概率练习题答案

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率习题(附答案)

概率习题(附答案)

随机事件的概率一、选择题(每题4分)1、黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性; B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定2、有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( )A.21 B.2 C.21或2 D.无法确定3、如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )A 、 21B 、 83C 、 41D 、 314、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( ) A 、 1001 B 、10001 C 、100001 D 、100001115、连掷两次骰子,它们的点数都是4的概率是( ) A 、61 B 、41 C 、161 D 、361 6、啤酒厂做促销活动,在一箱啤酒(每箱24瓶)中有4瓶的盖内印有“奖”字. 小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均未中奖. 小明这时在剩下的啤酒中任意拿出一瓶,那么他拿出的这瓶中奖的概率( ). (A)424 (B)16 (C)520 (D)15二、填空题(每题3分)7、可能事件的概率p 的取值范围是__________。

必然事件发生的概率是_____,不可能事件发生的概率是_____。

8、投掷一个均匀的正六面体骰子,每个面上依次标有1、2、3、4、5、6,则掷得“5”的概率P=________,这个数表示的意思是__________________. 9、王刚的身高将来会长到4米,这个事件得概率为_____。

10、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是___11、小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .12、右图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______13、一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .14、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______15、袋中装有3个白球和2个黄球,从中随机地摸出二个球,都为白球的概率为_______,为一个白球与一个黄球的概率是_______.16、用1,2,3组成三位数(不重复使用),其中排出偶数的概率是_________.17、一个口袋中有24个红球和若干个绿球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中搅匀,重复上述过程,试验200次,其中有125次摸到绿球,估计口袋中有绿球___个。

