1432第1课时运用平方差公式因式分解

合集下载

部编人教版七年级下册数学3.3第1课时《利用平方差公式进行因式分解》教案

部编人教版七年级下册数学3.3第1课时《利用平方差公式进行因式分解》教案

第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

,
y
3. 2
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问 题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题: (1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400; (2)原式=4(53.52-46.52) =4(53.5+46.5)(53.5-46.5) =4×100×7=2800.
(2)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①, ∴x-y=-2②.
联立①②组成二元一次方程组,
解得
x
1 2
(x a p)2 (x b q)2
(x p) (x q) (x p) (x q)
(2x p q)( p q).
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只
要被分解的多项式能转化成平方差的形式,就能用平方差公式因 式分解.
针对训练 分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
8. (1)992-1能否被100整除吗?
(2)n为整数,(2n+1)2-25能否被4整除? 解:(1)∵ 992-1=(99+1)(99-1)=100×98,
∴992-1能否被100整除. (2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4) =2(n+3) ×2(n-2)=4(n+3)(n-2). ∵n为整数 ∴(2n+1)2-25能被4整除.

人教版八年级上册14.3.2因式分解-平方差公式(教案)

人教版八年级上册14.3.2因式分解-平方差公式(教案)
同学们,今天我们将要学习的是《平方差公式》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过需要分解多项式的情况?”例如,x² - 4这样的表达式。这个问题与我们将要学习的平方差公式密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方差公式的奥秘。
(二)新课讲授(用时10分钟)
在小组讨论环节,我发现同学们的参与度很高,能够积极提出自己的观点,并尝试解决实际问题。但我也注意到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的课堂上更加注意引导,确保讨论的内容紧扣教学目标。
此外,对于平方差公式与完全平方公式的混淆问题,我觉得在今后的教学中,我应该设计一些对比练习,帮助同学们明确这两个公式的区别和适用场景。通过具体的练习,让他们在实际操作中感受到这两个公式的不同。
五、教学反思
在今天的教学过程中,我发现同学们对于平方差公式的理解整体上是积极的,但也存在一些需要我进一步关注和引导的地方。在讲解平方差公式时,我注意到有些同学在推导过程中对(a + b)(a - b) = a² - b²的理解还不够深入,可能需要通过更多的实际例题来加强他们的理解。
课堂上,我尝试通过引入日常生活中的例子来激发同学们的兴趣,这种方式似乎收到了不错的效果。大家对于将数学知识应用到实际生活中的讨论非常积极,这让我感到欣慰。然而,我也意识到在接下来的课程中,需要更多地设计这样的环节,让同学们感受到数学的实用性和趣味性。
3.成展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。

平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。

本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。

二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。

但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。

三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。

2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。

3.培养学生的逻辑思维能力,提高他们的数学解题能力。

四. 教学重难点1.掌握平方差公式的结构。

2.如何将实际的因式分解问题转化为平方差公式的形式。

五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。

六. 教学准备1.准备相关平方差公式的课件和教学素材。

2.准备一些实际的因式分解问题,用于课堂练习。

七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。

例如:已知多项式x^2 - 4,请将其因式分解。

让学生尝试解答,然后给出解答过程和答案。

2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。

通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。

3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。

5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。

湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿

湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿

湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿一. 教材分析湘教版数学七年级下册3.3《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。

