7.2(2)定义与命题 徐利华

合集下载

2024-2025学年北师版中学数学八年级上册7.2.2定义与命题教学课件

2024-2025学年北师版中学数学八年级上册7.2.2定义与命题教学课件

1
2
a
∴ ∠1=90°(垂直的定义),
又∵ b ∥ c(已知),
∴ ∠2=∠1=90°(两直线平行,同位角等),
∴ a ⊥ c(垂直的定义).
课堂小结
命题Βιβλιοθήκη 分类公理:公认的真 命题
定理:经过证明 的真命题
证明:推理的过程
当堂检测
1.“两点之间,线段最短”这个语句是( B )
A.定理 B.公理
C.定义 D.只是命题
2.“同一平面内,不相交的两条直线叫做平行线”
这个语句是( C )
A.定理
B.公理 C.定义 D.只是命题
3.下列命题中,属于定义的是( D ) A.两点确定一条直线; B.同角的余角相等; C.互补的两个角是邻补角; D.点到直线的距离是该点到这条直线的垂线段的长度.
4.下列句子中,是定理的是( B,C ),是公理的 是( A ). A.若a=b,b=c,则a=c;
第七章 平行线的证明
第七章 平行线的证明
7.2 定义与命题 第2课时
学习目标
1.了解公理、定理与证明的概念并了解本套教材所采用的 公理.(重点) 2.体会命题证明的必要性,体验数学思维的严谨性.(难点)
新课导入
【思考】如何证实一个命题是真命题呢?
用我们以前学 过的观察,实 验,验证特例
等方法.
哦……那可 怎么办
证明: ∵直线AB与直线CD相交于点O (已知), ∴ ∠AOB与∠COD都是平角 ( 平角的定义), ∴ ∠AOC+∠AOD=180°, ∠BOD+∠AOD=180 °( 补角的定义 ), ∴ ∠AOC =∠BOD ( 同角的补角相等).
随堂训练
已知:b∥c, a⊥b .

八年级数学上册7.2定义与命题第1课时定义与命题教案1北师大版(2021学年)

八年级数学上册7.2定义与命题第1课时定义与命题教案1北师大版(2021学年)

2017秋八年级数学上册7.2定义与命题第1课时定义与命题教案1 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017秋八年级数学上册7.2 定义与命题第1课时定义与命题教案1 (新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017秋八年级数学上册 7.2 定义与命题第1课时定义与命题教案1 (新版)北师大版的全部内容。

7.2 定义与命题第1课时定义与命题1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02。

666秒发射,由长征二号F改进型运载火箭(遥十)“神箭"成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平。

6月13日与天宫一号进行对接。

6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义下列语句属于定义的是( )A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B 是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D。

方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.探究点二:命题【类型一】命题的概念下列各语句中,哪些是命题,哪些不是命题?(1)相等的角都是直角.(2)空气是无色无味的.(3)同旁内角相等吗?(4)两条直线被第三条直线所截.(5)画线段AB=5cm。

八年级数学上册7.2定义与命题第1课时定义与命题说课稿 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题说课稿 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题说课稿(新版北师大版)一. 教材分析八年级数学上册7.2定义与命题是北师大版教材中的一节重要课程。

这部分内容主要介绍了定义与命题的概念、分类和判断方法。

教材通过丰富的实例和练习,使学生掌握定义与命题的基本知识,培养学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和命题有一定的认识。

但学生在学习过程中,往往对抽象的定义与命题理解不深,容易混淆。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生理解定义与命题的本质,提高学生的数学思维能力。

三. 说教学目标1.知识与技能目标:使学生理解定义与命题的概念,掌握定义与命题的分类和判断方法。

2.过程与方法目标:通过自主学习、合作交流,培养学生分析问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。

四. 说教学重难点1.教学重点:定义与命题的概念、分类和判断方法。

2.教学难点:对定义与命题的理解和运用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,提高学生的学习兴趣。

