鸡兔同笼问题的几种基本公式和典型例题

合集下载

(奥数)鸡兔同笼问题五种解题思路

(奥数)鸡兔同笼问题五种解题思路

鸡兔同笼问题经典形式的解题思路(1)已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数。

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。

(总头数-脚数之差/一只鸡的脚数)÷(2+1)=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?兔:(40-32/2)÷(2+1)=8 只;鸡:40-8=3只(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。

(4) 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数。

274-(26×2)÷(2+4)=37(只) 兔(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),思路:根据互换前后的脚数相加除以(鸡的脚数加兔的脚数之和)为头数,再根据1求解。

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案鸡兔同笼问题是一个古典的算术问题,它包括第一鸡兔同笼问题和第二鸡兔同笼问题。

第一鸡兔同笼问题是已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题;第二鸡兔同笼问题是已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题。

解答这类问题一般采用假设法,可以先假设都是鸡或都是兔,然后进行置换,使问题得到解决。

对于第一鸡兔同笼问题,假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)。

对于第二鸡兔同笼问题,假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2);假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)。

举个例子,假设一笼里有长毛兔子和芦花鸡,数数头有35,脚数共有94.我们可以先假设35只全为兔,然后求出鸡数和兔数;也可以先假设35只全为鸡,然后求出鸡数和兔数。

这样就可以得出答案,即有鸡23只,有兔12只。

另一个例子是,有2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?这个问题可以转化为“鸡兔同笼”问题。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)。

最后一个例子是第二鸡兔同笼问题,鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?我们可以假设全都是鸡或都是兔,然后求出鸡数和兔数。

根据计算,鸡有60只,兔有40只。

答案:有6辆车和270人。

年龄问题是指两人的年龄差不变,但是两人年龄之间的倍数关系随着年龄的增长在发生变化。

解题时要紧紧抓住“年龄差不变”这个特点,可以利用“差倍问题”的解题思路和方法。

例如,爸爸今年35岁,XXX今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?根据年龄差不变,可以得出35÷5=7(倍),明年爸爸的年龄是(35+1)÷(5+1)=6(倍)。

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”36-14=22(只)……………………………鸡。

36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,能够用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不但不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不但不给运费,还需要赔成本××元……。

鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式
"鸡兔同笼"是一种经典的数学问题,通过给定的笼中动物(鸡和兔子)的总数量和腿的总数量,来求解鸡和兔子各有多少只。

这个问题可以通过不同的数学方法解决。

以下是十种常见的解法:
1、代数法:
设鸡的数量为
x+y=动物总数
2x+4y=腿的总数
2、减法法:
全部当作兔子算,然后减去多出来的腿数除以2(因为兔子比鸡多两条腿)得到鸡的数量。

3、矩阵法:
使用矩阵解线性方程组。

4、迭代法:
假设所有动物都是兔子,然后逐一将兔子换成鸡,直到腿的总数符合条件。

5、图形法:
画图表示动物和腿的数量关系,通过图形的方式求解。

6、函数法:
将动物数量和腿数关系转换为函数,求解函数的值。

7、比例法:
根据鸡和兔子腿数的比例关系来解决问题。

8、试错法:
逐个尝试不同的组合,直到找到满足条件的答案。

9、排列组合法:
将问题转化为组合数学问题求解。

10、编程法:
使用计算机编程遍历所有可能的组合来找到正确答案。

鸡兔同笼

鸡兔同笼

鸡兔同笼问题鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

(完整版)鸡兔同笼问题五种基本公式和例题讲解

(完整版)鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题是一类经典的数学问题,其解法多样其中方程法是一种重要的解决方式。通过设立代表鸡和兔数量的未知数,根据题目条件构建等式,进而求解。此外,还有假设法,即先假设所有动物都是鸡或兔,然后根据腿的数量差异进行调整。抬腿法则是通过让鸡和兔同时抬起一定数量的腿,简化问题。分组法是将动物按一定规则分组,使每组动物腿数相同,从而简化计算。最后,画图法通过直观的图形表示,帮助理解和解决问题。这五种方法各有特点,适用于不同场景和难度的问题。通过学习和实践这些方法,可以培养逻辑思维和问题解决能力。