平方差公式的引入,不仅能够帮助学生更好地理解代数式的运算,而且对于后续学习多项式的因式分解有着重要的意义。

教材从实际问题出发,引导学生发现并总结平方差公式,然后通过例题和练习题,让学生学会如何运用平方差公式进行因式分解。

教材的安排由浅入深,由易到难,符合学生的认知规律。

二. 学情分析学生在学习这一节之前,已经掌握了有理数的乘法、完全平方公式,对于代数式的运算有一定的理解。

但是,学生对于平方差公式的理解和运用,还需要通过实例和练习来进行深化。

学生的学习兴趣是学习的关键,为了激发学生的学习兴趣,我在教学中会尽量结合生活实际,让学生感受到数学与生活的联系,从而提高学生的学习积极性。

三. 说教学目标1.知识与技能目标:学生能够理解平方差公式的含义,并能够运用平方差公式进行因式分解。

2.过程与方法目标:通过观察、分析、归纳,学生能够自主发现并总结平方差公式,培养学生的观察能力和归纳能力。

3.情感态度与价值观目标:学生在解决实际问题的过程中,体验到数学的价值,增强学习数学的兴趣。

四. 说教学重难点1.教学重点:平方差公式的理解和运用。

2.教学难点:如何引导学生发现并总结平方差公式,以及如何运用平方差公式进行复杂的因式分解。

五. 说教学方法与手段在教学过程中,我将采用启发式教学法、分组合作学习法、案例分析法等多种教学方法,引导学生自主学习、合作学习、探究学习。

同时,我会利用多媒体教学手段,如PPT、视频等,来辅助教学,提高教学效果。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何对代数式进行因式分解,激发学生的学习兴趣。

2.探究:让学生分组讨论,观察、分析、归纳平方差公式的特点,引导学生自主发现并总结平方差公式。

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

冀教版七年级下册数学第11章 因式分解 用平方差公式分解因式

冀教版七年级下册数学第11章 因式分解 用平方差公式分解因式
解:(1)(x+1)2-a2=(x+1+a)(x+1-a). (2)(2x+3)2-4m2=(2x+3)2-(2m)2=(2x+3+ 2m) (2x+3-2m).
(来自教材)
知2-练
(3)(2x+3)2-(3x-4)2=[(2x+3)+(3x-4)][(2x+3) -(3x-4)]=(5x-1)(7-x).
8 【中考·北海】下列因式分解正确的是( D ) A.x2-4=(x+4)(x-4) B.x2+2x+1=x(x+2)+1 C.3mx-6my=3m(x-6y) D.2x+4=2(x+2)
知1-练
9 【中考·仙桃】将(a-1)2-1分解因式,结果正 确的是(B ) A.a(a-1) B.a(a-2) C.(a-2)(a-1) D.(a-2)(a+1)
(2) 2ab3-2ab =2ab(b2-1) =(b-1)(b+1).
知2-讲
(来自《点拨》)
总结
知2-讲
(1)运用平方差公式分解因式的关键是确定公式中的a 和b,再运用公式进行因式分解;对于有公因式的 多项式需要先提取公因式后再用平方差公式分解因 式,同时分解因式要进行到每一个因式都不能再分 解为止. (2)注意:运用平方差公式分解因式,最后的结果除了 要求不能再分解因式外,还要注意使每个因式最简.
2 易错小结
1. 分解因式:(a+b)2-4a2. 解:(a+b)2-4a2=(a+b)2-(2a)2=(a+b+2a)(a+b-2a)
=(3a+b)(b-a). 易错点:忽视系数变平方的形式导致出错
本题易将4a2写成(4a)2导致出错.
2. 分解因式:a4-1. 解:a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).
知1-导
知1-导

14.2.2完全平方公式(第一课时)

14.2.2完全平方公式(第一课时)
3ab b2=( a+3b)2 a2+_____+9
3.选择题 (1)如果x2+mx+4是一个完全平方公式,那么 m的值是( c ) A .4 B.-4 C.±4 D.±8 (2)将正方形的边长由acm增加6cm,则正方形 的面积增加了( c ) A.36cm2 B.12acm2 C.(36+12a)cm2 D.以上都不对
(a+b)2=(a+b) (a+b) = a2+ab+ab+b2 =a2+2ab+b2.
(a -b )2 = ( a - b ) (a - b ) = a2-ab-ab+b2
=a2-2ab+b2
完全平方公式的数学表达式:
(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2 完全平方公式的文字叙述: 两数和(或差)的平方,等于它们的平方和, 加上(或减去)它们的积的2倍.
(3)已知 a+b=4,ab=-12,则a2+b2= 40
(4)已知 m+n=3,mn=5, 求:(m+3)(n+3)的值. (5)已知x+y=4,xy=-13, 求: x2-3xy+y2的值. (6)已知:(a+b)2=4, (a-b)2=36 求a2-ab+b2的值. ab=-8 28
.
23 81
第十四章 整式的乘法与因式分解
14.2.2完全平方公式 (第一课时)
复习与回顾 1.多项式的乘法法则是什么? 用一个多项式的每一项乘以另一个多项式的每一 项,再把所得的积相加.
(a+b) (m+n) = am+an + bm+bn

