(完整版)微专题-圆锥曲线中的最值问题(解析版)

合集下载

圆锥曲线的最值问题常见类型及解法演示文稿

圆锥曲线的最值问题常见类型及解法演示文稿

x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
分析:
本题可以根据椭圆的方程设出满足条件的 点的坐标,然后根据两点间的距离公式借 助于二次函数求出此最大值,并求出点的 坐标。
例3
求点 P(0,3 )到椭圆
2
x2 y2 1 4
上点的最大距离,
并求出此时椭圆上的点的坐标。
解:
设点
Q(x,y)为椭圆
x2 4
y2
1
上的任意一点,
则 PQ 2 (x 0)2 (y 3)2
2
又因为x2 = 4- 4y2
所以
PQ
2
4 4y 2
y2
3y
9 4
3y 2
3y
25 4
3(y 1 )2 7 2
(-1≤y≤1)
所以 PQ 的最大值为 7 此时, y 1,x 3
2
即此时Q的坐标为:( 3, 1)、( 3, 1)
2
2
思考题:
求:点P(0,m),使其到椭圆x2 y 2 1上的 4
最大距离是 7。
变式训练:
已知双曲线C:x2 y2 1 ,P为C
4
上任一点,点A(3,0),则|PA|的最小 值为________.

例1: 已知抛物线y2=4x,以抛物线上两点

A(4,4)、B(1,-2)的连线为底边的△ABP,其顶点P 在抛物线的弧AB上运动,求: △ABP的最大面
略解: 圆心到直线L的距离d1=
16 32 22
16 13 13
r 所以圆上的点到直线的最短距离为 d=d1-
16 13 2 13
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?

(完整版)圆锥曲线的最大值、定问题

(完整版)圆锥曲线的最大值、定问题

圆锥曲线最值、定值、范围一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac 的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP→+OQ→与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.。

专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案
题型四、与面积有关的最值问题
例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题

