspanin家族蛋白有32个,果蝇中有37个,秀丽隐杆线虫中有20个,真菌中有4个。

在这众多的家族成员中,来自不同物种的tetraspanin很少存在同源性,但这些家族成员蛋白二级结构具有一定保守性,都由四个疏水跨膜区、胞外区的小环(EC1)和大环(EC2),以及两个短的胞内末端组成[7]。

椰子织蛾高毒力金龟子绿僵菌菌株的筛选

椰子织蛾高毒力金龟子绿僵菌菌株的筛选
( 1 _中国热带农业科学院椰子研究所 , 文昌
摘要
5 7 1 3 3 9 ;2 .东北农业大学生命科学学 院,哈尔滨
1 5 0 O 3 0 )
椰 子织蛾 是为害热带地 区棕榈科植 物的重要 害虫, 本试验对从 海南省 陵水县采集的椰子 织蛾僵 虫上分 离得
到 的 4株金 龟子绿僵 菌进行 了分子 生物 学鉴定 , 并测定 了其 对椰子 织蛾 3 龄 幼虫的 室内生物 活性 , 筛选出 了高毒 力 菌株 L Y1 。试验结果表 明, 经 NC B I B I AS T 比对 , 4株 菌株 的 r DNA - I TS序 列与 G e n B a n k中 已知基 因序列相似
t u r a l c h a r a c t e r s we r e o b t a i n e d f r o m d e a d o v e r wi n t e r i n g O. a r e n o s e l l a l a r v a e c o l l e c t e d f r o m Li n g s h u i , Ha i n a n
性 分别为 9 9 、 1 0 0 %、 9 9 、 9 9 。菌 株 L S - Y1处 理 椰 子 织蛾 3龄 幼 虫后 6 d的 L C 5 。 为4 . 4 1 ×l O 个 / mL。6 . 2 5 ×
1 0 、 1 . 2 5 ×1 0 、 2 . 5 ×1 0 、 5 ×1 0 和 1 ×1 0 个/ mI 浓度 处理 下 , 金 龟 子 绿僵 菌 L S  ̄ Y1对 椰 子 织 蛾 3 龄 幼虫的 I 5 。
Opi s i n a a r e n o s e l l a W a l ke r
S u n Xi a o d o n g , L i F u h e n g 。 , Ya n we L i C h a o x u , L n Ch a o j u n , Qi n We i q u a n