鸡兔同笼典型例题10道

鸡兔同笼典型例题10道

鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。

问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。

但实际有26只脚,多出来的脚就是兔子比鸡多的脚。

每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。

2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。

求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。

实际34只脚,多了34 - 24 = 10只脚。

因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。

3. 鸡兔同笼,头共10个,脚共30只。

鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。

30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。

每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。

二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。

问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。

46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。

5. 笼子里有鸡和兔,一共20个头,56只脚。

鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。

56 - 40 = 16只脚多出来了,这是兔子的。

每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。

三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。

鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。

兔脚有4x只,鸡脚有2(x + 2)只。

可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。

鸡兔同笼问题五种基本公式[1]

鸡兔同笼问题五种基本公式[1]

鸡兔同笼问题五种基本公式鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

鸡兔同笼练习题大全(最新最全)

鸡兔同笼练习题大全(最新最全)

鸡兔同笼练习题大全1、公式1:(兔的脚数×总只数 - 总脚数)÷(兔的脚数 - 鸡的脚数)= 鸡的只数,总只数 - 鸡的只数 = 兔的只数2、公式2:(总脚数 - 鸡的脚数×总只数) ÷ (兔的脚数 - 鸡的脚数)= 兔的只数,总只数 - 兔的只数 = 鸡的只数3、公式3:总脚数÷ 2 - 总头数 = 兔的只数,总只数 -兔的只数 = 鸡的只数4、公式4:兔总只数 = (鸡兔总脚数 - 2 ×鸡兔总只数) ÷ 2,鸡的只数 = 鸡兔总只数 - 兔总只数5、公式5:鸡的只数 = (4 ×鸡兔总只数 - 鸡兔总脚数) ÷ 2,兔的只数 = 鸡兔总只数-鸡的只数,公式6:4× + 2(总数x)=总脚数(x = 兔,总数 - x = 鸡数,用于方程)鸡兔同笼类练习题一1. 有鸡兔共20只,脚44只,鸡兔各几只?2、龟鹤共有100个头,350只脚.龟、鹤各多少?3、鸡兔共笼,兔比鸡多4只,共有脚76只,鸡、兔各多少只?4、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?5、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?鸡兔同笼类练习题二1、有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有多少盒?铅笔有多少盒?2、大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?3、 100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?4、 100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?5、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6、停车场上停了35辆小轿车和两轮摩托车,地面上数一上共有10个轮子,请问小轿车和摩托车各有多少辆?7、一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人植树140棵,问种这两种树的各有多少人?8、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?鸡兔同笼类练习题三1. 学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?2. 王老师带48名同学去公园划船,共租了10条船恰好坐满。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

小学鸡兔同笼问题(二)

小学鸡兔同笼问题(二)

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式

鸡兔问题公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

鸡兔同笼问题的几种基本公式及典型例题

鸡兔同笼问题的几种基本公式及典型例题

鸡兔同笼问题的几种基本公式和典型例题一、已知总头数和总脚数,求鸡、兔各多少只兔数 = (总脚数—每只鸡的脚数×总头例 1:有鸡、兔共36 只,它们共有脚 100 只,鸡、兔各是多少只数)÷(每只兔的脚数—每只鸡的脚数);× 36)÷( 4-2 )=14(只);解:兔:(100-2鸡: 36-14=22 (只)。

鸡数 =总头数—兔数。

答:鸡有 22 只,兔有14 只。

二、已知总头数和鸡兔脚数的差数,求鸡、兔各多少只状况①:当鸡的总脚数比兔的总脚数多时,可用公式:兔数 = (每只鸡脚数×总头数—脚数之差)÷(每只鸡的脚数 + 每只兔的脚数);例2:鸡、兔共有 120 只,鸡比兔多 120 只脚,鸡、兔各有多少只解:兔:( 2× 120-120 )÷( 2+4) =( 240-120 )÷6 = 120 ÷ 6 = 20 (只)鸡: 120-20 = 100 (只)鸡数 =总头数—兔数。

状况②:当兔的总脚数比鸡的总脚数多时,可用公式:兔数 =(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数);鸡数 =总头数—兔数。