2021新高考——圆锥曲线大题(最值范围问题)解析版

2021新高考——圆锥曲线大题(最值范围问题)解析版

圆锥曲线综合问题第一讲 最值、范围问题1.圆锥曲线中常见的最值问题及其解法(1)两类最值问题①涉及距离、面积的最值以及与之相关的一些问题;①求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;①代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.【例1】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.(1)求椭圆E 的方程;(2)若A 是椭圆E 的左顶点,经过左焦点F 的直线l 与椭圆E 交于C ,D 两点,求△OAD 与△OAC 的面积之差的绝对值的最大值.(O 为坐标原点)解析:(1)由题意得2a =4,即a =2,2c =a ,即c =1,又b 2=a 2-c 2,∴b 2=3.故椭圆E 的方程为x 24+y 23=1. (2)设△OAD 的面积为S 1,△OAC 的面积为S 2,直线l 的方程为x =ky -1,C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ x =ky -1,x 24+y 23=1,整理得(3k 2+4)y 2-6ky -9=0, 由根与系数的关系可知y 1+y 2=6k 3k 2+4,∴|S 1-S 2|=12×2×||y 1|-|y 2||=|y 1+y 2|=6|k |3k 2+4. 当k =0时,|S 1-S 2|=0,当k ≠0时,|S 1-S 2|=63|k |+4|k |≤62 3|k |·4|k |=32,当且仅当3|k |=4|k |,即k =±233时等号成立.∴|S 1-S 2|的最大值为32.【变式训练】 1.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2为它的左、右焦点,P 为椭圆上一点,已知∠F 1PF 2=60°,S △F 1PF 2=3,且椭圆的离心率为12. (1)求椭圆方程;(2)已知T (-4,0),过T 的直线与椭圆交于M ,N 两点,求△MNF 1面积的最大值.解 (1)由已知,得|PF 1|+|PF 2|=2a ,①|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=4c 2,即|PF 1|2+|PF 2|2-|PF 1||PF 2|=4c 2,①12|PF 1||PF 2|sin 60°=3,即|PF 1||PF 2|=4,① 联立①①①解得a 2-c 2=3.又c a =12,①c 2=1,a 2=4, b 2=a 2-c 2=3,椭圆方程为x 24+y 23=1. (2)根据题意可知直线MN 的斜率存在,且不为0.设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,代入椭圆方程,整理得(3m 2+4)y 2-24my +36=0,则Δ=(24m )2-4×36×(3m 2+4)>0,所以m 2>4.y 1+y 2=24m 3m 2+4,y 1y 2=363m 2+4, 则①MNF 1的面积S ①MNF 1=|S ①NTF 1-S ①MTF 1|=12|TF 1|·|y 1-y 2|=32(y 1+y 2)2-4y 1y 2 =32431444324222+-⎪⎭⎫ ⎝⎛+m m m =18m 2-44+3m 2 =6×1m 2-4+163m 2-4=6×1m 2-4+163m 2-4≤62163=334. 当且仅当m 2-4=163m 2-4,即m 2=283时(此时适合Δ>0的条件)取得等号. 故①MNF 1面积的最大值为334.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 在椭圆上(异于椭圆C 的左、右顶点),过右焦点F 2作①F 1PF 2的外角平分线L 的垂线F 2Q ,交L 于点Q ,且|OQ |=2(O 为坐标原点),椭圆的四个顶点围成的平行四边形的面积为43.(1)求椭圆C 的方程;(2)若直线l :x =my +4(m ①R )与椭圆C 交于A ,B 两点,点A 关于x 轴的对称点为A ′,直线A ′B 交x 轴于点D ,求当①ADB 的面积最大时,直线l 的方程.解 (1)由椭圆的四个顶点围成的平行四边形的面积为4×12ab =43,得ab =23. 延长F 2Q 交直线F 1P 于点R ,因为F 2Q 为①F 1PF 2的外角平分线的垂线,所以|PF 2|=|PR |,Q 为F 2R 的中点,所以|OQ |=|F 1R |2=|F 1P |+|PR |2=|F 1P |+|PF 2|2=a , 所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1. (2)联立⎩⎪⎨⎪⎧ x =my +4,x 24+y 23=1,消去x ,得(3m 2+4)y 2+24my +36=0, 所以Δ=(24m )2-4×36×(3m 2+4)=144(m 2-4)>0,即m 2>4.设A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1),由根与系数的关系,得y 1+y 2=-24m 3m 2+4,y 1y 2=363m 2+4, 直线A ′B 的斜率k =y 2-(-y 1)x 2-x 1=y 2+y 1x 2-x 1, 所以直线A ′B 的方程为y +y 1=y 1+y 2x 2-x 1(x -x 1), 令y =0,得x D =x 1y 2+x 2y 1y 1+y 2=(my 1+4)y 2+y 1(my 2+4)y 1+y 2=2my 1y 2y 1+y 2+4, 故x D =1,所以点D 到直线l 的距离d =31+m 2, 所以S ①ADB =12|AB |·d =32(y 1+y 2)2-4y 1y 2=18·m 2-43m 2+4. 令t =m 2-4(t >0),则S ①ADB =18·t 3t 2+16=183t +16t≤1823×16=334, 当且仅当3t =16t ,即t 2=163=m 2-4,即m 2=283>4,m =±2213时,①ADB 的面积最大, 所以直线l 的方程为3x +221y -12=0或3x -221y -12=0.【例2】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△P AB 的面积的最大值. 解 (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2. 又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), 所以4a 2+1b 2=1.所以a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1. (2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2), 联立⎩⎨⎧y =12x +m ,x 28+y 22=1消去y 整理得x 2+2mx +2m 2-4=0. 所以x 1+x 2=-2m ,x 1x 2=2m 2-4.又直线l 与椭圆相交,所以Δ=4m 2-8m 2+16>0,解得|m |<2.则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2). 点P 到直线l 的距离d =|m |1+14=2|m |5. 所以S ①P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2. 当且仅当m 2=2,即m =±2时,①P AB 的面积取得最大值为2.【变式训练】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.解:(1)①双曲线的离心率为233, ①椭圆的离心率e =c a =32. 