以G418抗性为选择标记的金龟子绿僵菌原生质体转化的研究

以G418抗性为选择标记的金龟子绿僵菌原生质体转化的研究

的转化子转接到选择性培养 基上继代培养, 重复 3 次 , 以 IMI330189 菌株为对照。28 培养箱黑暗培养 3 d, 观察转化 子生长情况。 从不含 G418 的 PDAY 平板上将转化子孢子洗下, 浓度 为 1 103 个/ ml。在含 G418 和不含 G418 的 PDA 板上涂 100 l 孢子悬液, 培养 3 d 后数 2 个平板上的菌落数量, 然后计算 出转化子孢子遗传抗性稳定率。 选择性培养基上的菌落数 转化子稳定率= 产孢培养基上的菌落数 2 结果与分析
金龟子绿僵菌[ Metarhizium anisopliae ( Metsch. ) Sorokin] 能 寄生 8 个目 40 个科约 200 多种昆虫、 螨类及线虫 , 具有良好 的杀虫效果 , 在害虫防治中起着重要作用。国内外已在害虫 防治中作为生物防治手段实现了绿僵菌的工厂化生产与大 规模应用
均匀涂布于含有不同浓度梯度 G418 的 PDAY 培养基平板
作者简介 王晓玲 ( 1980- ) , 女 , 内蒙古宁城人 , 硕士研究生 , 研究方向 : 农业微生物学 。 * 通讯作者。 收稿日期 2007 05 15
ቤተ መጻሕፍቲ ባይዱ
100% ( 1)
2. 1 G418 对绿僵菌生长的抑制作用 目前还没有绿僵菌对
。为进一步提高绿僵菌的生物防治效果, 必须
对金龟子绿僵菌杀虫的分子机理进行探讨, 以对菌株进行改 造。这项工作的一个前提是建立绿僵菌的转化系统。由于 无需分离营养缺陷型即可检测到抗药基因的表达, 真菌转化 越来越多地应用抗药性标记[ 5] 。1996 年 , Maur cio Reis Bogo 等将多菌灵作为抗性标记, 采用 PEG、 电转化和生物转化方 法比较了绿僵菌的转化效率 。笔者利用一个以 G418 抗性 为真菌选择标记的质粒, 建立了绿僵菌的转化体系。 1 材料与方法 1. 1 菌株与载体 转化受体菌为金龟子绿僵菌 IMI330189 菌 株。用于转化的质粒 pSM334 由蒋伶活博士提供。该质粒含有 抗氨苄青霉素基因和 G418 抗性基因, 质粒浓度为 100 ng/ l。 1. 2 培养基及溶液 产孢培养基 PDAY: PDA, 0. 5% Yeast Ex tract, 蒸馏水定容; 液体培养液: 2% 蔗糖, 0. 5% K2HPO4, 0. 2% MgSO4, 1% Yeast Extract, 蒸馏水定容, 高压灭菌; 选择性培养基: 含适量 G418 的产孢培养基; STC Buffer: 20% 蔗糖, 10mmol/ L Tris HCl( pH 值 8. 0) , 50 mmol/ L CaCl2, 蒸馏水定容, 高压灭菌; 原生 质体 Buffer: 10 mg 崩溃酶( Sigma) , 1 g 几丁质酶( Sigma) , 100 mg 裂解酶, 加入 20 ml 1. 2 mol/ L KCl 中, 0. 45 m 无菌滤器过滤; PTC 溶液: 40% PEG 8 000/ l STC, 过滤除菌; TB3: 3 g Yeast Ex tract, 3 g Casamino Acids, 20% 蔗糖, 蒸馏水定容, 高压灭菌; 底层 培养基: 含 0. 7% 低熔点琼脂糖的 TB3 培养基, 加氨苄( 终浓度 为 100 g/ ml) 和一定浓度的 G418; 上层培养基: 含 0. 7% 低熔点 琼脂糖和一定浓度 G418 的 TB3 培养基。 1. 3 G418 敏感性测定 制备绿僵菌的孢子悬液, 浓度为1 104 个/ ml。取 100 l 107 个/ ml, 采用浓度梯度法稀释至 1

ARTP与紫外线复合诱变选育高性能绿僵菌菌株(1)

ARTP与紫外线复合诱变选育高性能绿僵菌菌株(1)

ARTP与紫外线复合诱变选育高性能绿僵菌菌株本期为您推荐安徽工程大学生物与化学工程学院张国强教授研究团队发表在《食品工业科技》上的一篇文章:ARTP与紫外线复合诱变选育高性能绿僵菌菌株文章摘要内容如下:金龟子绿僵菌(Metarhizium anisopliae)是一种环境友好型杀虫剂,目前已成功应用到田间,正稳步取代传统的化学农药。

但田间的不利环境会限制绿僵菌的感染性和有效性。

因此,筛选具有抗逆性的优良绿僵菌菌株具有重要的意义。

近年来对优良绿僵菌菌株的选育通常采用的是传统的紫外诱变方法,目前尚未见利用ARTP诱变技术增强绿僵菌性能的报道。

本研究采用常压室温等离子体(ARTP)和紫外线复合诱变处理金龟子绿僵菌,以期获得高性能的金龟子绿僵菌菌株,通过比较产孢快慢和生长直径大小进行初筛,用抗紫外能力和毒力作为复筛指标选育菌株,并对育种获得的突变株进行耐热性和遗传稳定性试验,最终在ARTP40s和紫外120s时筛选出一株产孢量高、耐紫外线、毒力强、遗传稳定的优良菌株AU34。