例 3:鸡兔同笼,鸡、兔共有 46 只,兔比鸡多 28 只脚,鸡、兔各有多少只解:兔:( 2× 46+28)÷( 2+4) =120÷ 6 = 120 ÷6 = 20 (只)鸡: 46-20 = 26(只)三、已知总脚数和鸡兔头数的差数,求鸡、兔各多少只状况①:当鸡的总头数比兔的总头数多时,可用公式:兔数 =(总脚数—鸡兔头数之差×每只鸡例 4:鸡兔同笼,鸡、兔共有72 只脚,鸡比兔多12 只,鸡、兔各有多少只的脚数)÷(每只鸡的脚数+ 每只兔的脚数);解:兔:( 72-12 ×2)÷( 2+4)= 48÷ 6 = 8(只)鸡: 12+8 = 20 (只)状况②:当兔的总头数比鸡的总头数多时,可用公式:兔数 =(总脚数 + 鸡兔头数之差×每只鸡的脚数)÷(每只鸡的脚数 + 每只兔的脚数);例 5:鸡兔同笼,鸡、兔共有128 只脚,兔比鸡多8只,鸡、兔各有多少只解:兔:( 128+8× 2)÷( 2+4) = 144 ÷ 6 = 24 (只)四、鸡兔交换问题(已知总脚数及鸡兔交换后总脚数,求鸡兔各多少的问题),可用公式:鸡数 =[ (两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)] ÷ 2;兔数 =[ (两次总脚数之和)÷(每只鸡兔脚数和)- (两次总脚数之差)÷(每只鸡兔脚数之差)] ÷ 2。

鸡兔同笼问题四种基本公式

鸡兔同笼问题四种基本公式

鸡兔同笼问题四种基本公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)鸡兔同笼问题四种基本公式一、已知总头数和总脚数,求鸡兔各多少:(总脚数?每只鸡的脚数×总头数)÷(每只兔的脚数?每只鸡的脚数)=兔数;总头数?兔数=鸡数。

(每只兔的脚数×总头数?总脚数)÷(每只兔的脚数?每只鸡的脚数)=鸡数;总头数?鸡数=兔数。

例:有鸡兔共36只,它们共有脚100只,鸡兔各是多少只?解一:(100?2×36)÷(4?2)=14(只)……兔;36?14=22(只)……鸡。

解二:(4×36?100)÷(4?2)=22(只)……鸡;36?22=14(只)……兔。

(答略)二、已知总头数和鸡兔脚数的差数,求鸡兔各多少:(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数?脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数?兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数?鸡数=兔数。

(例略)(2)当兔的总脚数比鸡的总脚数多时:(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数?兔数=鸡数。

(每只兔的脚数×总头数?鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数?鸡数=兔数。

(例略)三、得失问题(鸡兔问题的推广题)的解法:(每只合格品得分数×产品总数?实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

总产品数?(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如:灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。