六. 说教学过程1.导入新课:通过生活实例,引导学生思考什么是定义与命题,激发学生的学习兴趣。

2.自主学习:让学生阅读教材,了解定义与命题的概念、分类和判断方法。

3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。

4.教师讲解:针对学生不易理解的知识点,进行详细讲解,突破教学难点。

5.练习巩固:布置课后练习,让学生运用所学知识解决问题。

6.课堂小结:总结本节课所学内容,加深学生对定义与命题的理解。

七. 说板书设计板书设计如下:判断方法:……八. 说教学评价1.学生自主学习能力的评价:观察学生在自主学习过程中的表现,如学习态度、问题解决能力等。

2.学生合作交流能力的评价:评价学生在小组讨论中的参与程度、观点阐述等。

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。

1 .会在简单的情况下判别一个命题的真假。

2 .了解公理和定理的含义。

3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。

.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。

.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。

3 情感态度与价值观让学生在推理中感觉到数学的有用性。

教学重点:命题的真假的概念和判别。

教学难点判别命题的真假其实已涉及证明。

教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。

. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。

1. 两点之间线段最短。

2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。

北师大版(教材)初中八上722定义与命题教案

北师大版(教材)初中八上722定义与命题教案

北师大版(2012教材)初中八上7.2.2 定义与命题教案【教学目标】知识与技能1.命题的组成:条件和结论.2.命题的真假.过程与方法1.能够分清命题的题设和结论.会把命题改写成“如果……,那么……”的形式;能判断命题的真假.2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.情感态度与价值观通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体. 行为与创新通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.【教学重难点】重点命题的概念难点真假命题的判断【教学准备】教师:课件学生:练习本.【教学过程】Ⅰ.巧设现实情境,引入课题[师]上节课我们研究了命题,那么什么叫命题呢?[生]判断一件事情的句子,叫做命题.[师]好.下面大家来想一想:[师]大家观察后,分组讨论.[生甲]这五个命题都是用“如果……,那么……”的形式叙述的.[生乙]每个命题都是由已知得到结论.[生丙]这五个命题的每个命题都有条件和结论.[师]很好.这节课我们继续来研究命题.Ⅱ.讲授新课[师]大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.下面我们来做一做(5)全等三角形的面积相等.[生甲]第一个命题的条件是:两个角相等,结论是:它们是对顶角.[生乙]第二个命题的条件是:a>b,b>c,结论是:a=c.[生丙]第三个命题的条件是:在两个三角形中,有两角和其中一角的对边对应相等.结论是:这两个三角形全等.[生丁]第四个命题的条件是:菱形的四条边.结论是:都相等.[生戊]丁同学说得不对.这个命题可改写为:如果一个四边形是菱形,那么这个四边形的四条边都相等.显然,这个命题的条件是:一个四边形是菱形.结论是:这个四边形的四条边都相等.[生己]第五个命题可改写为:如果两个三角形全等,那么这两个三角形的面积相等.则这个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.[师]同学们分析得很好.能够经过分析,准确地找出命题的条件和结论.接下来我们来思考2.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?[师]大家思考后,来分组讨论.[生甲]第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.图6-10[生乙]我们讨论的结果是与甲同学的一样.如图6-10,∠1=∠2,从图形中可知∠1与∠2不是对顶角.所以第一个命题:如果两个角相等,那么它们是对顶角是错误的.[生丙]第二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.[师]很好.同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题(true statement),不正确的命题称为假命题(false statement).由大家刚才分析可以知道:要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例(counter example).注意:对于假命题并不要求,在题设成立时,结论一定....错误.事实上,只要你不能保证结论一定成立,这个命题就是假命题了.因此,要说明一个命题是假命题,只要举出一个“反例”就可以了.那一个正确的命题如何证实呢?大家来想一想:[生甲]用我们以前学过的观察、实验、验证特例等方法.[生乙]这些方法往往并不可靠.[生丙]能不能根据已经知道的真命题证实呢?[生丁]那已经知道的真命题又是如何证实的?[生戊]哦……那可怎么办呢?……[师]其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理(axiom).除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(proof).经过证明的真命题称为定理(theorem),而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《原本》是一部具有划时代意义的著作.[生]老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.[师]对,我们这套教材有如下命题作为公理:[师]同学们来朗读一次.[师]好.除这些以外,等式的有关性质和不等式的有关性质都可以看作公理.在等式或不等式中,一个量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.注意:(1)公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.(2)公理可以作为判定其他命题真假的根据.好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史.Ⅲ.课堂练习1.课本读一读2.看课本,然后小结.Ⅳ.课时小结本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件和结论两部分组成.命题分为真命题和假命题.在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.大家要会灵活运用本节课谈到的公理来证明一些题.Ⅴ.课后作业(一)课本习题7.3 1、2(二)1.预习内容课时作业设计1.下列命题是真命题的是( )A.如果两个角不相等,那么这两个角不是对顶角B.两互补的角一定是邻补角C.如果a2=b2,那么a=bD.如果两角是同位角,那么这两角一定相等2.下列命题是假命题的是( )A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.矩形的对角线相等且互相平分3.已知下列四个命题:(1)若直角三角形的两边长分别是3与4,则第三边长是5;(2)2a;(3)若点P(a,b)在第三象限,则点Q(-a,-b)在第一象限;(4)两边及第三边上的中线对应相等的两个三角形全等,其中正确的选项是()A.只有(1)错误,其他正确B.(1)(2)错误,(3)(4)正确C.(1)(4)错误,(2)(3)正确D.只有(4)错误,其他正确4.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高也相等;(3)绝对值等于3的数是3;(4)如果∠DOE=2∠EOF,那么OF是∠DOE平分线.5.指出下面命题的条件和结论,并判断命题的真假,如果是假命题,•请举出反例.(1)如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.答案:1.A2.C3.C4.解:(1)条件:两条直线被第三条直线所截,结论:同旁内角互补; (2)条件:两个三角形全等, 结论:它们对应边上的高也相等;(3)条件:绝对值等于3的数,结论:这个数是3;(4)条件:∠DOE=2∠EOF,结论:OF是∠DOE平分线.5.条件:等腰三角形的两条边长为5和7,结论:这个等腰三角形的周长为17.是假命题。