该菌株产孢时间比原始菌株快,产孢量为1.63±0.22(108cell/cm2),较原始菌株提高了63.81%。

经紫外照射5 min 后,AU34存活率为3.18%,比原始菌株更耐紫外照射。

并且AU34对小菜蛾的毒力强,校正死亡率为85.71%,半数致死时间(LT50)为6.12 d。

与原始菌株相比,AU34 的耐热性也有较大提高。

传代培养6 代后,菌株AU34 的产孢量无明显变化,具有良好的遗传稳定性。

常压室温等离子体(Atmospheric and room temperature plasma,ARTP)是一种新兴的诱变方式,已成功应用于细菌、真菌等微生物,具有突变率高,操作简便,易得到突变株等优点。

本研究以金龟子绿僵菌421为材料,采用ARTP 和紫外线复合诱变处理菌株,以小菜蛾为生测对象,筛选出产孢量高、耐紫外、毒力强的优良诱变株。

优良杀虫绿僵菌菌株的筛选及其培养研究的开题报告

优良杀虫绿僵菌菌株的筛选及其培养研究的开题报告

优良杀虫绿僵菌菌株的筛选及其培养研究的开题报告一、研究背景农业是我国国民经济的基础,农业生产中,害虫是制约农作物高产的主要因素之一。

化学农药的使用虽然能够在一定程度上控制害虫的数量,但也会带来农产品安全问题和环境污染等问题。

因此,发展绿色农业,采用生物防治技术控制害虫,已成为当前农业发展的重要方向之一。

绿僵菌是一种天然的杀虫菌,对多种害虫具有很高的防治效果,是生物防治中的重要杀虫菌之一。

二、研究内容本研究选取优良的绿僵菌菌株,通过对其进行筛选和培养,研究其对害虫的防治效果及培养条件。

具体内容如下:1. 绿僵菌的筛选通过实验初步筛选出防治效果好、适应性强、繁殖快等优良的绿僵菌菌株。

2. 绿僵菌的培养在优化培养条件的基础上,探究不同生长条件对绿僵菌生长的影响,寻找最佳培养条件。

3. 绿僵菌的防治效果研究通过室内和田间试验,评估优良绿僵菌菌株对多种害虫的防治效果,包括杀虫率、致死速度等指标。

三、研究意义本研究旨在深入探究绿僵菌的优良菌株的筛选、培养和防治效果,为生物防治技术的实施提供科学依据,为推动我国绿色生态农业的发展做出贡献。

同时,也为生物农药的基础研究提供数据支持。

四、研究方法本研究将采用实验室条件下的菌株筛选、单菌发酵、发酵产生杀虫毒素、对害虫防治效果评价和田间试验等多种研究方法,技术路线如下:1. 样品采集和处理在不同地理环境中采集绿僵菌样品,进行初步筛选。