又①直线x -y -2=0经过椭圆的右顶点,①右顶点为点(2,0),即a =2,c =3,b =1,①椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2, 则-8k 2m 21+4k 2+m 2=0.由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S ①OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2=12|m |(x 1+x 2)2-4x 1x 2=-(m 2-1)2+1. 故由m 的取值范围可得①OMN 面积的取值范围为(0,1).2.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎪⎭⎫ ⎝⎛213,在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值; ②求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知椭圆E 的方程为x 216+y 24=1. ①设P (x 0,y 0),|OQ ||OP |=λ(λ>0),由题意知Q (-λx 0,-λy 0). 因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎪⎪⎭⎫ ⎝⎛+20204y x =1, 所以λ=2,即|OQ ||OP |=2 ①设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0,由Δ>0,可得m 2<4+16k 2,(*)则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以①OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2 222241414k m k m +⎪⎪⎭⎫ ⎝⎛+-. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.(**)由(*)和(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故0<S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值23.由①知,①ABQ 的面积为3S ,所以①ABQ 面积的最大值为63.【例3】已知动圆E 经过点F (1,0),且和直线l :x =-1相切.(1)求该动圆圆心E 的轨迹G 的方程;(2)已知点A (3,0),若斜率为1的直线l ′与线段OA 相交(不经过坐标原点O 和点A ),且与曲线G 交于B ,C 两点,求△ABC 面积的最大值.解 (1)由题意可知点E 到点F 的距离等于点E 到直线l 的距离,①动点E 的轨迹是以F (1,0)为焦点,直线x =-1为准线的抛物线,故轨迹G 的方程是y 2=4x .(2)设直线l ′的方程为y =x +m ,其中-3<m <0,C (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =x +m ,y 2=4x 消去y ,得x 2+(2m -4)x +m 2=0,Δ=(2m -4)2-4m 2=16(1-m )>0恒成立.由根与系数的关系得x 1+x 2=4-2m ,x 1·x 2=m 2,①|CB |=42(1-m ),点A 到直线l ′的距离d =3+m 2, ①S ①ABC =12×42(1-m )×3+m 2=21-m ×(3+m ), 令1-m =t ,t ①(1,2),则m =1-t 2,①S ①ABC =2t (4-t 2)=8t -2t 3,令f (t )=8t -2t 3,①f ′(t )=8-6t 2,令f ′(t )=0,得t =23(负值舍去). 易知y =f (t )在⎪⎪⎭⎫ ⎝⎛32,1上单调递增,在⎪⎪⎭⎫ ⎝⎛2,32上单调递减. ①y =f (t )在t =23,即m =-13时取得最大值为3239. ①①ABC 面积的最大值为3239.【变式训练】1.如图,已知抛物线x 2=y ,点A ⎪⎭⎫ ⎝⎛-41,21,B ⎪⎭⎫ ⎝⎛4923,,抛物线上的点P (x ,y )⎪⎭⎫ ⎝⎛<<-2321x .过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|P A |·|PQ |的最大值.解析 (1)设直线AP 的斜率为k ,则k =x 2-14x +12=x -12. 因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1). (2)联立直线AP 与BQ 的方程可得⎩⎨⎧ kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|P A |=1+k 2⎪⎭⎫ ⎝⎛+21x =1+k 2(k +1), |PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|P A |·|PQ |=-(k -1)(k +1)3.令f (k )=-(k -1)(k +1)3=-k 4-2k 3+2k +1,因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎪⎭⎫ ⎝⎛-21,1上单调递增,在区间⎪⎭⎫ ⎝⎛1,21上单调递减. 因此当k =12时,|P A |·|PQ |取得最大值2716.2.设抛物线y 2=4x 的焦点为F ,过点12,0的动直线交抛物线于不同两点P ,Q ,线段PQ 中点为M ,射线MF 与抛物线交于点A .(1)求点M 的轨迹方程;(2)求①APQ 的面积的最小值.解:(1)设直线PQ 方程为x =ty +12,代入y 2=4x ,得y 2-4ty -2=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-2,x 1+x 2=t (y 1+y 2)+1=4t 2+1,所以M 2t 2+12,2t . 设M (x ,y ),由⎩⎪⎨⎪⎧ x =2t 2+12,y =2t消去t ,得中点M 的轨迹方程为y 2=2x -1. (2)设F A →=λFM →(λ<0),A (x 0,y 0),又F (1,0),M 2t 2+12,2t , 则(x 0-1,y 0)=λ⎪⎭⎫ ⎝⎛-t t 2,2122,即⎩⎪⎨⎪⎧ x 0=2λt 2-12λ+1,y 0=2λt .由点A 在抛物线y 2=4x 上,得4λ2t 2=8λt 2-2λ+4,化简得(λ2-2λ)t 2=-12λ+1. 又λ<0,所以t 2=-12λ. 因为点A 到直线PQ 的距离d =|4λt 2-λ+2-4λt 2-1|21+t 2=|λ-1|21+t 2, |PQ |=1+t 2|y 1-y 2|=2(1+t 2)(4t 2+2).所以①APQ 的面积S =12·|PQ |·d =222t 2+1|λ-1|=22 (λ-1)3λ.设f (λ)=(λ-1)3λ,λ<0,则f ′(λ)=(λ-1)2(2λ+1)λ2, 由f ′(λ)>0,得λ>-12; 由f ′(λ)<0,得λ<-12, 所以f (λ)在-∞,-12上是减函数,在-12,0上是增函数,因此,当λ=-12时,f (λ)取到最小值. 所以①APQ 的面积的最小值是364.2.解决圆锥曲线中范围问题的方法圆锥曲线的有关几何量的取值范围问题一直是高考的热点,解决这类问题的基本途径:先要恰当地引入变量(如点的坐标、角、斜率等),建立目标函数,然后利用函数的有关知识和方法进行求解.一般有五种思考方法:(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的取值范围,解决这类问题的关键是在两个参数之间建立起相应的联系;(3)利用隐含的不等关系建立不等式,从而求参数的取值范围;(4)利用已知不等关系构造不等式,从而求参数的取值范围;(5)利用函数的值域,确定参数的取值范围.