每多1个头就是1只兔。

因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。

3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数--总头数×2的差再÷2就是兔的只数。

4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只?60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50只验算:50×2=100(25+15)x4=160160--100=60只5,方程法可用一元一次和二元一次方程直接解题。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解鸡兔问题公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡(de)脚数×总头数)÷(每只兔(de)脚数-每只鸡(de)脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数(de)差数,当鸡(de)总脚数比兔(de)总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡(de)脚数+每只免(de)脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数(de)差数,当兔(de)总脚数比鸡(de)总脚数多时,可用公式.(每只鸡(de)脚数×总头数+鸡兔脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=兔数;总头数-兔数=鸡数.或(每只兔(de)脚数×总头数-鸡兔脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题(de)推广题)(de)解法,可以用下面(de)公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.例如,“灯泡厂生产灯泡(de)工人,按得分(de)多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它(de)解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少(de)问题),可用下面(de)公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼目录 1总述 2假设法 3方程法一元一次方程二元一次方程4抬腿法 5列表法 6详解 7详细解法基本问题特殊算法习题8鸡兔同笼公式1总述鸡兔同笼是中国古代(de)数学名题之一.大约在1500年前,孙子算经中就记载了这个有趣(de)问题.书中是这样叙述(de):“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何”这四句话(de)意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔算这个有个最简单(de)算法.(总脚数-总头数×鸡(de)脚数)÷(兔(de)脚数-鸡(de)脚数)=兔(de)只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里(de)脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子(de)两只脚,再除以2就是兔子数.虽然现实中没人鸡兔同笼.2假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立(de)脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立(de)兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)3方程法一元一次方程解:设兔有x只,则鸡有(35-x)只.4x+2(35-x)=944x+70-2x=942x=94-702x=24x=24÷2x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只.2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只.注:通常设方程时,选择腿(de)只数多(de)动物,会在套用到其他类似鸡兔同笼(de)问题上,好算一些.二元一次方程解:设鸡有x只,兔有y只.x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12(只)x=23(只).答:兔子有12只,鸡有23只4抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚.笼子里(de)兔就比鸡(de)头数多1,这时,脚与头(de)总数之差47-35=12,就是兔子(de)只数.法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子(de)脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡5列表法腿数鸡(只数)兔(只数)6详解中国古代孙子算经共三卷,成书大约在公元5世纪.这本书浅显易懂,有许多有趣(de)算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何题目中给出雉兔共有35只,如果把兔子(de)两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚(de) 鸡.鸡兔总(de)脚数是35×2=70(只),比题中所说(de)94只要少94-70=24(只).现在,我们松开一只兔子脚上(de)绳子,总(de)脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上(de)绳子,总(de)脚数又增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只).我们来总结一下这道题(de)解题思路:如果先假设它们全是鸡,于是根据鸡兔(de)总数就可以算出在假设下共有几只脚,把这样得到(de)脚数与题中给出(de)脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差(de)脚数除以2,就可以算出共有多少只兔.概括起来,解鸡兔同笼题(de)基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数).类似地,也可以假设全是兔子.我们也可以采用列方程(de)办法:设兔子(de)数量为x,鸡(de)数量为y 那么:x+y=35那么4x+2y=94 这个算方程解出后得出:兔子有12只,鸡有23只.7详细解法基本问题"鸡兔同笼"是一类有名(de)中国古算题.最早出现在孙子算经中.许多小学算术应用题都可以转化成这类问题,或者用解它(de)典型解法--"假设法"来求解.因此很有必要学会它(de)解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚(de)总数(de)一半,·也就是244÷2=122(只).在122这个数里,鸡(de)头数算了一次,兔子(de)头数相当于算了两次.因此从122减去总头数88,剩下(de)就是兔子头数122-88=34(只),有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面(de)计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数特殊算法上面(de)解法是孙子算经中记载(de).做一次除法和一次减法,马上能求出兔子数,多简单能够这样算,主要利用了兔和鸡(de)脚数分别是4和2,4又是2(de)2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面(de)计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想(de)88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中(de)"鸡",有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样(de)思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面(de)公式.例2 红铅笔每支元,蓝铅笔每支元,两种铅笔共买了16支,花了元.