2. 生物学特性研究对筛选出的菌株进行形态与解剖特点、生长周期、生长途径等常规生物学研究,分别观察于普通培养、小试与大试阶段。

3. 杀虫毒素研究将选定的优良菌株进行单菌发酵,提取绿僵菌杀虫毒素。

4. 对害虫防治效果评价将绿僵菌杀虫毒素加入害虫的饲料中,观察杀虫效果、致死速度和残留期等指标。

5. 田间试验在不同害虫发生期,采用不同配方的杀虫剂进行防治,对比绿僵菌对多种害虫的防治效果。

感染萧氏松茎象的金龟子绿僵菌菌株的初步筛选

感染萧氏松茎象的金龟子绿僵菌菌株的初步筛选

桂等 , 2004) 。该虫国外分布未见报道 ,国内主要分 布江西 、福 建 、贵 州 、广 东 、广 西 、湖 南 、湖 北 7 省 (区 )的 100 多个县 (市 ) 1) 。各发生地开展了该害 虫种群发生规律与控制技术研究 ,但尚无有效控制 方法 。
虫生真菌是昆虫种群自然调控的重要因子 ,在害 虫控制方面有巨大的潜力 (蒲蛰龙等 , 1996)。自 1879 年 Metchnikoff 首 次 从 奥 地 利 丽 金 龟 ( Anisoplia austriaca)中分离出绿僵菌 ,并成功进行奥地利丽金龟 和甜菜象甲 (B othynoderes punctiventris)的防治以来 ,绿 僵菌就成为了害虫微生物防治的主要病原菌之一 (蒲 蛰龙等 , 1996; Donald et al. , 2004)。绿僵菌寄主极为 广泛 ,达 7个目 200多种昆虫 (Latch, 1965; Veen et al. , 1966) , 是当今世界广泛应用于防治农林害虫的病原真
表 1 供试绿僵菌菌株来源 ①
Tab. 1 O r ig in of tested M. an isop liae stra in s
菌株编号 Strain No.
采集地 Locality
寄主或分布 Hosts or distribution
分离日期 Isolated date
MaFzzL 201 福建省福州市 Fuzhou, Fujian
收稿日期 : 2008 - 07 - 09。 基金项目 : 福建省自然科学基金项目 ( Z0516020) ; 福建省科技厅重点项目 (2006N0002) ; 福建省科技厅重点项目 (2004N013) 。 3 陈顺立为通讯作者 。本研究 9个供试金龟子绿僵菌菌株由福建省林业科学研究院森林保护研究所何学友教授级高工提供 ,在此表示衷 心感谢 。 1) 国家林业局植树造林司 ,国家林业局森林病虫害防治总站. 2006年上半年全国主要林业有害生物发生情况及下半年发生趋势预测. 森 防简报 , 2006, 16.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金龟子绿僵菌选择性培养基的筛选
作者:程子路, 詹儒林, 许天委, 宋妍, 郭立佳, 张世清, 黄俊生
作者单位:程子路,许天委,宋妍,郭立佳,张世清,黄俊生(中国热带农业科学院环境与植物保护研究所,海南儋州,571737), 詹儒林(中国热带农业科学院环境与植物保护研究所,海南儋州
,571737;中国热带农业科学院南亚热带作物研究所,广东湛江,524091)
刊名:
江苏农业科学
英文刊名:JIANGSU AGRICULTURAL SCIENCES
年,卷(期):2007(5)
被引用次数:2次
1.李增智.程双龙.鲁绪祥绿僵菌、黄僵菌对松毛虫的室内杀虫及固体生产试验初报[期刊论文]-安徽农学院学报1985(02)
2.宋漳.景云.蔡和谦应用绿僵菌防治马尾松毛虫初探 1997(02)
3.江英成绿僵菌和白僵菌侵染马尾松毛虫试验比较[期刊论文]-浙江林学院学报 2000(04)
4.Weiner J E B M.Kennedy C Growth and variability in crowded and uncrowded populations of dwarf marigold(tagetes patula) 1990
5.张思玉桫椤群落内主要乔木种群的种间联接性[期刊论文]-应用与环境生物学报 2001(04)
6.张思玉.郑世群永定桫椤群落的结构特征[期刊论文]-植物资源与环境学报 2001(03)
7.尚进.李旭光.石胜友重庆涪陵磨盘沟桫椤种群结构与分布?格局研究[期刊论文]-西南农业大学学报(自然科学版) 2003(03)
8.张跃西.钟章成亚热带次生常绿阔叶林乔木优势种邻体干扰竞争模型的研究 1997
9.张跃西.钟章成亚热带次生常绿阔叶林优势种间的竞争效应与竞争反应[期刊论文]-应用与环境生物学报
2003(04)
10.史红霞.胡明龙球孢白僵菌选择性培养基的筛选和检测应用[期刊论文]-浙江林学院学报 2002(02)
11.王滨.樊美珍球孢白僵菌选择性培养基的筛选[期刊论文]-安徽农业大学学报 2000(01)
12.Veen K H.Ferron P A selective medium for the isolation of Beauveria tenella and of Metarhizium anisopliae 1966
13.樊美珍.李增智绿僵菌在土壤中的延续及控制桃小食心虫的潜力 1996(01)
1.孔琼.袁盛勇.郭亚力.张宏瑞.田学军.李河球孢白僵菌MZ041016菌株及其与化学农药混配对禾谷缢管蚜的毒力测定[期刊论文]-江苏农业科学 2008(4)
2.程辉彩.敦冬梅.张丽萍.张根伟.董超.崔冠慧高毒力杀蝗绿僵菌的紫外线诱变选育[期刊论文]-江苏农业科学2008(3)
本文链接:/Periodical_jsnykx200705025.aspx。

相关文档
最新文档