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计一. 教材分析1.内容概述:本节课的主要内容是运用平方差公式进行因式分解。

平方差公式是八年级数学中的一个重要知识点,掌握平方差公式对于学生后续学习代数和几何知识具有重要意义。

2.地位与作用:平方差公式是因式分解的一种基本方法,它可以帮助学生简化代数表达式,提高解题效率。

通过学习平方差公式,学生能够巩固和拓展之前学过的知识,为高中阶段的学习打下基础。

二. 学情分析1.学生特点:八年级的学生已经具备了一定的代数基础,对因式分解有一定的了解。

但部分学生在运用平方差公式进行因式分解时,容易出错。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

2.学习需求:学生需要掌握平方差公式的推导过程、记忆方法以及应用技巧。

同时,学生需要通过大量的练习,提高运用平方差公式进行因式分解的能力。

三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程、记忆方法及应用;提高学生运用平方差公式进行因式分解的能力。

2.过程与方法:通过观察、分析、归纳、推理等方法,引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的趣味性和实用性。

四. 教学重难点平方差公式的推导过程及应用。

平方差公式的灵活运用,特别是遇到复杂表达式时的因式分解。

五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。

2.启发式教学法:引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论,共同解决难题,提高学生的团队合作意识。

4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动,提高教学效果。

六. 教学准备1.教学课件:制作精美的教学课件,突出平方差公式的推导过程和应用实例。

2.练习题:准备一定数量的练习题,包括基础题、提高题和拓展题,以满足不同学生的学习需求。

用平方差公式因式分解公开课教案

用平方差公式因式分解公开课教案

用平方差公式因式分解公开课教案
一、教材分析一、教材分析
苏霍姆林斯基曾说过:“教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少”。

可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。

二、学情分析
《分解因式——运用平方差公式》是人教版义务教育课程标准实验教科书《数学》八年级(上)整式的乘法第四节的内容。

分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。

分解因式的变形不仅体现了一种“化归”的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。

探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。

同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。

三、教学目标:
(一)知识与技能:
1.使学生了解运用公式法分解因式的意义;
2.会用平方差公式进行因式分解;
3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.。