【例3】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2. (1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解 (1)由题知e =c a =32,2b =2,又a 2=b 2+c 2,①b =1,a =2, ①椭圆C 的标准方程为x 24+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1, y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2, ①(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,①(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎪⎭⎫ ⎝⎛+-1482k km +4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,① 由①①得0≤m 2<65,120<k 2≤54. ①原点O 到直线l 的距离d =|m |1+k 2,①d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2), 又120<k 2≤54,①0≤d 2<87,①原点O 到直线l 的距离的取值范围是⎪⎪⎭⎫⎢⎢⎣⎡71420,. 【变式训练】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P ⎪⎭⎫ ⎝⎛231,在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.解析:(1)由题意,得c =1, 所以a 2=b 2+1.因为点P ⎪⎭⎫ ⎝⎛231,在椭圆C 上, 所以1a 2+94b 2=1,所以a 2=4,b 2=3. 则椭圆C 的标准方程为x 24+y 23=1. (2)设直线l 的方程为y =kx +2,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +2得(4k 2+3)x 2+16kx +4=0. 因为Δ=48(4k 2-1)>0,所以k 2>14, 由根与系数的关系,得x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3. 因为∠AOB 为锐角,所以OA →·OB →>0,即x 1x 2+y 1y 2>0.所以x 1x 2+(kx 1+2)(kx 2+2)>0,即(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,所以(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0, 即-12k 2+164k 2+3>0, 所以k 2<43. 综上可知14<k 2<43, 解得-233<k <-12或12<k <233. 所以直线l 的斜率k 的取值范围为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--332,2121,332 .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1(-2,0),F 2(2,0),点E ⎪⎪⎭⎫ ⎝⎛2332,在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使得MP →=2PN →,求以F 1P 为直径的圆的面积的取值范围.解:(1)由题意知,半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6, 所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 的斜率不存在时,可得M ,N 分是是短轴的两端点,得到t =±63. 当直线MN 的斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),则由MP →=2PN →得x 1=-2x 2, ①联立,得⎩⎪⎨⎪⎧y =kx +t ,x 28+y 26=1,整理得(3+4k 4)x 2+8ktx +4t 2-24=0, 由Δ>0得64k 2t 2-4(3+4k 2)(4t 2-24)>0,整理得t 2<8k 2+6.由根与系数的关系得x 1+x 2=-8kt 3+4k 2,x 1x 2=4t 2-243+4k 2,② 由①②,消去x 1,x 2得k 2=-t 2+612t 2-8,由⎩⎪⎨⎪⎧ -t 2+612t 2-8≥0,t 2<8·-t 2+612t 2-8+6,得23<t 2<6. 综上23≤t 2<6. 因为以F 1P 为直径的圆的面积S =π. ·2+t 24,所以S 的取值范围是⎪⎭⎫⎢⎣⎡ππ2,32.3.已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)与抛物线C 2:x 2=2py (p >0)有一个公共焦点,抛物线C 2的准线l 与椭圆C 1有一交点坐标是(2,-2).(1)求椭圆C 1与抛物线C 2的方程;(2)若点P 是直线l 上的动点,过点P 作抛物线的两条切线,切点分别为A ,B ,直线AB 与椭圆C 1分别交于点E ,F ,求OE →·OF →的取值范围.[解析] (1)抛物线C 2的准线方程是y =-2,所以-p 2=-2,即p =4,所以抛物线C 2的方程为x 2=8y . 椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的焦点坐标分别是(0,-2),(0,2),所以c =2. 2a =2+0+2+(2+2)2=42,解得a =22,则b =2,所以椭圆C 1的方程为y 28+x 24=1. (2)设点P (t ,-2),A (x 1,y 1),B (x 2,y 2),E (x 3,y 3),F (x 4,y 4),抛物线方程可化为y =18x 2,求导得y ′=14x , 所以AP 的方程为y -y 1=14x 1(x -x 1), 将P (t ,-2)代入,得-2-y 1=14x 1t -2y 1,即y 1=14tx 1+2. 同理,BP 的方程为y 2=14tx 2+2,所以直线AB 的方程为y =14tx +2. 由⎩⎨⎧ y =14tx +2,y 28+x 24=1消去y ,整理得(t 2+32)x 2+16tx -64=0,则Δ=256t 2+256(t 2+32)>0,且x 3+x 4=-16t t 2+32,x 3x 4=-64t 2+32所以OE →·OF →=x 3x 4+y 3y 4=(1+t 216)x 3x 4+t 2(x 3+x 4)+4=-8t 2+64t 2+32=320t 2+32-8. 因为0<320t 2+32≤10,所以OE →·OF →的取值范围是(-8,2].4.已知椭圆C :x 23+y 22=1,直线l :y =kx +m (m ≠0),设直线l 与椭圆C 交于A ,B 两点.(1)若|m |>3,求实数k 的取值范围;(2)若直线OA ,AB ,OB 的斜率成等比数列(其中O 为坐标原点),求△OAB 的面积的取值范围.[解](1)联立方程x 23+y 22=1和y =kx +m , 得(2+3k 2)x 2+6kmx +3m 2-6=0,所以Δ=(6km )2-4(2+3k 2)(3m 2-6)>0,所以m 2<2+3k 2,所以2+3k 2>3,即k 2>13,解得k >33或k <-33. 所以实数k 的取值范围为⎪⎪⎭⎫ ⎝⎛-∞-33,∪⎪⎪⎭⎫ ⎝⎛∞+,33. (2)设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-62+3k 2. 设直线OA ,OB 的斜率分别为k 1,k 2,因为直线OA ,AB ,OB 的斜率成等比数列,所以k 1k 2=y 1y 2x 1x 2=k 2,即(kx 1+m )(kx 2+m )x 1x 2=k 2(m ≠0), 化简得2+3k 2=6k 2,即k 2=23. 