概率练习题含答案

概率练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B ) (2)事件的对立与互不相容是等价的。

(B ) (3)若()0,P A = 则A =∅。

(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。

(B ) (7)若P(A)P(B)≤,则⊂A B 。

(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率运算练习题及答案

概率运算练习题及答案

概率运算练习题及答案概率论是数学中的一个重要分支,它研究随机现象的规律性。

在概率论中,我们经常需要进行概率的计算。

以下是一些概率运算的练习题,以及相应的答案,供学习者参考和练习。

# 练习题1一个袋子里有3个红球和2个蓝球。

随机从袋子中取出一个球,然后放回,再次取出一个球。

求以下事件的概率:A) 第一次取出的是红球。

B) 第二次取出的是红球。

C) 两次取出的都是红球。

# 答案1A) 第一次取出红球的概率是3/5,因为袋子里有5个球,其中3个是红球。

B) 由于取出的球会放回,所以第二次取出红球的概率也是3/5。

C) 两次取出都是红球的概率是第一次取出红球的概率乘以第二次取出红球的概率,即 (3/5) * (3/5) = 9/25。

# 练习题2一个骰子有6个面,每个面上的数字分别是1, 2, 3, 4, 5, 6。

投掷两次骰子,求以下事件的概率:A) 第一次投掷得到的数字大于3。

B) 第二次投掷得到的数字小于4。

C) 两次投掷得到的数字之和为7。

# 答案2A) 第一次投掷得到大于3的数字的概率是3/6,因为1, 2, 3的数字小于4,而骰子有6个面。

B) 第二次投掷得到小于4的数字的概率也是3/6,因为1, 2, 3的数字小于4。

C) 两次投掷得到的数字之和为7的组合有:(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)。

每一对组合出现的概率是1/36(因为每个数字出现的概率是1/6,且投掷两次是独立的)。

所以,两次投掷和为7的概率是6 * (1/36) = 1/6。

# 练习题3一个班级有30个学生,其中15个男生和15个女生。

随机选择5个学生组成一个小组。

求以下事件的概率:A) 小组中至少有3个男生。

B) 小组中恰好有3个男生。

# 答案3A) 至少有3个男生的小组可以是3个男生和2个女生,4个男生和1个女生,或者5个男生。

我们可以使用组合数学来计算这些概率。

- 3个男生和2个女生的组合数是 C(15,3) * C(15,2)。

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。

答案:首先计算总球数为8个,红球数为5个。

根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。

2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。

答案:首先列出所有可能的结果:正正、正反、反正、反反。

其中正正和正反、反正是至少出现一次正面的情况。

根据概率公式,P(至少一次正面) = 3/4。

3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。

答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。

然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。

根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。

二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。

今天工厂生产了200个零件,求至少有10个次品的概率。

答案:首先确定次品数为10、11、...、20。

使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。

计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。

2. 题目:一个盒子里有10个球,编号为1到10。

随机抽取3个球,求抽取的球的编号之和大于15的概率。

答案:列出所有可能的抽取组合,计算和大于15的组合数。

然后根据概率公式计算概率。

3. 题目:一个班级有50名学生,其中男生30名,女生20名。

随机选取5名学生,求选取的学生中恰好有3名男生的概率。

答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。

三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。

(完整)概率复习题及答案

(完整)概率复习题及答案

〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。

试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。

将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。

已知随机变量X的密度为,且,则________________8。

设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。

若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。

用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15。

已知,则=16.设,且与相互独立,则17。

设的概率密度为,则=18。

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。

设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。

22.设是来自正态总体的样本,令则当时~。

23。

设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率论习题与答案

概率论习题与答案

概率论习题 一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、 已知()0.7,()0.3,P A P A B =-= 则().P AB =5、 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|).P B A B ⋃=6、 掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B =9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。

那么(|)P C AB = 。

12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,求此人是男性的概率 。

13、将3个球随机的放入4个杯子中,求杯子中球的最大个数分别为1,2,3的概率。

14、把C B A ⋃⋃表示为互不相容事件的和是 。

15、,,A B C 中不多于两个发生可表示为 。

二、选择题1、下面四个结论成立的是( ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2、设()0,P AB =则下列说法正确的是( )...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3、掷21n +次硬币,正面次数多于反面次数的概率为( )1..21211.0.5.21nn A B n n n C D n -++++ 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=∈==5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ).A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17、已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( ).A 0.2 .B 0.45 .C 0.6 .D 0.758、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ).A 0.125 .B 0.25 .C 0.375.D 0.509、设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( ).A 0.1 .B 0.4 .C 0.9 .D 110、已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃= .D ()1P A B ⋃=11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则( )..A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立.D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=( )..A )()(B P A P - .B )()()(AB P B P A P +- .C )()(AB P A P -.D )()()(B A P A P A P -+13、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7则P (AB )取到最大值时是( ).A 0.6 .B 0.7 .C 1 .D 0.4214、某人忘记了电话号码的最后一个数字,因而他随意地拨号。

(完整版)概率练习题(含答案)

(完整版)概率练习题(含答案)

概率练习题(含答案)1 解答题有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.答案(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4)2 单选题“概率”的英文单词是“Probability”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“b”的概率是1. A.2. B.3. C.4. D.1答案C解析分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率.解答:“Probability”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出现,取到字母“b”的可能性有两种,故其概率是;故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3 解答题一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:(1)取出的两只球都是白球的概率是多少?(2)取出的两只球至少有一个白球的概率是多少?答案(1)取出的两只球都是白球的概率为3/10;(2)以取出的两只球中至少有一个白球的概率为9/10。

(完整版)《概率与数理统计》练习册及答案

(完整版)《概率与数理统计》练习册及答案

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B 。

{(反,正),(正,反),(正,正),(反,反)}C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2。

设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。

P (AB )=P (A)P (B) B 。

P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B )4。

设A ,B 为随机事件,则下列各式中不能恒成立的是( )。

A 。

P(A -B)=P(A)-P (AB ) B 。

P (AB )=P(B )P (A|B ),其中P (B)〉0C 。

P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。

若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B 。

1)(≤AB PC 。

P(A+B)=P(A)+P (B )D 。

P (A-B)≤P(A) 6.若φ≠AB ,则( ).A. A ,B 为对立事件B.B A =C.φ=B A D 。

P(A-B )≤P (A ) 7。

若,B A ⊂则下面答案错误的是( )。

A. ()B P A P ≤)( B 。

()0A -B P ≥C.B 未发生A 可能发生 D 。

B 发生A 可能不发生 8。

下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。

.1)(,<Ω≠A P A 则若 C 。

1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( )。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