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。

平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。

基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。

二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。

(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。

2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。

知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。

达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。

三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。

学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。

因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。

四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。

新人教八年级上册第14章第1课时 利用平方差公式分解因式教案

新人教八年级上册第14章第1课时 利用平方差公式分解因式教案

新人教八年级上册第14章14.3.2 公式法第1课时利用平方差公式分解因式【知识与技能】掌握平方差公式并应用于因式分解.【过程与方法】分析平方差公式的结构与特点,提高判断、运算能力.【情感态度】培养学生的观察、联想能力,进一步了解换元思想方法.【教学重点】应用平方差公式分解因式.【教学难点】根据问题特点,选择因式分解的方法.一、情境导入,初步认识思考多项式a2-b2有什么特点?你能将它分解因式吗?【教学说明】教师讲课前,先让学生完成“名师导学”.鼓励学生思考并合作交流,并大胆地表述出来.教师可提供以下思考步骤:1.多项式的因式分解是整式乘法的逆用,也就是把一个多项式化成几个整式的积的形式.2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,就不能使用提公因式法对该多项式进行因式分解.3.对不能使用提公因式法分解因式的多项式,不能说不能因式分解.4.对a2-b2,提公因式法不适用,联想(a+b)(a-b)=a2-b2,这启示我们有新的分解因式的方法.【归纳总结】因式分解的公式法中平方差公式为a2-b2=(a+b)(a-b),它具有如下特点:(1)左边是二项式,每项都是平方的形式,两项的符号相反.(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.二、思考探究,获取新知例1下列各式中能用平方差公式分解因式的有个(填序号).【分析】①⑤是两个符号相同的平方项,不能用平方差公式分解;③是三项式,不符合平方差公式的特点;②④⑥都能写成两个数(式)的平方差,在实数范围内能够运用平方差公式.【答案】3【教学说明】能否用平方差公式分解因式,应紧紧抓住平方差公式的特点进行判断,分别从项数、符号、平方项等方面判断.例2分解因式.【教学说明】(1)可以利用加法交换律把负平方项交换放在后面;(2)1是平方项,可以写成“12”.例3分解因式.【教学说明】(1)如果多项式的各项中含有多项式,那么先提起公因式,再运用平方差公式求解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止.三、运用新知,深化理解1.下列多项式能用平方差公式分解的有().3.王敏同学去商店买了单价是9.8元/kg的糖果10.2kg,售货员刚拿起计算器,王敏就说应付99.96元,结果与售货员计算的结果相吻合,售货员很惊讶地说:“你好像个神童,怎么算得这么快?”王敏得意地说:“过奖了,我只不过利用数学上的一个公式”.你知道王敏同学是怎样计算的吗?【教学说明】设置上述3个题目是为了加强学生对于平方差公式的结构认识及应用,教师可安排学生上台板书解题过程,师生共同检查.第3题虽然是整式乘法平方差公式应用,主要是为了帮助学生分清整式乘法中的平方差公式与因式分解中的平方差公式的应用区别.【答案】1.D2.(1)(2x+3)(2x-3);(2)(2x+p+q)(p-q);(3)(x2+y2)(x+y)(x-y);(4)ab(a+1)(a-1);(5)(13x-y)(-x+13y);(6)x(x2+x+2)(x+1).3.10.2×9.8=(10+0.2)(10-0.2)=102-0.22=99.96(元).四、师生互动,课堂小结集体回顾平方差公式结构与分解因式时应注意的事项.1.布置作业:从教材“习题14.3”中选取部分题.2.完成创优作业本课时的“课时作业”部分.本课时教学重点是引导学生因整式乘法中的平方差公式推导出因式分解的平方差公式,教师应组织学生利用这个关系自主认识出新知识,了解公式的结构特征,并交流思考.加深学生对公式变式的认识,从而全方位地掌握平方差公式的应用范围,再指导学生利用实际训练强化对新知识的掌握.。

人教版八年级数学上册14.3.2《公式法》 课件第1课时(共17张PPT)

人教版八年级数学上册14.3.2《公式法》 课件第1课时(共17张PPT)
3.因式分解与整式乘法有着怎样的关系? 因式分解与整式乘法是方向相反的变形,把整式 乘法的平方差公式 (a b)(a b) a2 b2 的等号两 边互换位置,就得到 a2 b2 (a b)(a b) .
探究新知
4.将 a2 b2 (a b)(a b) 用文字语言表述, 并说明公式中的字母a,b可以表示什么?
(1)(a b)2 c2 a2 2ab b2 c2 ;
不正确. 对分解因式的概念不清,左边是多项式的形 式,右边应是整式乘积的形式,但右边还是多项 式的形式,因此,最终结果是未对所给多项式进 行因式分解.
课堂练习
(2)a4 1 (a2 )2 1 (a2 1)(a2 1) .
不正确. 因式分解不彻底.
3.因式分解应进行到每一个因式不能分解为止. 4.计算中应用因式分解,可使计算简便.
课堂小结
本图片资源介绍了用平方差公式分解因式,适用于公 式法的教学.若需使用,请插入图片【知识点解析】 用平方差公式分解因式.
课堂小结
本图片资源介绍了因式分解的一般步骤,适用于因式 分解的教学.若需使用,请插入图片【知识点解析】 因式分解的一般步骤.
(1)x2 4 与多项式和 (2)a2 36 进行因式
分解?
(1)x2 4 x2 22 (x 2)(x 2) ; (2) a2 36 a2 62 (a 6)(a 6) .
例题解析
【例1】分解因式:
(1)4x2 9 ; (2) (x p)2 (x q)2 .
解:(1)4x2 9 (2x)2 32 (2x 3)(2x 3) ; (2)(x p)2 (x q)2 [(x p)+(x q)][(x p) (x q)] (2x p q)( p q) .
文字语言表述:两个数的平方差,等于这两个数 的和与这两个数的差的积.字母a 、b可以表示任何 数、单项式或多项式.

