初中数学因式分解真题汇编及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学因式分解真题汇编及答案
一、选择题
1.已知 , , 满足 , ,则 ().
A.0B.3C.6D.9
【答案】D
【解析】
【分析】
将等式变形可得 , , ,然后代入分式中,利用平方差公式和整体代入法求值即可.
【详解】
解:∵
∴ , ,
∵
∴
=
=
=
=
=6+3
=9
故选D.
【点睛】
此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.
A.(a+3)(a-3)=a2-9B.x2+x-5=(x-2)(x+3)+1C.a2b+ab2=ab(a+b)D.x2+1=x(x+ )
【答案】C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、没把一个多项式转化成几个整式积的形式,故B错误;
D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意;
故选:A.
【点睛】
本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.
5.已知 ,那么 的值为()
A.2018B.2019Βιβλιοθήκη Baidu.2020D.2021.
【答案】B
【解析】
8.下列分解因式,正确的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.
【详解】
A.和因式分解正好相反,故不是分解因式;
B.是分解因式;
C.结果中含有和的形式,故不是分解因式;
D. x2−4y2=(x+2y)(x−2y),解答错误.
故选B.
【点睛】
本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
9.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
C、不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选D.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3.已知 ,则 的值为( )
A. B.2C. D.
【答案】C
【解析】
【分析】
利用因式分解以及积的乘方的逆用将 变形为(xy)3(2x-y),然后代入相关数值进行计算即可.
A.a2-1
B.a2+a
C.a2+a-2
D.(a+2)2-2(a+2)+1
【答案】C
【解析】
试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.
【详解】
∵ ,
∴
=x3y3(2x-y)
=(xy)3(2x-y)
=23×
= ,
故选C.
【点睛】
本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.
4.下列等式从左到右的变形属于因式分解的是( )
A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a
C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)
【答案】A
【解析】
A.提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;
B.是完全平方公式,已经彻底,正确;
C.是提公因式法,已经彻底,正确;
D.是平方差公式,已经彻底,正确.
故选A.
13.下列各式中从左到右的变形,是因式分解的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
故选B.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
A. B.
C. D.
【答案】C
【解析】
【分析】
当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.
【详解】
a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).
故选C.
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
A. B.
C. D.
【答案】B
【解析】
【分析】
提取公因式 ,即可进行因式分解.
【详解】
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.
19.下列从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
10.下列各式中不能用平方差公式分解的是()
A. B. C. D.
【答案】C
【解析】
A选项-a2+b2=b2-a2=(b+a)(b-a);B选项49x2y2-m2=(7xy+m)(7xy-m);C选项-x2-y2是两数的平方和,不能进行分解因式;D选项16m4-25n2=(4m)2-(5n)2=(4m+5n)(4m-5n),
C、因式分解是把一个多项式转化成几个整式积的形式,故C正确;
D、因式中含有分式,故D错误;
故选:C.
【点睛】
本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.
14.已知 , ,若 , ,则 与 的大小关系是()
A. B. C. D.不能确定
【答案】C
【解析】
【分析】
计算M-N的值,与0比较即可得答案.
A.2x B.﹣4x C.4x4D.4x
【答案】A
【解析】
【分析】
分别将四个选项中的式子与多项式4x2+1结合,然后判断是否为完全平方式即可得答案.
【详解】
A、4x2+1+2x,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;
B、4x2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;
∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,
∴(b﹣c)(a2+b2﹣c2)=0,
∴b﹣c=0,a2+b2﹣c2=0,
∴b=c或a2+b2=c2,
∴△ABC是等腰三角形或直角三角形.
故选D.
12.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )
A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2
2.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
【答案】D
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C.6x2y3=2x2•3y3D.mx﹣my+1=m(x﹣y)+1
【答案】A
【解析】
【分析】
直接利用因式分解的定义分析得出答案.
【详解】
解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意;
B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意;
C、6x2y3=2x2•3y3,不符合因式分解的定义,不合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
17.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()
【答案】D
【解析】
【分析】
判断x、y的大小关系,把 进行整理,判断结果的符号可得x、y的大小关系.
【详解】
解: +20,
, , ,
,
,
故选:D.
【点睛】
本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.
7.把 因式分解,结果正确的是()
考点:因式分解.
16.下列等式从左到右的变形,属于因式分解的是
A.8a2b=2a·4abB.-ab3-2ab2-ab=-ab(b2+2b)
C.4x2+8x-4=4x D.4my-2=2(2my-1)
【答案】D
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;
D、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,
故选A.
【点睛】
本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.
18.把多项式3(x-y)-2(y-x)2分解因式结果正确的是()
【分析】
将 进行因式分解为 ,因为左右两边相等,故可以求出x得值.
【详解】
解:
∴
∴x=2019
故选:B.
【点睛】
本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.
6.已知实数a、b满足等式x=a2+b2+20,y=a(2b-a),则x、y的大小关系是().
A.x≤yB.x≥yC.x<yD.x>y
【详解】
∵ , ,
∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),
∵ , ,
∴a-b>0,a-c>0,
∴(a-b)(a-c)>0,
∴M>N,
故选:C.
【点睛】
本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.
15.将下列多项式因式分解,结果中不含有因式(a+1)的是()
故选C.
【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.
11.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()
A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形
【答案】D
【解析】
试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,
【详解】
A.属于整式的乘法运算,不合题意;
B.符合因式分解的定义,符合题意;
C.右边不是乘积的形式,不合题意;
D.右边不是几个整式的积的形式,不合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.