因为|AB |=1+k 2|x 1-x 2|=⎪⎭⎫ ⎝⎛-223635m , 点O 到直线l 的距离h =|m |1+k 2=35|m |, 所以S △OAB =12|AB |·h =66·⎪⎭⎫ ⎝⎛-2223623m m ≤66×2622362322=⎪⎭⎫ ⎝⎛-+m m ,当m =±2时,直线OA 或OB 的斜率不存在,等号取不到,所以△OAB 的面积的取值范围为⎪⎪⎭⎫ ⎝⎛260,.【课后巩固】1.已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中的曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设M (x ,y ),①QP →=PM →,①P 为QM 的中点,又有PQ ①y 轴,①P ⎪⎭⎫ ⎝⎛y x ,2, ①点P 是圆O :x 2+y 2=1上的点,①22⎪⎭⎫ ⎝⎛x +y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 与y 轴不垂直,故可设l :x =ty +m ,t ①R ,A (x 1,y 1),B (x 2,y 2),①l 与圆O :x 2+y 2=1相切, ①|m |t 2+1=1,即m 2=t 2+1,① 由⎩⎪⎨⎪⎧x 2+4y 2=4,x =ty +m 消去x ,并整理得(t 2+4)y 2+2mty +m 2-4=0,其中Δ=4m 2t 2-4(t 2+4)(m 2-4)=48>0,①y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.① ①|AB |=(x 1-x 2)2+(y 1-y 2)2=t 2+1(y 1+y 2)2-4y 1y 2,将①①代入上式得|AB |=t 2+1 4m 2t 2(t 2+4)2-4(m 2-4)t 2+4=43|m |m 2+3,|m |≥1, ①S ①AOB =12|AB |·1=12·43|m |m 2+3 =23|m |+3|m |≤2323=1, 当且仅当|m |=3|m |,即m =±3时,等号成立, ①①AOB 面积的最大值为1.2.已知椭圆C 的方程为x 24+y 22=1,A 是椭圆上的一点,且A 在第一象限内,过A 且斜率等于-1的直线与椭圆C 交于另一点B ,点A 关于原点的对称点为D .(1)证明:直线BD 的斜率为定值;(2)求△ABD 面积的最大值.【解】 (1)证明:设D (x 1,y 1),B (x 2,y 2),则A (-x 1,-y 1),直线BD 的斜率k =y 2-y 1x 2-x 1, 由⎩⎨⎧x 214+y 212=1,x 224+y 222=1,两式相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2, 因为k AB =y 1+y 2x 1+x 2=-1,所以k =y 2-y 1x 2-x 1=12,故直线BD 的斜率为定值12. (2)连接OB ,因为A ,D 关于原点对称,所以S △ABD =2S △OBD ,由(1)可知BD 的斜率k =12,设BD 的方程为y =12x +t , 因为D 在第三象限,所以-2<t <1且t ≠0,O 到BD 的距离d =|t |1+14=2|t |5, 由⎩⎨⎧y =12x +t ,x 24+y 22=1,整理得3x 2+4tx +4t 2-8=0, 所以x 1+x 2=-4t 3,x 1x 2=4(t 2-2)3, 所以S △ABD =2S △OBD =2×12×|BD |×d =52(x 1+x 2)2-4x 1x 2·2|t |5=|t|·(x1+x2)2-4x1x2=|t|·96-32t23=423·t2(3-t2)≤2 2.所以当且仅当t=-62时,S△ABD取得最大值2 2.3.如图,已知抛物线C 1:x 2=4y 与椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)交于点A ,B ,且抛物线C 1在点A 处的切线l 1与椭圆C 2在点A 处的切线l 2互相垂直.(1)求椭圆C 2的离心率;(2)设l 1与C 2交于点P ,l 2与C 1交于点Q ,求△APQ 面积的最小值.解:(1)设点A (x 0,y 0),B (-x 0,y 0),其中x 0>0,y 0>0,则抛物线C 1在点A 处的切线方程为l 1:x 0x =2(y 0+y ),椭圆C 2在点A 处的切线方程为l 2:x 0x a 2+y 0y b2=1. 由题意可知,l 1⊥l 2,则有x 02·⎪⎪⎭⎫ ⎝⎛-0202y a x b =-1, 且x 20=4y 0,所以a 2=2b 2,从而椭圆C 2的离心率e =c a =1-b 2a 2=22. (2)由椭圆C 2的离心率为22,可设椭圆方程为x 22b 2+y 2b2=1, 设A (2t ,t 2),l 1:y =tx -t 2,联立⎩⎪⎨⎪⎧y =tx -t 2,x 2+2y 2=2b 2,得(1+2t 2)x 2-4t 3x +2t 4-2b 2=0, 所以|AP |=1+t 2·|x P -x A |=t 2+1t tt 22122++, 设l 2:y =-1tx +t 2+2,同理可得|AQ |=1+1t 2·|x Q -x A |=1+1t 2·t t t 242++, 所以S △APQ =12|AP ||AQ |=221⎪⎭⎫ ⎝⎛+t t ·4t +4t 31+2t 2=8(t 2+1)3(1+2t 2)t. 令f (t )=(t 2+1)3(1+2t 2)t ,t >0,则f ′(t )=(t 2+1)2(2t 2-1)(3t 2+1)(1+2t 2)2t 2.令f ′(t )=0,得t =22,所以函数f (t )在⎪⎪⎭⎫ ⎝⎛220,上单调递减, 在⎪⎪⎭⎫ ⎝⎛∞+,22上单调递增.所以f (t )≥f ⎪⎪⎭⎫ ⎝⎛22=2782, 所以S ①APQ ≥2722. 故①APQ 面积的最小值为2722. 4.已知抛物线E :y 2=2px (p >0)的焦点为F ,过点F 且倾斜角为π4的直线l 被E 截得的线段长为8. (1)求抛物线E 的方程;(2)已知点C 是抛物线上的动点,以C 为圆心的圆过点F ,且圆C 与直线x =-12相交于A ,B 两点,求|F A |·|FB |的取值范围.解析:(1)由题意,直线l 的方程为y =x -p 2. 联立⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0. 设直线l 与抛物线E 的交点的横坐标分别为x 1,x 2,则x 1+x 2=3p ,故直线l 被抛物线E 截得的线段长为x 1+x 2+p =4p =8,得p =2,∴抛物线E 的方程为y 2=4x .(2)由(1)知,F (1,0),设C (x 0,y 0),则圆C 的方程是(x -x 0)2+(y -y 0)2=(x 0-1)2+y 20.令x =-12,得y 2-2y 0y +3x 0-34=0. 又∵y 20=4x 0,∴Δ=4y 20-12x 0+3=y 20+3>0恒成立.设A ⎪⎭⎫ ⎝⎛-3,21y ,B ⎪⎭⎫ ⎝⎛-4,21y ,则y 3+y 4=2y 0,y 3y 4=3x 0-34. ∴|F A |·|FB |= y 23+94· y 24+94= (y 3y 4)2+94(y 23+y 24)+8116= 1681433244943302020+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-x y x =9x 20+18x 0+9=3|x 0+1|.∵x 0≥0,∴|F A |·|FB |∈[3,+∞).5.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过点B 作AC 的平行线交AD 于点E .(1)证明EB EA +为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹方程为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。