14.2 .1平方差公式教学设计姜洪

14.2 .1平方差公式教学设计姜洪

14.2 乘法公式(第1课时)一、内容和内容解析1.内容平方差公式.2.内容解析某些具有特殊形式的多项式相乘,可以写成公式的形式.当遇到特殊形式的多项式相乘时,可以直接运用公式写出结果.平方差公式是多项式乘法公式的一种,即两个数的和与这两个数的差的积,等于这两个数的平方差.平方差公式也是因式分解中公式法的重要基础,在代数中具有广泛的应用.平方差公式的符号表示和语言表述揭示了公式的结构特征.公式(a+b)(a-b)=a2-b2中的字母a,b可以是具体的数、单项式、多项式、分式乃至任何代数式.平方差公式的得出,以多项式乘法与合并同类项的知识为基础,从一般形式的的整式乘法运算到特殊形式的乘法运算概括出乘法公式,体现了一般到特殊的思想方法.探索平方差公式的过程,从具体的具有特殊形式的几组多项式乘法的运算结果中,通过观察、比较,抽象概括出一般的形式,并通过符号推理获得公式的符号表示及语言表述,体现了从具体到抽象地研究问题方法.基于以上分析,确定本节课的教学重点:平方差公式.二、目标和目标解析1.目标(1)理解平方差公式,能运用公式进行计算.(2)在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.2.目标解析达成目标(1)的标志:学生知道由多项式乘法到平方差公式是一般到特殊的过程,能根据多项式的乘法法则推导出平方差公式,理解平方差公式的基本结构与特征,会用符号表示公式,能用文字语言表述公式内容,在字母表示具体的数、单项式、多项式时能正确地运用公式进行计算.达成目标(2)的标志:学生在探索平方差公式的过程中,能够体验到由具体到抽象的过程可以更好的发现公式,体会和理解公式;在利用几何图形的面积验证公式的过程中,了解验证平方差公式的具体方法,感知数形结合的思想.三、教学问题诊断分析由于公式(a +b )(a -b )=a 2-b 2中的a ,b 本身可能为负数,而且a ,b 可以是具体的数、单项式、多项式等,情况比较复杂,这对于初次接触平方差公式的学生来说,找准哪个数或式相当于公式中的“第一个数”a ,哪个数或式相当于公式中的“第二个数”b ,有时会有困难.作为平方差公式的应用,教材引入对两个数乘积的简捷计算,将两个因数分解成两个数的和与这两个数的差,而且这两个数的平方容易计算是解题的关键,这一内容对一部分学生来说,也有一定难度.解决上述两个问题的关键是理解平方差公式的结构特征,解决问题时要回到公式本身上来.本节课的教学难点:平方差公式的变式运用.四、教学支持条件分析为了利用图形面积验证公式,可用课件显示割补情形(图1).图1长方形AMHG 的面积=(a +b )(a -b ),割下长方形EFGH 添补到长方形MBCD 处,形成多边形ABCDEF ,而多边形ABCDEF 的面积=a 2-b 2,由此得出(a +b )(a -b )=a 2-b 2.五、教学过程设计1.单元导入,明确目标展示本节课的学习目标及学习重点.学习目标:1.理解平方差公式,能运用公式进行计算.2.在探索平方差公式的过程中,感悟从一般到特殊的数学思想,在验证平方差公式的过程中,感知数形结合思想.学习重点:平方差公式的应用.B C b bE H GD a - bM b a F A a2.复习回顾,铺垫新知问题1 在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)=;(2)(m+2)(m-2)=;(3)(2x+1)(2x-1)=.师生活动:学生完成在导学卷上,师生共同分析结果.设计意图:(1)承前启后,为本节内容的引入作铺垫;(2)让学生在每个算式的计算过程中进一步巩固多项式乘法法则,体会多项式乘法与本节内容的关系“一般——特殊”;(3)三个特殊的算式具有代表性和层次性,可以为抽象概括出一般的结论奠定基础.3.问题引领,合作探究问题2:上述问题中相乘的两个多项式有什么共同点?追问1:相乘的两个多项式的各项与它们的积中的各项有什么关系?追问2:你能将发现的规律用式子表示出来吗?追问3:你能对发现的规律进行推导吗?师生活动:学生观察并独立思考,尝试着进行概括.发现相乘的两个多项式均为相同的两个数的和、两个数的差的形式,而且这两个多项式的积恰好是这两个数的平方差.用一般化的式子可以表示为(a+b)(a-b)=a2-b2,运用多项式乘法法则及合并同类项可以推导此公式.设计意图:让学生经历由具体到抽象的过程,即经历观察(每个具体的算式及其结果的特点)、比较(不同算式及其结果间的异同)、抽象(不同算式及其结果的共同特征)、概括(可能具有的规律)、推理(论证概括的结果)的过程,从中体会研究数学问题的基本思想方法:“具体——抽象”.问题3 前面探究所得的式子(a+b)(a-b)=a2-b2,称为乘法的平方差公式,你能将平方差公式用文字语言表述吗?师生活动:学生回答问题,相互补充.设计意图:(1)让学生将符号语言转化为文字语言,发展学生的数学语言表达能力;(2)学生在用文字语言表述公式内容时,可以加深对公式结构特征的理解.问题4 你能根据图2中图形的面积说明平方差公式吗?图2(1)长方形AMHG 的长和宽分别是什么? 怎样求面积?(2)如果长方形AMHG 中的一部分长方形FEGH 被分割下来,并补到长方形MBCD 的位置,就形成多边形ABCDEF ,此时多边形ABCDEF 的面积又可以怎样表示?(3)上述两种方法表示的面积有什么关系?