概率练习册答案

概率练习册答案

班级 学号 姓名(十七)随机事件及概率1、投掷一粒骰子的试验,我们将"出现偶数点"称为( D )A 、样本空间B 、必然事件C 、不可能事件D 、随机事件 2、事件B A ,互为对立事件等价于( D )A 、B A ,互不相容 B 、B A ,相互独立C 、Ω=+B A D 、Φ=Ω=+AB B A 且3、设B A ,为两个事件,则__BA AB+=( C )A 、不可能事件B 、必然事件C 、AD 、BA +4、B A ,为两事件,若()4.0)(,2.0)(,8.0__===+B P A P B AP ,则( B ) A 、32.0____=⎪⎭⎫⎝⎛B A PB 、2.0____=⎪⎭⎫⎝⎛B A P C 、4.0)(=AB P D 、48.0)(____=AB P因为:2.08.01)(1)(1)(=-=+-=-=B A P B A P B A P5、当__A 与__B 互不相容时,=+)(______B A P (C )A 、)(1A P -B 、)()(1B P A P --C 、0D 、)()(____B P A P因为:0)Φ()()(===+P B A P B AP6、设有10个产品,其中3个次品,7个正品,现从中任取4个产品,则取到的4个产品都是正品的概率为( C ) A 、107 B 、44107 C 、41047C CD 、1074⨯7、设C B A ,,为三个事件,试用这三个事件表示下列事件:(1)C B A ,,三个事件至少有一个发生;(2)A 不发生,B 与C 均发生; (3)C B A ,,三个事件至少有2个发生;(4)C B A ,,三个事件中恰有一个发生; (5)A 发生,B 与C 都不发生。

解:(1)A+B+C ;(2)BC A ;(3)AB+AC+BC ;(4)CB AC B A CB A ++;(5)C B A 。

8、随机抽检三件产品,设A 表示“三件中至少有一件是废品”;B 表示“三件中至少有两件是废品”;C 表示“三件都是废品”。

概率统计习题册答案

概率统计习题册答案

一、概率公式的题目1、已知()()()0.3,0.4,0.5,P A P B P AB === 求().P B A B ⋃解:()()()()()()()()0.70.510.70.60.54P A P AB P AB P B A B P A B P A P B P AB --⋃====+-⋃+-2、已知()()()0.7,0.4,0.2,P A P B P AB === 求().P A A B ⋃解:()()()()()()()0.220.70.29P A A B P AB P A A B P A B P A P B P AB ⎡⎤⋃⎣⎦⋃====+⋃+-。

3、已知随机变量(1)XP ,即X 有概率分布律{}1(0,1,2)!e P X k k k -===,并记事件{}{}2,1A X B X =≥=<。

求:(1)()P A B ⋃; (2) ()P A B -; (3) ()P B A 。

解:(1)()(){}{}111()12,1111P A B P A B P AB P X X P X e -⋃=-⋃=-=-<≥=-==-;(2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==-(3)()()(){}{}{}{}{}111,201.20122P BA P X X P X e P B A P X P X P X e P A --<<======<=+=4、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,它是甲射中的概率是多少?解: 设A=“甲射击一次命中目标”,B=“乙射击一次命中目标”, (())()()()()()()P A A B P A P A A B P A B P A P B P AB =0.660.750.60.50.60.585、为了防止意外,在矿内同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求: (1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。