高考数学复习考点题型专题讲解 题型33 圆锥曲线中的最值(解析版)

高考数学复习考点题型专题讲解 题型33 圆锥曲线中的最值(解析版)

高考数学复习考点题型专题讲解 题型:之圆锥曲线中的最值【解题题型一】:定点与椭圆上动点的距离的最值问题。

『解题策略』:定点与椭圆上动点的距离的最值:写出定点与椭圆上动点的距离表示,利用点在椭圆上可消去x 或y ,然后转化为关于y 或x 的二次函数,利用椭圆的有界性确定最值;或设椭圆的参数方程,利用三角函数的有界性去限定。

※椭圆上的点到两焦点距离最大、最小值的点为长轴两端点:min :;max :a c a c -+。

1.(高考题)设Q P ,分别为圆()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( )A.25B.246+C.27+D.26 【解析】:法一:转化为圆心到椭圆上点的距离的最大值加(半径)2,46129)6(222+--=-+y y y x ,转化为二次函数,11-≥≥y ,当32-=y 时,取到最大值25,选D 。

法二:参数法,设⎩⎨⎧==θθsin cos 10y x ,代入转化为关于θsin (或θcos )的二次函数。

2.(高考题)设椭圆方程为:1422=+y x ,过点()0,1M 的直线l 交椭圆于点,A B ,O 是坐标原点,点P 满足)(21+=,点N 的坐标为)21,21(,当l 绕点M 旋转时。

求:(1)动点P 的轨迹方程; (2)求PN 的最值。

【解析】:(1)法一:Step1:设直线方程:当k 存在时,设l 的方程为1y kx =+;Step2:直线与曲线联立:⎪⎩⎪⎨⎧=++=14122y x kx y ,得032)4(22=-++kx x k ;Step3:由韦达定理写出根与系数的关系:⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y kk x x ;Step4:代入关系式:1()2OP OA OB =+=1212(,)22x x y y ++224(,)44k k k -=++,设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x ,消去参数k 得0422=-+y y x ;当k 不存在时,得P(0,0),满足0422=-+y y x ,即P 点的轨迹为:0422=-+y y x 。

圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

微专题-圆锥曲线中的最值问题(解析版)

微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。

圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,2x 2-),B (x 0,-20x 2-),OAO B ⋅ =2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x20),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥, 当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x20)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。

圆锥曲线的最值问题

圆锥曲线的最值问题

圆锥曲线的最值问题例1、给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当53AB BF +取得最小值时,试求B 点的坐标。

解析:因为椭圆的35e =,所以513AB BF AB BF e +=+,而1BF e 为动点B 到左准线的距离。

故本题可化为,在椭圆上求一点B ,使得它到A 点和左准线的距离之和最小,过点B 作l 的垂线,垂点为N ,过A 作此准线的垂线,垂点为M ,由椭圆定义||35||||||||BF e BF BN e BN BF ==⇒= 于是 5||||||3AB BF AB BN AN AM +=+≥≥为定值 其中,当且仅当B 点AM 与椭圆的定点时等点成立,此时B为(2) 所以,当53AB BF +取得最小值时,B点坐标为(2)例2、已知椭圆的焦点1(3,0)F -、2(3,0)F ,且与直线90x y -+=有公共点,求其中长轴最短的椭圆方程.解:(法一)设椭圆方程为222219x y a a +=-(29a >),由22221990x y a a x y ⎧+=⎪-⎨⎪-+=⎩得22224(29)18900a x a x a a -++-=, 由题意,a 有解,∴22224(18)4(29)(90)0a a a a ∆=---≥, ∴42544050a a -+≥,∴245a ≥或29a ≤(舍),∴2min 45a =,此时椭圆方程是2214536x y +=. (法二)先求点1(3,0)F -关于直线90x y -+=的对称点(9,6)F -,直线2FF 与椭圆的交点为M,则12222||||||||||a MF MF MF MF FF =+=+≥=,∴mina =2214536x y +=. 例3、已知动点A 、B 分别在x 轴、y 轴上,且满足|AB|=2,点P 在线段AB 上,且).(是不为零的常数t t =设点P 的轨迹方程为C(1)求点P 的轨迹方程C ;(2)若t=2,点M 、N 是C 上关于原点对称的两个动点(M 、N 不在坐标轴上),点Q坐标为),3,23(求△QMN 的面积S 的最大值。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

圆锥曲线中的最值问题一 重点:求圆锥曲线中的各种最值问题。

二 难点:题目中各种基本思想方法的灵活应用。

三 基本方法:本节所用到换元、数形结合、目标函数等数学思想和方法。

四 例题 1.几何法(Ⅰ)有关点的最值问题【练习1】椭圆22221(0)x y a b a b+=>>上的点到原点距离的最大值是 ;最小值是 ;相应点的坐标是 .【练习2】双曲线22221x y a b-=上的点到原点距离的最小值是 ;相应点的坐标是 .【练习3】椭圆22221(0)x y a b a b+=>>上的点到焦点距离的最大值是 ;最小值是 ;相应点的坐标是 .【练习4】双曲线22221x y a b-=上的点到焦点距离的最小值是 ;相应点的坐标是 .【练习5】抛物线22(0)y px p =>上的点到焦点距离的最小值是 ;相应点的坐标是 .【例1】点P 为抛物线上24x y =上一动点,定点(8,7)A ,则点P 到x 轴与到A 点的距离之和的最小值为 ,并求此时点P 的坐标 。

【解析】1019PB PA PC BC PA PF PA BC FA BC +=-+=+-≥-=-=,当且仅当点P 是抛物线与FA 的交点时,9PB PA +=最小。