师生活动:教师提出问题,学生先独立思考,然后小组交流,学生代表展示求解过程.若学生感到有困难,教师可以引导学生回答分解的问题.设计意图:通过探究活动,让学生认识平方差公式的几何意义,使学生更好地理解这一公式,并在此过程中体会数形结合思想.4.小组交流,应用新知例1 填表: ()()b a b a -+a b 22b a - ()()22-+x x()()2323+---a a()()m n n m 3223---()[]()[]c b a c b a +-++师生活动:师生共同分析解答,教师分析(1),学生完成导学卷上的其它题.在解答的过程中,教师引导学生要明确本题中的哪一个数或式子相当于公式中的a ,b ,然后依照公式,BC b bE H GD a - bM b a F A a写出平方差,再化简得出结果;练习 下列各式中,可以用平方差公式计算的是( )()()()()()()()().D. ;2C.;3443B. ;3232A.b a b a b a b a a b b a b a b a --++---+-+--例2运用平方差公式计算:(1)(3x +2)(3x -2); (2)(-x +2y )(-x -2y ).在解答(2)的过程中,同样注意上述问题,并关注学生是否有其他解法.解:(1)(3x +2)(3x -2)=(3x )2-22=9x 2-4;(a +b )(a -b ) = a 2 -b 2(2)(-x +2y )(-x -2y )=(-x )2-(2y )2=x 2-4y 2.设计意图:让学生熟悉公式的结构特征,找准哪个数或式子相当于公式中的“第一个数”a ,哪个数或式子相当于公式中的“第二个数”b ,并运用公式进行计算.5.巩固练习,拓展提高例3 计算:(1)( y +2)(y -2)-(y -1)(y +5); (2)102×98.师生活动:师生共同分析,得出:(1)中的前两个多项式的积可以直接利用平方差公式,后两个多项式的积不具备平方差公式的结构特征,不能用此公式;(2)是两个数乘积的简便计算,这两个因数恰好可以分解成两个数(100与2)的和与这两个数的差,且这两个数的平方容易计算.问题(2)对一部分学生来说,有一定难度,教师要注意引导学生认真观察,并及时总结规律——第一个数是两个因数的平均数.设计意图:第(1)题是新旧知识的综合运用,此题要让学生深刻理解平方差的结构特征,明白只有符合公式结构特征的乘法,才能运用公式简化运算;第(2)题是平方差公式在数的乘法中的应用,属于两个数乘积的简便计算问题,可以使学生将平方差公式的知识迁移到新的问题情境中,既巩固新知,又培养学生分析和解决问题的能力.问题5 从例1和练习中,你认为运用平方差公式解决问题时应注意什么?师生活动:学生回答问题,并相互补充.可以总结出以下经验:(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a ,哪个数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a的符号相同,“第二个数”b的符号相反;(4)公式中的字母a,b可以是具体的数、单项式、多项式等;(5)不能忘记写公式右边的“平方”.设计意图:引导学生深入分析平方差公式的结构特征,明确a,b的意义,在运用公式进行计算时一定要抓住关键:找准哪个数或式相当于“第一个数”a,哪个数或式相当于“第二个数”b.通过此过程,突破本节课的难点.练习:1.下面各式的计算对不对?如果不对,应怎样改正?(1)(2x+3a)(2x-3b)=(2x)2-(3a)2;(2)(2a-3b)(2a-3b)=(2a)2-(3b)2;(3)(x+2)(x-2)=x2-2;(4)(-3a-2)(3a-2)=9a2-4.师生活动:学生独立思考,并说明答案,对错误的问题相互交流、订正答案.设计意图:通过正误辨析及纠错、改错,让学生进一步理解平方差公式的结构特征,准确运用公式进行计算.2.运用平方差公式计算:(1)(a+3b)(a-3b);(2)(3+2a)(-3+2a);(3)51×49;(4)(3x+4)(3x-4)-(2x+3)(3x-2).师生活动:学生在导学卷上完成,教师巡视、指导,师生交流.设计意图:通过同类型题的练习,帮助学生更好地理解平方差公式,较熟练地运用平方差公式进行有关计算.6.课堂小结,分层作业(1)教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么?设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——平方差公式,进一步认识公式的结构特征,为运用公式积累经验.(2)布置作业必做题:教科书 P112 第1题;选做题:运用平方差公式计算.;201320152014)1(2⨯- ()()()()11112322++-+x x x x )( 六、目标检测设计1.下列各式中,不能运用平方差公式的是( ).A .(m -n )(-m -n )B .(x ³-y ³)(y ³+x ³)C .(-m +n )(m -n )D .(2x -3)(2x +3) 设计意图:考查学生对平方差公式结构特征的理解.2.计算:(1)(mn +9)(9-mn ); (2)2x (x -1)-(2x +1)(1-2x ).设计意图:考查学生对平方差公式的理解及运用.3.计算:1998×2002.设计意图:考查学生对平方差公式的应用——两个数乘积的简便计算的掌握.。