最新北师大版数学八年级上册《7.2 定义与命题 (第1课时)》精品教学课件

最新北师大版数学八年级上册《7.2 定义与命题 (第1课时)》精品教学课件
知的事项,结论是由已知事项推断出的事项. “如果” 引出的部分是条件,“那么”引出的部分是结论.
探究新知
有些命题没有写成“如果……那么……”的形式, 条件和结论不明显,对于这样的命题,要经过分析才能 找出条件和结论,也可以先将它们改写成“如果……那 么……”的形式.
注意:命题的条件部分,有时也可用“已知……” 或者“若……”等形式表述,命题的结论部分,有时也 可用“求证……”或“则……”等形式表述.
(3)平行用符号“∥”表示.
一般情况下,疑问 句不是命题,图形 的作法不是命题, 祈使句也不是命题!
探究新知
注意: 1.只要对一件事情作出了判断,不管正确与否,都是命题. 如:相等的角是对顶角. 2.如果一个句子没有对某一件事情作出任何判断,那么 它就不是命题. 如:画线段AB=CD.
探究新知 素养考点 命题的识别
备命题的条件,而不具有命题的结论的例子.
探究新知
素养考点 真假命题的识别
例 下列命题哪些命题是正确的,哪些命题是错误的?
(1)两条直线被第三条直线所截,同旁内角互补;
√ (2)等式两边都加同一个数,结果仍是等式;
√ (3)互为相反数的两个数相加得0;
(4)同旁内角互补;
√ (5)对顶角相等.
巩固练习
变式训练
下列句子哪些是命题?是命题的,指出是真命题还是假命题?
(1)猪有四只脚;
是 真命题
(2)内错角相等;
是 假命题
(3)画一条直线; (4)四边形是正方形; (5)你的作业做完了吗?
否 是 假命题 否
(6)同位角相等,两直线平行;
是 真命题
(7)同角的补角相等;
是 真命题
(8)同垂直于一直线的两直线平行; (9)过点P画线段MN的垂线; (10)x>2.

北师大版八年级数学7.2定义与命题(2)教案

北师大版八年级数学7.2定义与命题(2)教案

3.同一平面内,过一点有且只有一条直线与直线垂直.4.两条直线被条直线所截,如果同位角相等,那么这两条直线平行〔即:同位角相等,两直线平行〕5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.〔SAS)7.两角及其夹边分别相等的两个三角形全等. (ASA)8.三边分别相等的两个三角形全等. (SSS)另外一条根本领实我们将在后面的学习中认识它.9.平行线截线段成比例.【设计:总结学生学过的根本领实,并以它们作为证明的出发点,初步构建几何证明的“公理化体系〞,培养学生逻辑推理能力.用数学的三种语言〔文字语言、符号语言、图示语言〕表达“九条根本领实〞,提高学生数学语言的表达能力.】思考四:代数知识中是否也有“公理〞呢?能举例说明吗?探究活动三:感受代数中的公理数与式的运算律和运算法则、等式的有关性质和不等式的有关性质都可以看作公理.在等式或不等式中,一个量可以用它的等量来代替.例如:如果a=b,b=c,则a=c,这一性质也可以作为证明的依据,称为“等量代换〞.如果a>b,b>c,那么a>c, 称为“不等式的传递性.〞【设计:用学生学过的具体实例,感受代数的公理化思想.】思考五:请同学们结合所学知识,谈谈你对“根本领实〞或“公理〞的理解?〔1〕公理是通过长期实践反复验证过的,不需要再进行推理论证而都成认的真命题.〔2〕公理可以作为判定其他命题真假的依据.【设计:深刻理解公理的独立性、完备性、和谐性.】教学活动三: 典例分析例:如下图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角. 求证:∠AOC=∠BOD.证明:∵直线AB与直线CD相交于点O〔〕,∴∠AOB和∠COD都是平角〔平角的定义〕.∴∠AOC和∠BOD都是∠AOD的补角〔补角的定义〕.∴ ∠AOC=∠BOD〔同角的补角相等〕.定理:对顶角相等.【设计:严格证明几何定理“对顶角相等〞,初步感受证明的思路和书写过程.】随堂练习:证明定理: 三角形的任意两边之和大于边.:如图,△ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:∵AC是以点A、点C为端点的线段〔〕,∴AB+BC>AC〔两点之间,线段最短〕.∵AB是以点A、点B为端点的线段〔〕,∴ BC+CA>AB 〔两点之间,线段最短〕.∵BC是以点B、点C为端点的线段〔〕,∴ CA+AB>BC 〔两点之间,线段最短〕.【设计:证明定理,感受证明的思路和书写过程.】教学活动四: 文化拓展数学文化阅读材料一:数学家欧几里得;数学文化阅读材料二:《几何原本》;数学文化阅读材料三:徐光启与《几何原本》.【设计:了解《几何原本》和数学家欧几里得、徐光启,感受公理化方法对数学开展和促进人类文明进步的价值.】板书设计一.公理、证明和定理的含义二.数学的“九条根本领实〞三.代数中的公理作业设计定义与命题〔二〕作业单。