此时,由243440x yx y ⎧=⎨-+=⎩解得(4,4)P 或1(1,)4P -(舍去.但,是PF PA -的最大值点.P 在线段外,有向线段方向问题。

PF PA-的最小值点即线段AF 的垂直平分线与抛物线的交点)。

【评析】(1)如何判断点A 的位置。

参照区域判断方法。

(2)折线和化为直线段。

(3)此题无最大值。

(4)若点A 在抛物线内部,如何?(过A 作x 轴的垂线,垂线段长即为所求,垂线与抛物线的交点即为P 点。

此情况也无最大值。

)PF PA -的最大、最小值点?说明:①“兜底”;②细节。

【变式1】F 是椭圆221259x y +=的右焦点,P 是其上一点,定点(2,1)B ,则54PB PF +最小值为 ;P B P F +的最大、最小值为 .【解析】首先判断定点(2,1)B 的位置. ①54PB PF PB PQ BC +=+≥; ②222a BF PB PF PB PF a a BF '-≤'+=-+'≤+【评析】(1)54PB PF +的最大值存在,但求不出.(涉及4次方程) (2)55(2)44PB PF PB PF a '-=+-能求最小,最大求不出.(3)PB PF -的最大、最小值点? (4)(2,4)B 点在椭圆外,54PB PF +如何?无法求出.PB PF +最小可求,即连接BF 与椭圆的交点; PB PF +最大也可求,2PB PF PB PF a '+=-+,连接BF '与椭圆的交点;PB PF -的最大值可求,最小值与BF 的垂直平分线和椭圆有无交点有关――有交点可求,无交点存在最小值但求不出.【变式2】已知双曲线2213y x -=上有动点P 和定点(2,1)A ,且F 为双曲线的右焦点,则12PA PF +的最小值 ;P A P F +的最小值(分P 点在左、右支) 。

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题
号,可以转化为函数方法求最值.
第3课时
圆锥曲线中的范围、最值问题
核心考点
提升“四能”
课时质量评价
x2 y2
(2024·临沂模拟)已知椭圆C: 2 + 2 =1(a>b>0)的左、右焦点分别为F1,F2,离
a b
6
2 3
,直线x= 2被C截得的线段长为
.
3
3
(1)求C的方程;
心率为
c
6
c2 2
2
2
1
利用基本不等式求最值
x2 y2
【例4】如图,椭圆 2 + 2 =1(a>b>0)的左、右顶点分别
a b
为A,B,过左焦点F(-1,0)的直线与椭圆交于C,D两点
(其中C点位于x轴上方),当CD垂直于x轴时,|CD|=3.
(1)求椭圆的方程;
x2 y2
解:因为椭圆 2 + 2 =1(a>b>0)的左焦点为F(-1,0),所以a2-b2=1.
解:因为e= = ,所以 2 = ,所以c2= a2.又b2=a2-c2=a2- a2 = a2,
a
3
a
3
3
3
3
2
2
2
2 -2
x
+3
y

a

a
所以椭圆的标准方程为x2+3y2=a2.由൝
解得y=±

3
x= 2,
由题可知2
a2-2
3
2 3
x2 2
2

,解得a =3,所以椭圆C的方程为 +y =1.
3
3
第3课时
圆锥曲线中的范围、最值问题
核心考点

圆锥曲线中的最值(范围)问题-(通用版)(解析版)

圆锥曲线中的最值(范围)问题-(通用版)(解析版)

专题4 圆锥曲线中的最值(范围)问题解析几何中的最值(范围)问题,主要是结合直线与椭圆、直线与抛物线的位置关系的进行命题,要求证明、探索、计算线段长度(距离)或图形面积或参数等有关最值问题.从高考命题看,此类问题以主观题形式考查,多步设问,逐步深入考查分析问题解决问题的能力.圆锥曲线中的最值(范围)问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法(在选填题部分已重点讲解),即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、均值不等式方法等进行求解.而解答题部分主要使用代数法。