问红,蓝铅笔各买几支解:以"分"作为钱(de)单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题(de)计算,常常可以利用已知脚数(de)特殊性.例2中(de)"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是8×(11+19)=240(支).比280少40.40÷(19-11)=5(支).就知道设想中(de)8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数(de)特殊性,靠心算来完成计算.实际上,可以任意设想一个方便(de)兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只"鸡",要少3只.要使设想(de)数,能给计算带来方便,常常取决于你(de)心算本领.下面再举四个稍有难度(de)例子.例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时解:我们把这份稿件平均分成30份(30是6和10(de)最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字(de)时间看成"兔"头数,乙打字(de)时间看成"鸡"头数,总头数是7."兔"(de)脚数是5,"鸡"(de)脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面(de)公式"兔"数=(30-3×7)÷(5-3)=,"鸡"数==,也就是甲打字用了小时,乙打字用了小时.答:甲打字用了4小时30分.例4 今年是1998年,父母年龄(整数)和是78岁,兄弟(de)年龄和是17岁.四年后(2002年)父(de)年龄是弟(de)年龄(de)4倍,母(de)年龄是兄(de)年龄(de)3倍.那么当父(de)年龄是兄(de)年龄(de)3倍时,是公元哪一年解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄(de)年龄看作"鸡"头数,弟(de)年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄(de)年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父(de)年龄是兄(de)年龄(de)3倍时,兄(de)年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄(de)3倍.例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只解:因为蜻蜓和蝉都有6条腿,所以从腿(de)数目来考虑,可以把小虫分成"8条腿"与"6条腿"两种.利用公式就可以算出8条腿(de)蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道6条腿(de)小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉.例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道(de)有7人,5道全对(de)有6人,做对2道和3道(de)人数一样多,那么做对4道(de)人数有多少人解:对2道,3道,4道题(de)人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题(de)人数一样多,我们就可以把他们看作是对道题(de)人((2+3)÷2=.这样兔脚数=4,鸡脚数=,总脚数=144,总头数=39.对4道题(de)有×39)÷=31(人).答:做对4道题(de)有31人.以例1为例有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只以简单(de)X方程计算(de)话,我们一般用设大数为X,那么也就是设兔为X,那么鸡(de)只数就是总数减去鸡(de)只数,即(88-X)只.解:设兔为X只.则鸡为(88-X)只.4X+2×(88-X)=244上列(de)方程解释为:兔子(de)脚数加上鸡(de)脚数,就是共有(de)脚数.4X就是兔子(de)脚数,2×(88-X)就是鸡(de)脚数.4X+2×88-2X=2442X+176=2442X+176-176=244-1762X=682X÷2=68÷2X=34即兔子为34只,总数是88只,则鸡:88-34=54只.答:兔子有34只,鸡有54只.习题一1.龟鹤共有100个头,350只脚.龟,鹤各多少只2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副3.一些2分和5分(de)硬币,共值元,其中2分硬币个数是5分硬币个数(de)4倍,问5分硬币有多少个4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元(de)张数一样多.那么2元,5元,10元各有多少张5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下(de)部分,这样前后共用了16天.甲先做了多少天6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有(de)是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成(de);有(de)是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成(de).已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段7.用1元钱买4分,8分,1角(de)邮票共15张,问最多可以买1角(de)邮票多少张二、"两数之差"(de)问题鸡兔同笼中(de)总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例7 买一些4分和8分(de)邮票,共花6元8角.已知8分(de)邮票比4分(de)邮票多40张,那么两种邮票各买了多少张解一:如果拿出40张8分(de)邮票,余下(de)邮票中8分与4分(de)张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下(de)邮票中,8分和4分(de)各有30张.因此8分邮票有40+30=70(张).答:买了8分(de)邮票70张,4分(de)邮票30张.也可以用任意假设一个数(de)办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加(de)张数是(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天比晴天多3天,工程要多少天才能完成解:类似于例3,我们设工程(de)全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一(de)方法,晴天有(150-8×3)÷(10+8)= 7(天).雨天是7+3=10天,总共7+10=17(天).答:这项工程17天完成.请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节(de)问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间(de)关系.总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例9 鸡与兔共100只,鸡(de)脚数比兔(de)脚数少28.问鸡与兔各几只解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔(de)脚是鸡(de)脚4÷2=2(倍),于是鸡(de)只数是兔(de)只数(de)2倍.兔(de)只数是(100+28÷2)÷(2+1)=38(只).鸡是 100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔28÷4=7(只).兔(de)只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数(de)办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100,比28多了72.就说明假设(de)兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少(de)兔数是 (100-28)÷(4+2)=12(只).兔只数是50-12=38(只).