(含答案)《概率》真题

(含答案)《概率》真题
8.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为 ,中将可以获得2分;方案乙的中奖率为 ,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为 ,求 的概率;
A.0.72;0.9 B.0.9;0.72 C.0.9;0.9 D.0.72;0.72
8.小球 在右图所示的通道由上到下随机地滑动,最后在下底面的某个出口落出,则一次投放小球,从“出口 ”落出的概率为()
A. B. C. D.
二、填空题
9.若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在2.28%以下设计的,如果某地成年男子的身高 (单位:㎝),则该地公共汽车门的高度应设计为________cm
解: =0.3413 =0.5-0.3413=0.1587.
3.设 ,则 等于( )
A.1.6B.3.2C.6.4D.12.8
4.如果随机变量ξ~N(1,4),则P(ξ>3)、D( ξ)等于( )
A.0.1587;2B.0.1587;1C.0.0228;2 D.0.0228;1
5.已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过4次测试恰好将2个次品全部找出的概率( )
(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为 + = .由题意得η~(3, )
则P(η=2)= ( )2(1- )= .
14.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0D .P (A ∪B )=12.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .13.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( D )A .601B .457C .51 D .157 4.若A 与B 互为对立事件,则下式成立的是( C ) A.P (A ⋃B )=ΩB.P (AB )=P (A )P (B ) C.P (A )=1-P (B )D.P (AB )=φ5.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( C ) A.81B.41 C.83D.21 6.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( A )A. 51B. 52C.53D. 54 7.设随机变量X则k= A.0.1 B.0.2 C.0.3D.0.4 8.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为(A ) A .C B AB .C B AC .C B AD .C B A9.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( B )A .253B .2517C .54 D .252310.下列各函数中,可作为某随机变量概率密度的是( A ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f11.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以的概率为( B )A .41B .31C .21D .32 12.下列各表中可作为某随机变量分布律的是( C )A .BC .D13.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( B )A.F(-a)=1-⎰a0dx )x (f B.F(-a)=⎰-adx )x (f 21 C.F(-a)=F(a) D.F(-a)=2F(a)-114.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C) A .0.352B .0.432C .0.784D .0.93615.已知随机变量X 的分布律为, 则P {-2<X ≤4}= ( C )A .0.2B .0.35C .0.55D .0.8 16.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为 ( B )A .2,3-B .-3, 2C .2,3D .3, 217.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=( C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5} 18.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( D )A .-1B .21- C .21 D .119.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=420.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C ) A .-13 B .15 C .19 D .2321.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( B ) A.2 B.3 C.4 D.522.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=,x ,;x ,ce f(x)x -0005则常数c 等于( B )A .-51B .51C .1D .523.已知随机变量X( B )A .2B .4C .6D .824.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑==51i i x 51x 和251i i2)x x(41s ∑=-=,则s)x (5μ-服从( A ) A.t(4)B.t(5)C.)4(2χD. )5(2χ25.设总体X~N (2,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--=n1i 2i2)x x(1n 1s ,检验假设H 0∶2σ=20σ时采用的统计量是( C )A.)1n (t ~n/s x t -μ-=B. )n (t ~n/s x t μ-=C. )1n (~s )1n (22022-χσ-=χ D. )n (~s )1n (2222χσ-=χ26.设x 1,x 2,…,1n x 与y 1,y 2,…,2n y 分别是来自总体),(21σμN 与),(22σμN 的两个样本,它们相互独立,且x ,y 分别为两个样本的样本均值,则y x -所服从的分布为( A ) A .))11(,(22121σμμn n N +-B .))11(,(22121σμμn n N -- C .))11(,(2222121σμμn n N +-D .))11(,(2222121σμμn n N --27.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( C ) A .2χ(5)B .t (5)C .F (2,3)D .F (3,2)28.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( A ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}29.在假设检验问题中,犯第一类错误的概率α的意义是( C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率30.