北师版八年级上册 第七章 722 定义与命题 教案

北师版八年级上册 第七章 722 定义与命题 教案

7.2.2定义与命题(教案)教学目标知识与技能:1.理解公理、证明、定理的概念.2.掌握公理、证明、定理的联系与区别.过程与方法:1.通过对公理的认识,明确证明需要公理和定理.2.经历实际情境,初步体会公理化的思想和方法.情感态度与价值观:1.通过从具体例子中提炼数学概念,培养学生思维的严密性和逻辑性.2.结合实例让学生意识到证明的必要性,培养学生做到有理有据,有条理地表达自己的想法的良好意识,培养学生的语言表达能力.教学重难点【重点】理解公理、证明和定理的概念.【难点】准确找出命题的条件和结论,公理与定理的区别,写出步步有理有据的证明过程.教学准备【教师准备】教材第168页情景图和第169页例题的投影图片.【学生准备】复习命题等相关概念.教学过程一、导入新课导入一:举一个反例就可以说明一个命题是假命题,那么如何证实一个命题是真命题呢?要说明一个命题是正确的,无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性,其实在数学发展史上,数学家们也遇到过类似的问题.今天我们就来共同学习.(板书课题)[处理方式]此处教师讲,学生听,在听故事的过程中抓住学生的质疑与好奇,引出新课内容,揭示课题.[设计意图]通过引人入胜的数学故事,方便与学生活动交流,拉近与学生之间的距离.同时结合故事内容调动学生学习的兴趣,激发学生学习的热情,吊足学生胃口,引入新课,揭示课题.导入二:师:(出示投影)王老师、李老师、范老师三名教师分别来自我市的薛城、峄城、市中三个地方,在学校分别教语文、数学和英语,已知:(1)王老师不是薛城人,李老师不是峄城人;(2)薛城人不教英语,峄城人教语文;(3)李老师不教数学.师:同学们,这三位老师分别是什么地方的教师?分别教什么课程?生1:李老师不是峄城人,所以李老师可能是市中人或薛城人;李老师不教数学,所以李老师可能教语文或英语;因为峄城人教语文,所以李老师只能教英语;而薛城人不教英语,所以李老师是市中人.生2:(补充)因为王老师不是薛城人,所以王老师可能是市中人或峄城人;李老师已经判断是市中人了,所以王老师只能是峄城人,范老师就是薛城人了.生3:(接着说)王老师是峄城人,所以王老师教语文,而范老师教的课程是数学.师:三位同学推理非常合理,我们为他们鼓掌.(学生鼓掌)解决这样的逻辑推理题目的关键是:根据条件,进行依次判断,进而得出正确结论.那么,如何证实一个命题是真命题呢?我们今天继续来探究.(板书课题)[设计意图]加深学生对逻辑推理的理解,可激发学生学习本课时的兴趣,从而引出本课时的问题.二、新知构建[过渡语]怎样判断一个命题是真命题还是假命题?你判断的依据是什么?(1)、公理、证明、定理的有关概念思路一(多媒体出示)公理、证明、定理的有关概念.问题1【课件1】公理的概念是什么?证明、定理的概念是什么?完成下列填空:(1)叫做公理.除了公理外,其他命题的真假都需要通过的方法进行判断.(2)的过程称为证明.经过证明的称为定理.每个定理都只能用、和已经证明为的命题来证明.问题2【课件2】本套教科书选用的公理有哪些?本套教科书选用九条基本事实(公理)作为证明的出发点和依据,我们已经认识了其中的八条:(1);(2);(3);(4);(5);(6);(7);(8).思路二师: (投影出示)公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他真命题的正确性都需要通过演绎推理的方法证实.演绎推理的过程称为证明.经过证明的真命题称为定理,而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.欧几里得生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.师:(投影出示)我们这套教材中已经认识了有如下命题作为基本事实:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.[设计意图]让学生明确有哪些公理,给学生留出一定的思维空间,让他们思考如何证实真命题的问题,在此基础上,引出数学家欧几里得《原本》的编写思路.另外一条基本事实我们将在后面的学习中认识它.等式的有关性质和不等式的有关性质都可以看作公理,在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.问题3【课件3】还有哪些有关性质可以作为证明的依据?[处理方式](1)让学生自学3分钟(要求根据多媒体出示的问题逐一回答),并独立思考.(2)对于未完成的问题,小组内交流自己的想法并完善,教师巡视,检查完成情况.(3)完成多媒体出示的内容,借助多媒体展示正确答案,学生完成后及时点评,让学生对出现的问题进行矫正.(教师可以根据学生回答问题的情况给予适时点拨)(2)、公理、定理、定义及它们之间的关系(多媒体出示)问题1【课件1】公理的来源是什么?问题2【课件2】定理是怎么得到的?证明定理的依据是什么?问题3【课件3】最初的定理是怎么得到的?问题4【课件4】你能否通过图表把这个关系画出来?[处理方式]首先学生自主思考,挨个回答上面的问题,然后学生交流合作试画图表,此时教师给予必要的指导.巡视同时注意看有没有同学能够画出较为合理的图表,有的话就给予全班展示.最后再多媒体展示,出示答案.[设计意图]通过自主学习、合作交流、优秀图表展示等环节,既可以锻炼学生的自主学习能力,又发展了学生的合作交流能力、有条理思考的能力和语言表达能力.(3)、定理的证明[过渡语]从这些基本事实出发,我们就可以证明已经探索过的结论了,我们已经知道:同角的补角相等.怎么利用你刚才整理的公理进行证明呢?问题1【课件1】你能书写证明下面这个定理的规范步骤吗?(多媒体出示)证明:同角的补角相等.已知:∠1+∠2=180°,∠1+∠3=180°.求证:∠2=∠3.证明:∵∠1+∠2=180°,∠1+∠3=180°(已知),∴∠2=180°-∠1,∠3=180°-∠1(等式的性质),∴∠2=∠3(等量代换).注意:符号“∵”读作“因为”,“∴”读作“所以”.[处理方式]先让学生独立思考,然后学生试着写出证明过程,最后老师在黑板上板书.