另外,还存在下面这样(de)问题:总头数换成"两数之差",总脚数也换成"两数之差".例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差 7×4-5×4=8(字).因此,七言绝句有 280÷(28-20)=35(首).五言绝句有35+13=48(首).答:五言绝句48首,七言绝句35首.解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句(de)字数,反而多了460-280=180(字).与题目中"少20字"相差180+20=200(字).说明假设诗(de)首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句(de)首数要比假设增加200÷8=25(首).五言绝句有23+25=48(首).七言绝句有 10+25=35(首).在写出"鸡兔同笼"公式(de)时候,我们假设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出(de)计算式子与"鸡兔同笼"公式对照一下,就会发现非常有趣(de)事.例7,假设都是8分邮票,4分邮票张数是(680-8×40)÷(8+4)=30(张).例9,假设都是兔,鸡(de)只数是(100×4-28)÷(4+2)=62(只).10,假设都是五言绝句,七言绝句(de)首数是(20×13+20)÷(28-20)=35(首).首先,请读者先弄明白上面三个算式(de)由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢当你进入初中,有了负数(de)概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举(de)所有例子都是同一件事.例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好(de)瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费元,问这次搬运中玻璃瓶破损了几只解:如果没有破损,运费应是400元.但破损一只要减少1+=(元).因此破损只数是÷(1+=17(只).答:这次搬运中破损了17只玻璃瓶.请你想一想,这是"鸡兔同笼"同一类型(de)问题吗例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是 8×6-2×(15-6)=30(分).两次相差 120-30=90(分).比题目中条件相差10分,多了80分.说明假设(de)第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题).因此第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).第一次得分5×19-1×(24- 19)=90.第二次得分8×11-2×(15-11)=80.答:第一次得90分,第二次得80分.解二:答对30题,也就是两次共答错24+15-30=9(题).第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分). 如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件"第一次得分多10分",要少了6×9+10.因此,第二次答错题数是(6×9+10)÷(6+10)=4(题)·第一次答错9-4=5(题).第一次得分5×(24-5)-1×5=90(分).第二次得分8×(15-4)-2×4=80(分).习题二1.买语文书30本,数学书24本共花元.每本语文书比每本数学书贵元.每本语文书和数学书(de)价格各是多少2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花(de)钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运(de)次数却比晴天运(de)次数少27次.问一连运了多少天4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲,乙各中几发6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回(de)途中相遇.如果小张速度比小王速度每小时多走千米,求两人(de)速度.三、从"三"到"二""鸡"和"兔"是两种东西,实际上还有三种或者更多种东西(de)类似问题.在第一节例5和例6就都有三种东西.从这两个例子(de)解法,也可以看出,要把"三种"转化成"二种"来考虑.这一节要通过一些例题,告诉大家两类转化(de)方法.例13 学校组织新年游艺晚会,用于奖品(de)铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔(de)4倍.已知铅笔每支元,圆珠笔每支元,钢笔每支元.问三种笔各有多少支解:从条件"铅笔数量是圆珠笔(de)4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组(de)笔,每支价格算作(×4+÷5=(元).现在转化成价格为和两种笔.用"鸡兔同笼"公式可算出,钢笔支数是×232)÷(支).铅笔和圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).答:其中钢笔12支,圆珠笔44支,铅笔176支.例14 商店出售大,中,小气球,大球每个3元,中球每个元,小球每个1元.张老师用120元共买了55个球,其中买中球(de)钱与买小球(de)钱恰好一样多.问每种球各买几个解:因为总钱数是整数,大,小球(de)价钱也都是整数,所以买中球(de)钱数是整数,而且还是3(de)整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是×2+1×3)÷(2+3)=(元).从公式可算出,大球个数是×55)÷=30(个).买中,小球钱数各是(120-30×3)÷2=15(元).可买10个中球,15个小球.答:买大球30个,中球10个,小球15个.例13是从两种东西(de)个数之间倍数关系,例14是从两种东西(de)总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西(de)平均价,就把"三"转化成"二"了.例15是为例16作准备.例15 某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他(de)平均速度是多少解:去和回来走(de)距离一样多.这是我们考虑问题(de)前提.平均速度=所行距离÷所用时间去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.千万注意,平均速度不是两个速度(de)平均值:每小时走(6+3)÷2=4.5千米.例16 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单(de)"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是 (90-4×21)÷(5-4)=6(小时).单程平路行走时间是6÷2=3(小时).从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是:45-5×3=30(千米).又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走(de)时间是:(6×7-30)÷(6-3)=4(小时).行走路程是3×4=12(千米).下坡行走(de)时间是7-4=3(小时).行走路程是6×3=18(千米). 答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米.做两次"鸡兔同笼"(de)解法,也可以叫"两重鸡兔同笼问题".例16是非常典型(de)例题.例17 某种考试已举行了24次,共出了426题.每次出(de)题数,有25题,或者16题,或者20题.那么,其中考25题(de)有多少次解:如果每次都考16题,16×24=384,比426少42道题.每次考25道题,就要多25-16=9(道).每次考20道题,就要多20-16=4(道).就有9×考25题(de)次数+4×考20题(de)次数=42.请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题(de)次数是偶数,由9×6=54比42大,考25题(de)次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次).。