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题1.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=___0.5_____. 2.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为_____18/35_____.3.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____07___.4.设A 与B 是两个随机事件,已知P (A )=0.4,P (B )=0.6, P (A ⋃B )=0.7,则P (B A )=_____0.3____.5.设事件A 与B 相互独立,且P (A )=0.3,P (B )=0.4,则P (A ⋃B )=____0.58___. 6.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=_0.21____.7.设P (A )=0.4,P (B )=0.3,P (A ⋃B )=0.4,则P (B A )=__0.1____. 8.设A ,B 相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则P (A )=____2/3____.9.设随机变量X~B (1,0.8)(二项分布),则X 的分布函数为__0 0.2 1_________. 10.设随机变量X 的概率密度为f(x)=⎩⎨⎧≤≤,,0,c x 0,x 242其他则常数c=___0.5____.11.设A , B 为随机事件, P (A )=0.6, P (B |A )=0.3, 则P (AB )=___0.18___.12.设随机事件A 与B 互不相容, P (A )=0.6, P (A ∪B )=0.8, 则P (B )=___0.4____. 13.设A , B 互为对立事件, 且P (A )=0.4, 则P (A B )=__0.4____.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为____0.9____.15.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<_____3____.16.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=____31/32_______.17.已知随机变量X 服从参数为λ的泊松分布,且P {}0=X =e -1,则λ=____1_____.18.设随机变量X 服从正态分布N (1,4),Φ(x )为标准正态分布函数,已知Φ(1)=0.8413,Φ(2)=0.9772,则P {}=<3X ___0.8185___.19.设随机变量X 服从参数为3的泊松分布, 则P {X =2}=____9/2exp (-3)______.20.设随机变量X ~N (0,42), 且P {X >1}=0.4013, Φ (x )为标准正态分布函数, 则Φ(0.25)=___0.5987____.21.设随机变量X 与Y 相互独立, X 在区间[0, 3]上服从均匀分布, Y 服从参数为4的指数分布, 则D (X +Y )=__13/16_______.22.设X 为随机变量, E (X +3)=5, D (2X )=4, 则E (X 2)=___5_____.23.若随机变量X 服从均值为2,方差为2σ的正态分布,且P{2≤X ≤4}=0.3, 则P{X ≤0}=___0.2_.24.设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y ≤1}=31,则P{X ≤1,Y ≤1}=__1/6_________.25.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= _-8_____.26.在假设检验中,在原假设H 0不成立的情况下,样本值未落入拒绝域W ,从而接受H 0,称这种错误为第_____二____类错误.27.设随机变量X ~B (4,32),则P {}1<X =___1/81________. 28.已知随机变量X 的分布函数为 F (x )⎪⎩⎪⎨⎧≥<<-+-≤,6,166,126;6,0x X x x ;则当-6<x <6时,X29.设随机变量X 的分布律为Y =X 2,记随机变量Y 的分布函数为F Y (y ),则Y (3)=_________________.30.已知随机变量X 的分布律为则{}=<)(X E X P __0.8__. 31.已知E (X )=-1,D (X )=3,则E (3X 2-2)=___10______.32.设总体是X ~N (2,μ),x 1,x 2,x 3是总体的简单随机样本,1ˆμ, 2ˆμ是总体参数μ的两个估计量,且1ˆμ=321414121x x x ++,2ˆμ=321313131x x x ++,其中较有效的估计量是__2ˆμ_____.33.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E (X )=1,则x=___10/7_______.34.设随机变量X 的分布律为则D (X )=_____1____.35.设随机变量X 服从参数为3的指数分布,则D (2X+1)=___4/9______.36.设总体X~N (μ,σ2),x 1,x 2,x 3,x 4为来自总体X 的体本,且241241)(,41σ∑∑==-=i ii i x xx x 则服从自由度为____3___的2χ分布.37.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=_____1/4_______时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 三、计算题1.飞机在雨天晚点的概率为0.8,在晴天晚点的概率为0.2,天气预报称明天有雨的概率为0.4,试求明天飞机晚点的概率.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数为λ=51的指数分布. (1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求P{Y ≥1}.2解: (1)f(x)=⎪⎩⎪⎨⎧≤>-0,00,e 51x 51x xP{X>10}=21010515151-∞+∞+--==⎰e e dx e x x(2) P{Y ≥1}=1-)0(P 2=1-422202022)1()(-----=-e e e e C3.设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧≤≤=.,0;20,2)(其他x x x f试求:(1)E (X ),D (X );(2)D (2-3X );(3)P{0<X<1}.3.解: (1)E(X)=⎰+∞∞-dx x xf )(=⎰⋅22x x dx=34)(E 2X =⎰+∞∞-dx x f x )(2=⎰⋅2022xx dx=2∴D(X)=)(E 2X -2)]([X E =2-2)34(=92(2)D(2-3x)=D(-3x)=9D(X)=9⨯92=2(3)P{0<x<1}=⎰⎰==1010412)(dx x dx x f4.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639) 1 解: 设700==μμ,ns/x μ-~t(n-1),n=25, 0639.2)24()1(025.02==-t n t α0639.23325/157061s/x >=-=-=-nμ,拒绝该假设,不可以认为全体考生的数学平均成绩为70分。

相关文档
最新文档