说明符号“∵”读作“因为”,“∴”读作“所以”.强调“刚开始学习证明,最好在每一步的后面注明依据”.[设计意图]证明已经探索过的结论,目的是引导学生了解证明要有理有据,规范证明的步骤,发展推理能力;培养学生的合作探究意识.巩固训练1:证明等角的补角相等.[处理方式]教师先让学生独立完成,并请学生板演,其他学生在练习本上完成.做完后小组之间开展互评.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示正确答案,让学生对出现的问题进行矫正.(多媒体出示下面答案)参考答案:已知:∠1=∠2,∠1+∠3=180°,∠2+∠4=180°.求证:∠3=∠4.证明:∵∠1+∠3=180°,∠2+∠4=180°(已知),∴∠3=180°-∠1,∠4=180°-∠2(等式的性质).又∠1=∠2(已知),∴∠3=∠4(等量代换).[设计意图]在解决这个问题的过程中,帮助学生进一步理解和巩固证明的含义,引导学生利用公理、定义、已经证明的真命题解决实际问题,训练思维的严谨性、逻辑性,强化证明步骤的规范性.为了使我们的解答更为规范和有条理,请同学们根据此题总结一下证明一个命题的一般步骤.证明一个命题的一般步骤:1.已知:写出命题的条件(必要时结合图形).2.求证:写出命题的结论.3.证明:写出演绎推理的过程.[处理方式]在小组交流的基础上,在教师的引导下,首先归纳总结出证明一个命题的一般步骤,然后让学生对照步骤,完善各自的解题过程.[设计意图]出示“证明一个命题的一般步骤”,使学生进一步验证并熟悉“证明一个命题的一般步骤”,然后通过自己观察、思考、争辩,发现规律、归纳总结,加深对“证明一个命题的一般步骤”的认识与理解,培养学生的分析和归纳概括的能力.证明:对顶角相等.已知:如图所示,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.求证:∠AOC=∠BOD.证明:∵∠AOC+∠AOD=180°,∠BOD+∠AOD=180°(平角的定义), ∴∠AOC和∠BOD都是∠AOD的补角(补角的定义),∴∠AOC=∠BOD(同角的补角相等).定理:对顶角相等.[处理方式]先找一名学生到黑板板演做题步骤,其余同学在练习本上完成,此时教师在下边巡视、指导.然后师生一起规范做题步骤,并在课件上展示例题的规范步骤.[设计意图]教师先引导学生回想命题的一般证明步骤,再由教师示范,写出例题的过程,理由依据要强调.再找一个同学,到黑板上板演,其余同学在练习本上完成,教师巡视,适时点拨,再次向学生强调证明步骤“三步走”:已知、求证和证明,并强调证明的“三依据”:公理、定义和已经证明的真命题.你还能证明下面定理吗?定理:同角(等角)的余角相等.定理:三角形的任意两边之和大于第三边.[知识拓展]1.对于公理:①公理是不需要推理证实的真命题,②公理可以作为判断其他命题真假的根据.2.对于定理:①定理都是真命题,但真命题不一定都是定理;②定理可以作为推证其他命题的依据.3.证明的一般步骤:①根据题意,画出图形;②根据条件和结论,结合图形写出已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程.4.假命题的判断:判断一个命题是假命题,只要举出反例来说明即可.三、课堂总结证明的依据—四、课堂练习1. 称为公理;真命题称为定理;称为证明.答案:公认的真命题经过证明的演绎推理的过程2.写出两个公理:;.答案:两点确定一条直线两点之间线段最短(答案不唯一)3.“平行于同一条直线的两条直线平行”可以写成:如果,那么.答案:两条直线平行于同一条直线这两条直线平行4.判断“对应角相等的三角形是全等三角形”这一命题的真假性,并给出证明.解析:先判断出这一命题的真假,再举例证明即可.解:对应角相等的三角形是全等三角形,是假命题.举例证明:如图所示,DE∥BC,∠ADE=∠B,∠AED=∠C,∠A=∠A,但ΔADE与ΔABC不全等.五、板书设计第2课时1.公理、证明和定理2.证明的基本依据3.定理的证明六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.3第2题.(2)、课后作业【基础巩固】1.下列叙述错误的是()A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题2.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半3.已知命题:等底等高的两个三角形面积相等,则这个命题的结论是()A.两个三角形B.两个三角形的面积C.两个三角形的面积相等D.两个三角形等底等高4.命题“对顶角相等”的“条件”是.【能力提升】5.如图所示,AB=AE,∠1=∠2,∠C=∠D.求证ΔABC≌ΔAED.【思维拓展】6.如图所示,已知∠AOC与∠BOD都是直角,∠BOC=65°.(1)求∠AOD的度数;(2)求证∠AOB=∠DOC;(3)若不知道∠BOC的具体度数,其他条件不变,(2)的关系仍成立吗?若成立,说明理由.【答案与解析】1.B2.C(解析:直角三角形两直角边的平方和等于斜边的平方,所以C选项为假命题.)3.C4.两个角是对顶角(解析:改写成“如果两个角是对顶角,那么这两个角相等”就容易找到命题的条件和结论了.)5.证明:因为∠1=∠2,所以∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,在ΔABC和ΔAED中,所以ΔABC≌ΔAED(AAS).6.解析:(1)先求出∠DOC,继而得出∠AOD.(2)分别求出∠AOB和∠DOC 的度数,可得∠AOB=∠DOC.(3)(2)的关系依然成立,根据同角的余角相等可得.(1)解:因为∠DOC=∠DOB-∠BOC=90°-65°=25°,所以∠AOD=∠AOC+∠DOC=90°+25°=115°. (2)证明:因为∠DOC=25°,∠AOB=∠AOC-∠BOC=90°-65°=25°,所以∠AOB=∠DOC. (3)解:成立.因为∠AOB=∠AOC-∠BOC=90°-∠BOC,∠COD=∠BOD-∠BOC=90°-∠BOC,所以∠AOB=∠COD.。