14.3.2 公式法 - 第二课时 运用完全平方公式因式分解

14.3.2 公式法 - 第二课时   运用完全平方公式因式分解
分解因式:a2-2a(b+c)+(b+c)2.
解:原式=[a-(b+c)]2=(a-b-c)2.
师生活动:学生先独立思考并完成解答,教师适当给予指导,最后进行统一讲解
1.学生独立思考、合作交流,在前面学习利用平方差公式分解因式的经验的基础上,总结利用完全平方公式分解因式的经验.
经历对例题和变式的探究过程,加深因式分解的一般解题步骤,达到巩固知识的目的,培养学生分析问题、解决问题的能力.
课前预学任 务(前提测评内容)
上节课我们学习了运用平方差公式分解因式,同学们能解决下面的题目吗?
因式分解:81a4-16.
情境导入
出示目标
导学活动预设
教师活动
学生活动
设计意图
活动一:创设情境、导入因式:
(1)m2-8mn+16n2;(2)a2-2ab+b2.
“以学为主’有效课堂范式”之课堂导学设计预案
课 题
14.3.2运用完全平方公式因式分解
授课时间
年 月 日
星 期
第 节
课标及教材解读
在学习本节课之前,已经学过了因式分解的有关概念和方法,特别是学过了运用平方差公式分解因式与本节课有类似之处,为本节课打下了基础.运用完全平方公式分解因式不仅是现阶段的学习重点,而且为后面分解二次三项式奠定了一定的基础.教学时注意类比平方差公式分解因式得出完全平方公式分解因式的意义,并分析完全平方式的特点.
(2)-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2.
方法归纳:运用完全平方公式分解因式,被分解的多项式必须满足三个特点:(1)多项式为三项式;(2)其中有两项是平方项且符号相同;(3)第三项是两个平方项幂的底数的积的2倍或-2倍.