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法

鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。

每多1个头就是1只兔。

因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。

3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面 抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数--总头数×2的差再÷2就是兔的只数。

4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只? 60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50 只验算:50×2=100(25+15)x4=160160--100=60 只5,方程法可用一元一次和二元一次方程直接解题。

等量关系:(1)设鸡为X,则兔为总头数--X2Ⅹ+4(总头数--X)=总脚数(2)X+y=总头数2X+4y=总脚数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题的几种基本公式和典型例题
一、已知总头数和总脚数,求鸡、兔各多少只?
二、已知总头数和鸡兔脚数的差数,求鸡、兔各多少只?
情况①:当鸡的总脚数比兔的总脚数多时,可用公式:
情况②:当兔的总脚数比鸡的总脚数多时,可用公式:
三、已知总脚数和鸡兔头数的差数,求鸡、兔各多少只?
情况①:当鸡的总头数比兔的总头数多时,可用公式:
例3:鸡兔同笼,鸡、兔共有46只,兔比鸡多28
只脚,鸡、兔各有多少只?
解:兔:(2×46+28)÷(2+4)=120÷6 = 120÷
6 = 20(只)
鸡:46-20 = 26(只)
兔数=(每只鸡的脚数×总头数 + 鸡兔脚数之差)÷(每只鸡的脚数 + 每只兔的脚数); 鸡数=总头数—兔数。

例2:鸡、兔共有120只,鸡比兔多120只脚,鸡、
兔各有多少只?
解:兔:(2×120-120)÷(2+4)=(240-120)
÷6 = 120÷6 = 20(只)
鸡:120-20 = 100(只)
兔数 =(每只鸡脚数×总头数—脚数之差)÷(每只鸡的脚数 + 每只兔的脚数); 鸡数=总头数—兔数。

例1:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只? 解: 兔:(100-2×36)÷(4-2)=14(只); 鸡:36-14=22(只)。

答: 鸡有22只,兔有14只。

兔数 =(总脚数—每只鸡的脚数×总头
数)÷(每只兔的脚数—每只鸡的脚数);
鸡数 = 总头数—兔数。

情况②:当兔的总头数比鸡的总头数多时,可用公式:
四、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用公式:
五、鸡兔问题推广题的解法:可用假设法,转化成“鸡兔同笼”问题求解
例6:有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只? 解 :
鸡:[(52+44)÷(4+2)+(52-44)÷(4-2)]÷2=20÷2=10(只)
兔:[(52+44)÷(4+2)-(52-44)÷(4-2)]÷2=12÷2=6(只)
鸡数=[(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)]÷2;
兔数=[(两次总脚数之和)÷(每只鸡兔脚数和)-(两次总脚数之差)÷(每只鸡兔脚数之差)]÷2。

例5:鸡兔同笼,鸡、兔共有128只脚,兔比鸡多
8只,鸡、兔各有多少只?
解:兔:(128+8×2)÷(2+4)= 144÷6 = 24(只)
鸡:24-8 = 16(只) 兔数=(总脚数 + 鸡兔头数之差×每只鸡的脚数)÷(每只鸡的脚数 + 每只兔的脚数);
例4:鸡兔同笼,鸡、兔共有72只脚,鸡比兔多12只,鸡、兔各有多少只? 解:兔:(72-12×2)÷(2+4)= 48÷6 = 8(只) 鸡:12+8 = 20(只) 兔数=(总脚数—鸡兔头数之差×每只鸡
的脚数)÷(每只鸡的脚数 + 每只兔的
脚数);
例7:篮球每个19元,排球每个11元,两种球共买了16个,花了280元。

问篮球、排球各买几个?
分析:我们假设一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚。

现在已经把买球问题,转化成“鸡兔同笼”问题了.
解:利用上面算兔数公式,
蓝球数=(280 - 11×16)÷(19-11)=24÷8=13(个)
排球数=16-13=3(个).。

相关文档
最新文档