北师大版八年级上册数学7.2定义与命题(二)课件(共13张PPT)

北师大版八年级上册数学7.2定义与命题(二)课件(共13张PPT)
2 b ∴a∥b(同位角相等,两直线平行) c
⑥三角形全等判定公理: _两__边_及__其__夹__角__分_别__相__等__的__两_个__三__角__形__全_等_;
_两_角__及__其__夹_边__分__别__相__等_的__两__个__三__角_形__全__等_;
三__边__分__别__相_等__的__两__个_三__角__形__全__等________;
交流小结
问题2:什么叫证明?如何来证明一个命题或定理的正确性? 三边分别相等的两个三角形全等 ③垂线性质:________________________________; ②线段公理: _____________________ ; (SAS)
(ASA)
谈谈你的收获 ⑵可以直接用来作为证明的依据:
(ASA) A.真命题都可以作为定理 ②线段公理: _____________________ ;
读一读
书上P168—169页,了解古希腊数学家欧几里得(公 元前300前后)和他的《原本》; 找出下列各个定义。
问题1:什么是公理?什么是定理? 问题2:什么叫证明?如何来证明一个命题或定理的正确性?
课后作业
习题7.3中的第1、2题.
结束寄语
❖在几何学习中最能发挥你的 聪明才智.
❖数学使人聪明. ❖只要你敢想敢做,未来的数学
“家”将是你!
北师大版八年级数学上册
第七章 平行线的证明 定义与命题(二)
复习导入 1、每个命题都由条__件__和__结__论_两部分组成,都可以 写成_如__果_-_-_-那__么__--_-_的形式,其中“如果”引出的部分 是_条__件__,“那么”引出的部分是_结__论___。
2、命题“相等的角是对顶角”的条件是_两__个_角__相__等____,

八年级上册数学 7.2定义与命题(2)教案

八年级上册数学   7.2定义与命题(2)教案

7.2 定义与命题 (2)教学目标:知识技能1.了解真命题和假命题的概念。

2.会在简单的情况下判别一个命题的真假。

3.了解公理和定理的含义。

过程与方法1.从生活命题引入数学命题,并通过小组活动,让学生在自己提出问题、自己解决问题的过程中经历知识的产生过程, 并在这个过程中了解类比、归纳、分类等思维方法。

2.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的内在联系。

3.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。

情感态度与价值观让学生在推理中感觉到数学的有用性。

教学重点:命题的真假的概念和判别。

教学难点判别命题的真假其实已涉及证明。

教学过程一、复习1、定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2、命题的定义:判断一件事情的句子,叫做命题3、命题的结构:每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.4、命题的特征:一般地,命题可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论1、相等的角是对顶角;2、钝角大于它的补角;3、两直线平行,同位角相等;二、新授课想一想如何证实一个命题是真命题呢?生1:用学过的观察、实习法生2:这些方法往往不可靠生3:能不能根据已知的真命题来证明呢?生4:那已知的真命题又是怎么证明的?生5:…….公认的真命题称为公理.推理的过程叫证明。

经过证明的真命题称为定理.本套教材选用如下命题作为公理:1.两点确定一条直线。

2.两点之间线段最短。

3.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;4.两条平行线被第三条直线所截,同位角相等;5.两边及其夹角对应相等的两个三角形全等;6.两角及其夹边对应相等的两个三角形全等;7.三边对应相等的两个三角形全等;8.全等三角形的对应边相等,对应角相等.定理 同角(等角)的补角相等。

八年级数学上册 7.2 定义与命题教案 (新版)北师大版

八年级数学上册 7.2 定义与命题教案 (新版)北师大版

课题:定义与命题●教学目标:知识与技能目标:1.让学生了解定义的含义并了解给一些名称下定义的常用方法;2.让学生了解命题的含义.过程与方法目标:1.让学生经历术语定义产生的过程,在通过类比、完成填空的过程中培养自学的能力;2.让学生经历“命题”这个名词的定义产生过程,进一步了解命题的含义.情感态度与价值观目标:1.通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.●重点:1.了解命题的含义,能够区分“命题”与“正确的命题(真命题)”;2.理解命题的结构,把命题改写成“如果……,那么……”的形式.难点:命题的概念的理解.●教学流程:一、情境引入创设“一对父子的谈话”场景让学生发现有关的数学问题.在老师的描述中抢答出这是什么数学名词。