14.3.2第1课时运用平方差公式分解因式 课件 人教版八年级数学上册

14.3.2第1课时运用平方差公式分解因式 课件 人教版八年级数学上册

(2) 4a2-9b2
=( 2a )2-( 3b )2=(2a+3b)(2a-3b).
探索新知
知识点 运用平方差公式分解因式
把上边的两个式子反过来:
(1)
x2-16
=(x+4)(x-4);
(2) 4a2-9b2
=( 2a )2-( 3b )2=(2a+3b)(2a-3b);
左边是多项式 右边是整式的积
探索新知
知识点 运用平方差公式分解因式 平方差公式的符号表达形式: (a+b)(a-b)=a2-b2
运用平方差公式计算:
(1)(x+4)(x-4)= x2-16
;
(2)(2a+3b)(2a-3b)=( 2a )2-( 3b )2=
4a2-9b2 .
把上边的两个式子反过来:
(1)
x2-16
=(x+4)(x-4);
一定要检查是否还有能继续分解的因式,若有,则需继续分解. 分解因式时,若有公因式,一般先提公因式,然后再运用平方差公 式.
学以致用
1.若a+b=3,a-b=7,则b2-a2的值为( A )
A.-21 B.21
C.-10 D.10
【解析】b2-a2=(b+a)(b-a)=3×(-7)=-21. 故选A.
符合“()2-()2”的形式的多项式才能用平方差公式进 行因式分解,可简记为“两数是平方,减号在中央”.
探索新知
知识点 运用平方差公式分解因式
例2 分解因式.
(1)4x2-9;
(2) (x+p)2-(x+q)2 .
可写成(2x)2-32的形式
两者均看成一个整体
解:(1)4x2-9=(2x)2-32=(2x+3)(2x-3) ; (2)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q) .

1432公式法学习教程

1432公式法学习教程
写成两数或式的 平方的两项先变 成正号
(2)-x2-4y2+4xy
=-(x2-4xy+4y2)
=-[x2-2·x·2y+(2y)2]
=-(x-2y)2.
第12页/共23页
【跟踪训练】
1.判断下列各式哪些是整式乘法?哪些是因式分解?
(1)x2-4y2=(x+2y)(x-2y) 因式分解
(2)2x(x-3y)=2x2-6xy (3)(5a-1)2=25a2-10a+1 (4)x2+4x+4=(x+2)2
第19页/共23页
第119页习题14.3第3题
第20页/共23页
心似平原之马,易放难收。 学如逆水行舟,不进则退。
第21页/共23页
第22页/共23页
谢谢大家观赏!
第23页/共23页
= (999+1)2 = 106
就像平方差公式一样,完全平方公 式也可以逆用,从而进行一些简便计 算与因式分解。
即:a2 2ab b2 a b2
第4页/共23页
三、完全平方式
a2 2ab b2
完全平方式的特点: 1.必须是三项式(或可以看成三项的) 2.有两个同号的平方项 3.有一个乘积项(等于平方项底数的±2倍)
1.如何用符号表示完全平方公式? a2+2ab+b2=(a+b)2, a2-2ab+b2= (a-b)2.
2.完全平方公式的结构特点是什么?
完全平方式的特点: (1)必须是三项式(或可以看成三项的) (2)有两个同号的平方项 (3)有一个乘积项(等于平方项底数的±2倍) 简记口诀: 首平方,尾平方,首尾两倍在中央。
第6页/共23页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档