20.下列等式从左到右的变形,属于因式分解的是()
一、选择题
1.已知 , , 满足 , ,则 ().
A.0B.3C.6D.9
【答案】D
【解析】
【分析】
将等式变形可得 , , ,然后代入分式中,利用平方差公式和整体代入法求值即可.
【详解】
解:∵
∴ , ,
∵
∴
=
=
=
=
=6+3
=9
故选D.
【点睛】
此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.
A.(a+3)(a-3)=a2-9B.x2+x-5=(x-2)(x+3)+1C.a2b+ab2=ab(a+b)D.x2+1=x(x+ )
【答案】C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、没把一个多项式转化成几个整式积的形式,故B错误;
D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意;
故选:A.
【点睛】
本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.
5.已知 ,那么 的值为()
A.2018B.2019Βιβλιοθήκη Baidu.2020D.2021.
【答案】B
【解析】
8.下列分解因式,正确的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.
【详解】
A.和因式分解正好相反,故不是分解因式;
B.是分解因式;
C.结果中含有和的形式,故不是分解因式;
D. x2−4y2=(x+2y)(x−2y),解答错误.
故选B.
【点睛】
本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
9.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
C、不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选D.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3.已知 ,则 的值为( )
A. B.2C. D.
【答案】C
【解析】
【分析】
利用因式分解以及积的乘方的逆用将 变形为(xy)3(2x-y),然后代入相关数值进行计算即可.
A.a2-1
B.a2+a
C.a2+a-2
D.(a+2)2-2(a+2)+1
【答案】C
【解析】
试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.
【详解】
∵ ,
∴
=x3y3(2x-y)
=(xy)3(2x-y)
=23×
= ,
故选C.
【点睛】
本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.
4.下列等式从左到右的变形属于因式分解的是( )
A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a
C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)
【答案】A
【解析】
A.提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;
B.是完全平方公式,已经彻底,正确;
C.是提公因式法,已经彻底,正确;
D.是平方差公式,已经彻底,正确.
故选A.
13.下列各式中从左到右的变形,是因式分解的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
故选B.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
A. B.
C. D.
【答案】C
【解析】
【分析】
当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.
【详解】
a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).
故选C.
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
A. B.
C. D.
【答案】B
【解析】
【分析】
提取公因式 ,即可进行因式分解.
【详解】
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.
19.下列从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
10.下列各式中不能用平方差公式分解的是()
A. B. C. D.
【答案】C
【解析】
A选项-a2+b2=b2-a2=(b+a)(b-a);B选项49x2y2-m2=(7xy+m)(7xy-m);C选项-x2-y2是两数的平方和,不能进行分解因式;D选项16m4-25n2=(4m)2-(5n)2=(4m+5n)(4m-5n),
C、因式分解是把一个多项式转化成几个整式积的形式,故C正确;
D、因式中含有分式,故D错误;
故选:C.
【点睛】
本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.
14.已知 , ,若 , ,则 与 的大小关系是()
A. B. C. D.不能确定
【答案】C
【解析】
【分析】
计算M-N的值,与0比较即可得答案.
A.2x B.﹣4x C.4x4D.4x
【答案】A
【解析】
【分析】
分别将四个选项中的式子与多项式4x2+1结合,然后判断是否为完全平方式即可得答案.
【详解】
A、4x2+1+2x,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;
B、4x2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;
∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,
∴(b﹣c)(a2+b2﹣c2)=0,
∴b﹣c=0,a2+b2﹣c2=0,
∴b=c或a2+b2=c2,
∴△ABC是等腰三角形或直角三角形.
故选D.
12.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )
A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2
2.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
【答案】D
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C.6x2y3=2x2•3y3D.mx﹣my+1=m(x﹣y)+1
【答案】A
【解析】
【分析】
直接利用因式分解的定义分析得出答案.
【详解】
解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意;
B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意;
C、6x2y3=2x2•3y3,不符合因式分解的定义,不合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
17.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()
【答案】D
【解析】
【分析】
判断x、y的大小关系,把 进行整理,判断结果的符号可得x、y的大小关系.
【详解】
解: +20,
, , ,
,
,
故选:D.
【点睛】
本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.
7.把 因式分解,结果正确的是()
考点:因式分解.
16.下列等式从左到右的变形,属于因式分解的是
A.8a2b=2a·4abB.-ab3-2ab2-ab=-ab(b2+2b)
C.4x2+8x-4=4x D.4my-2=2(2my-1)
【答案】D
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;
D、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,
故选A.
【点睛】
本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.
18.把多项式3(x-y)-2(y-x)2分解因式结果正确的是()
【分析】
将 进行因式分解为 ,因为左右两边相等,故可以求出x得值.
【详解】
解:
∴
∴x=2019
故选:B.
【点睛】
本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.
6.已知实数a、b满足等式x=a2+b2+20,y=a(2b-a),则x、y的大小关系是().
A.x≤yB.x≥yC.x<yD.x>y
【详解】
∵ , ,
∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),
∵ , ,
∴a-b>0,a-c>0,
∴(a-b)(a-c)>0,
∴M>N,
故选:C.
【点睛】
本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.
15.将下列多项式因式分解,结果中不含有因式(a+1)的是()
故选C.
【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.
11.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()
A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形
【答案】D
【解析】
试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,
【详解】
A.属于整式的乘法运算,不合题意;
B.符合因式分解的定义,符合题意;
C.右边不是乘积的形式,不合题意;
D.右边不是几个整式的积的形式,不合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.
20.下列等式从左到右的变形,属于因式分解的是()