师总结:可见,在交流时对名称和术语要有共同的认识才行.设计说明:用这种形式引入,让学生及早融入课堂,积极思考,也作为本节课的一个贯穿的背景。

更重要的是,希望学生初步明白下定义的重要性.二、自主探究探究1:证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出他们的定义.解:设赤道的周长为x m,则铁丝与赤道的间隙为:如:1、“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?2、“两点之间线段的长度,叫做这两点之间的距离”是“”的定义;解:两点之间的距离3、“无限不循环小数称为无理数”是“”的定义;解:无理数4、“由不在同一直线上的若干线段首尾顺次连接所组成的平面图形叫做多边形”是“”的定义;解:多边形5、“有两条边相等的三角形叫做等腰三角形”是“”的定义;解:等腰三角形目的:鼓励学生自己动脑思考并与小组的其他同学相互讨论,对学生的答案进行肯定,激发他们学习数学的兴趣.为了真正做到有效的合作学习,让学生在进行讨论之前先进行独立思考,有了自己的想法,然后再与别人交换意见,产生思维的碰撞,以真正达到讨论的目的.考考你请说出下列名词的定义:(1)有理数(2)直角三角形(3)一次函数(4)一元二次方程(5)压强探究2:你认为线段a与线段b哪个比较长?线段a比线段b长.线段b比线段a长.线段a与线段b一样长.判断一件事情的句子,叫做命题.下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流.(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.解:(1)(2)(3)(4)对事情进行了判断,都是命题.(5)(6)没有对事情做出判断,不是命题.观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴进行交流.(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a²=b²;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果‥‥‥那么‥‥‥”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.做一做:下列句子中哪些是命题?(1)动物都需要水;(2)猴子是动物的一种;(3)玫瑰花是动物;(4)美丽的天空;(5)相等的角是对顶角;(6)负数都小于零;(7)你的作业做完了吗?(8)所有的质数都是奇数;(9)过直线l 外一点作l 的平行线;(10)如果a=b,a=c,那么b=c.解:(1)(2)(3)(4)(5)(6)(8)(10)是命题.三、合作探究探究3:指出下列各命题的条件和结论,其中哪些命题是错误的?你是任何判断的?与同伴进行交流.(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.解:(1)条件:两个角相等,结论:它们是对顶角.(2)条件: a≠b,b≠c ,结论: a≠c.(3)条件:两个三角形全等,结论:它们的面积相等.(4)条件:室外气温低于0℃,结论:地面上的水一定会结冰.正确的命题称为真命题,不正确的命题称为假命题.说明假命题的方法:举反例使之具有命题的条件,而不具有命题的结论.做一做:四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角分别相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);④对角线互相垂直的四边形是菱形,其中正确的是()解①三角形的一条中线能将三角形分成面积相等的两部分,正确;②有两边和其中一边的对角对应相等的两个三角形全等,错误;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2),正确;④对角线互相垂直的平行四边形才是菱形,故错误.综上所述,正确的是①③.四、合作探究探究4:公理:公认的真命题称为公理.证明:除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明.定理:经过证明的真命题称为定理.本套教科书选用九条基本事实中已认识的其中八条是:1.两点确定一条直线。

【最新北师大版精选】北师大初中数学八上《7.2定义与命题》word教案 (1).doc

【最新北师大版精选】北师大初中数学八上《7.2定义与命题》word教案 (1).doc

第七章平行线的证明7.2 定义与命题(一)总体说明在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.一、学生知识状况分析学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学任务分析在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.三、教学过程分析本节课的设计思路为:情景引入——命题含义(情景引入)——课堂练习——课堂小结——课后练习第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.第五环节课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。

北师大版数学八年级上册7.2定义与命题(第二课时)说课稿

北师大版数学八年级上册7.2定义与命题(第二课时)说课稿
(二)教学反思
在教学过程中,我预见到以下可能的问题或挑战:
1.学生可能对四种命题之间的真假关系理解不深,导致混淆;
2.在小组合作中,可能出现部分学生参与度不高的情况;
3.课堂时间安排可能紧张,影响教学内容的完整性。
应对策略如下:
1.通过丰富的实例和互动讨论,加深学生对命题真假关系的理解;
2.在小组活动中,明确每个成员的任务,确保全员参与;
4.设计互动环节,让学生尝试写出各种命题,并在小组内讨论、交流,共同发现四种命题之间的规律。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.个人练习:让学生完成教材中的相关习题,巩固四种命题的写法和真假性质;
2.小组合作:设计富有挑战性的问题,让学生在小组内合作解决,培养他们团队协作和问题解决能力;
板书在教学过程中的作用是帮助学生构建知识框架,直观地呈现教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
1.在课前精心设计板书的框架,确保教学内容条理清晰;
2.在课堂上适时更新板书内容,避免一次性书写过多信息;
3.使用箭头、框线等符号来表示不同知识点之间的联系,帮助学生形成知识网络。
作业的目的是让学生在课后进一步巩固所学知识,提高自己的问题解决能力,同时培养他们的自主学习能力和数学思维能力。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用清晰的层级结构和逻辑顺序,主要内容分为三个部分:命题的基本概念、四种命题的定义和真假关系、实例分析。板书风格简洁明了,突出重点,使用不同颜色的粉笔来区分不同类型的内容,如概念、性质、例子等。
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………………………… 师:其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数 学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本 》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学 名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称 为公理(axiom)..除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(p roof).经过证明的真命题称为定理(theorem).而证明所需的定义、公理和其他定理都编写在要证 明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《 原本》是一部具有划时代意义的著作. 生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实. 师:对,我们这套教材有如下命题作为公理:
教学过程:
一、创设情境,导入新课
师:上节课我们研究了命题,那么什么叫命题呢? 生:判断一件事情的句子,叫做命题. 师:那么如何判断一个命题的真假呢? 生:举反例就可以. 师:好,下面我们来做一组练习:
下列各命题哪些是真命题?哪些是假命题?请说出你的理由. (1)如果两个角相等,那么它们是对顶角; (2)如果a>b,b>c,那么a=c; (3)两角和其中一角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等. 师:大家思考后,来分组讨论.
师:很好,同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!由大家刚才分析可以
知道:要说明一个命题是一个假命题,通常举出一个例子就可以.
师:那么请同学们思考一下,如何证实一个命题是真命题呢?下面开始我们今天的主要的探究任务(
教师板书课题)
【设计意图】:依旧带新,引导学生通过对一组命题真假的判断,引出真命题应如何证实,激发学生
教学重点:
对公理和定理的了解和识记.
教学难点:
定理证明所涉及的推理方法和表述.
教法学法:
针对八年级学生的认识特点,体现“以学生发展为本”的教育理念,发展学生的个性特长,让学 生学会学习。本堂课采用自主、合作、探究、体验式教学法.
课前准备:
1.教师准备好多媒体课件. 2.学生收集曾经学过的公理和定理.
师:(集体讲评)通过这个证明我们得到定理:对顶角相等. 师:上节课我布置了去收集学过的定理,不知大家收集了多少? 生1:(纷纷举手抢答)同角(等角)的补角相等. 生2:同角(等角)的余角相等. 生3:三角形的任意两边之和大于第三边. …………………………… 师:看来大家课下做足了功课,我希望同学们课下,尝试用我们公理、定理把你们收集的定理证一遍
北师大版数学八年级(上)优秀教案
徐利华
师:好,除这些以外,等式的有关性质和不等式的有关性质都可以看作公理.在等式或不等式中,一个 量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换” .
师:好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史. 生:阅读课本阅读材料. 【设计意图】:让学生感受到在已有的知识基础上证实一个命题是真命题有难度,激起学生的求知欲
例 已知:如图7-5,直线AB与直线CD相较于点O,∠AOC与∠BOD是对顶角. 求证:∠AOC=∠BOD.
生:(先独立思考,组内互说推理过程,然后一生黑板板演). 证明: ∵直线AB与直线CD相较于点O, ∴∠AOB与∠COD都是平角(平角定义). ∴∠AOC和∠BOD都是∠AOD的补角(补角定义). ∴∠AOC=∠BOD(同角的补角相等).
。同时通过对《原本》知识的了解,扩大了学生的知识面,激发学生的学习兴趣,使他们体会到数 学就在身边,体会到数学的作用。这样的设计更能促使学生自主去研究、探讨,更容易体现学生自 主学习的能力.
三、知识拓展,提升能力
师:刚才了解“公理”是不必经过证明的真命题,它是几何理论体系的基础,是作为判断其他命题真 假的原始依据.定理要经过证明,定理的作用不仅在于它提示了客观事物的本质属性,而且可以 作为进一步确认其他命题真假的根据.下面我们来试一试.(展示例题)
. 【设计意图】:本环节的设计主要是向学生展示证明的一般过程,并向学生强调因为和所以的几何写 法。便于学生学习和模仿,要求学生注意证明步骤之间的逻辑性。
北师大版数学八年级(上)优秀教案
徐利华
课 题:第七章 第二节 定义与命题 第2课时
授 课 人:市中区 枣庄市四十二中学 徐利华
课 型:新授课
授课时间:2013年12月20日,星期五,第 3 节课
教学目标:
1.了解公理与定理的含义. 2.经历实际情景,初步体会公理化思想和方法,知道基本的公里和定理. 3.初步了解几何证明的过程逻辑性.
1.两点确定一条直线。 2.两点之间线段最短。 3.同一平面内,过一点有且只有一条直线与已知直线垂直。 4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 5.过直线外一点有且只有一条直线与这条直线平行. 6.两边及其夹角对应相等的两个三角形全等. 7.两角及其夹边对应相等的两个三角形全等. 8.三边对应相等的两个三角形全等. 师:同学们来朗读一次.
的求知欲望,使学生在已有的基础上主动去探索新知,使知识的产生变得自然,并培养学生的思维习
惯.
二、探究交流,获取新知
师:大家思考后,来分组讨论. 生甲:用我们以前学过的观察、实验、验证特例等方法. 生乙:这些方法往往并不可靠. 生丙:能不能根据已经知道的真命题证实呢? 生丁:那已经知道的真命题又是如何证实的? 生戊:哦……那可怎么办呢?
北师大版数学八年级(上)优秀教案
徐利华
生甲:第三个、第四个、第五个命题是正确的,第一个、第二个命题是不正确的.
生乙:我们讨论的结果是与甲同学的一样,如图∠
1=∠
2,从图形中可知∠
1与∠
2不是对顶角.所以第一个命题:如果来自个角相等,那么它们是对顶角是错误的.
生丙:第二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.
相关文档
最新文档