题型1 线段(距离)类的最值(范围)问题1.(2021·四川成都市·高三三模)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为,其离心率为2.(1)求椭圆C 的方程;(2)若A ,B 是椭圆C 上两点,且2AB =,求线段AB 中点M 到原点O 的最大距离.【答案】(1)2212x y +=;(21. 【分析】(1)根据椭圆的几何性质求出,,a b c 可得椭圆的标准方程;(2)当直线AB 斜率不存在时,0OM =;当直线AB 斜率存在时,设其方程为y kx m =+,联立直线与椭圆,根据弦长公式得到2222122k m k +=+,得到||OM 关于k 的函数关系式,再换元后根据基本不等式可求出结果.【详解】(1)由已知,2a =,所以a =又离心率为c a =,即a =,故1c =,进而1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,当直线AB 斜率不存在时,由题意可得AB 就是短轴,中点与原点重合,0OM =, 当直线AB 斜率存在时,设其方程为y kx m =+,由2222y kx m x y =+⎧⎨+=⎩,得()222214220k x kmx m +++-=, ()()()22222216421228210k m k m k m ∆=-⨯+-=+->,122421km x x k ∴+=-+,21222221m x x k -=+, 所以212122242()222121k m my y k x x m m k k +=++=-+=++, 222,2121km m M k k -⎛⎫∴ ⎪++⎝⎭,()()2222241||21k m OM k +∴=+,由2||221AB k ===+,化简得2222122k m k +=+, ()()()222222222412141||22212221k k k OM k k k k +++∴=⋅=++++, 令2411k t +=≥,则244||43(1)(3)4t OM t t t t==≤=-++++,当且仅当t =时取等号,||1OM ∴≤,max ||1OM ∴=,当且仅当214k =时取等号.即AB 中点M 到原点O1. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y 相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值;(2)求DO DB的取值范围.【答案】(1)2;(2)40,17⎛⎫⎪⎝⎭. 【分析】(1)利用导数求出抛物线1C 在点A 处的切线方程,将切线方程与椭圆方程联立,由0∆>求出21x 的取值范围,求出直线AB 的方程,并将直线AB 的方程与抛物线1C 的方程联立,由韦达定理得出12112x x x +=-,再利用基本不等式可求得12x x -的最小值;(2)记点O 、B 到直线l 的距离分别为1d 、2d ,求出1d 、2d ,可得出12DO d DBd =,结合21x 的取值范围可求得DO DB的取值范围. 【详解】(1)对函数2yx 求导得2y x '=,所以抛物线1C 在点A 处的切线方程为()1112y y x x x -=-,即2112y x x x =-,联立21122212y x x x x y ⎧=-⎪⎨+=⎪⎩,得()2234111188220x x x x x +-+-=, 所以()()62411164418220x x x∆=-+->,解得2104x <<,所以直线AB 的方程为2111122y x x x =-++, 联立21121122y x x x x y⎧=-++⎪⎨⎪=⎩,得23111220x x x x x +--=,所以12112x x x +=-,所以12111222x x x x -=+≥=,当且仅当112x =时取等号,所以12x x -的最小值为2; (2)记点O 、B 到直线l 的距离分别为1d 、2d ,所以21d =,211211214124x x x x d ⎫+=+=⎪⎭, 所以()4112222121441414DOd x DB d x x ===⎛⎫++ ⎪⎝⎭,因为2104x <<,所以2114x +>, 所以222440,1714DODBx ⎛⎫=∈ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以DO DB 的取值范围为40,17⎛⎫ ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.3.(2021·全国高三专题练习(理))设O 为坐标原点,M 是x 轴上一点,过点M 的直线交抛物线C :24y x =于点A ,B ,且4OA OB ⋅=-.(1)求点M 的坐标;(2)求232BM AM-的最大值.【答案】(1)()2,0;(2)2.【分析】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,(),0M m ,由4OA OB ⋅=-得到128y y =-,设直线:AB x ty m =+与抛物线方程联立,由根与系数的关系得到2m =,即可得到点M 的坐标;(2)由题意及弦长公式得到AM ,BM ,利用根与系数的关系得到221114AMBM+=,进而得232BM AM-的表达式,然后构造函数,利用函数的单调性求函数的最大值,即可得到232BM AM-的最大值.【详解】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,(),0M m , 则222212121212,,44416y y y y OA OB y y y y ⎛⎫⎛⎫⋅=⋅=+=- ⎪ ⎪⎝⎭⎝⎭,解得128y y =-,设直线:AB x ty m =+,联立方程,得2,4,x ty m y x =+⎧⎨=⎩得2440y ty m --=, 由根与系数的关系知,1248m y y -==-,所以2m =,故点M 的坐标为()2,0.(2)由(1)知,124y y t +=,128y y =-.易知1AM y =,2M B =, 所以()()22222212111111t y t y AM BM+=+++()()222122222121616141641y y t t y y t ++===++, 则222321132||3284BM BM BM AM BM BM ⎛⎫-= -⎪-=-- ⎪⎝⎭. 令()2328u f u u =--,2u >,则()3641f u u='-,所以()f u 在()2,4上单调递增,在()4,+∞上单调递减, 所以()()min 42f u f ==,即232BM AM-的最大值是2,当且仅当4BM =时取等号.【点睛】圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:一是几何方法,即利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数式表示为某个(些)参数的函数,然后利用函数、不等式的知识等进行求解.4.(2021·山西临汾市·高三二模(理))已知点()21Q ,在椭圆()2222:10x y C a b a b+=>>上,且点Q 到C的两焦点的距离之和为(1)求C 的方程;(2)设圆228:5O x y +=上任意一点P 处的切线l 交C 于点M ,N ,求OM ON ⋅的最小值.【答案】(1)22182x y +=;(2)165. 【分析】(1)由椭圆定义得a ,把已知点的坐标代入方程求得b ,从而得椭圆方程; (2)设直线方程为y kx b =+,1122(,),(,)M x y N x y ,由直线与圆相切得22588b k =+, 直线方程与椭圆方程联立,消元后应用韦达定理代入求得0OM ON ⋅=,得2MON π∠=,斜率不存在时求得,M N 点坐标后也得此结论,然后设(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,代入椭圆方程,然后计算2288OM ON ⋅得最大值,从而可得OM ON ⋅的最小值.【详解】(1)由题意2a =,a =(2,1)Q 在椭圆上,所以24118b+=,b = 椭圆方程为22182x y +=.(2)当直线MN斜率不存在时,直线方程为x =把x =y =M,N , 0OM ON ⋅=,所以2MON π∠=,同理x =2MON π∠=;当直线MN 斜率存在时,设直线方程为y kx b =+,1122(,),(,)M x y N x y ,=225880b k --=,(*) 由22182y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8480k x kbx b +++-=,则12221228414841kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 22121212121212()()(1)()OM ON x x y y x x kx b kx b k x x kb x x b ⋅=+=+++=++++22222222488588(1)414141b kb b k k kb b k k k ---⎛⎫=+⨯+⨯-+= ⎪+++⎝⎭, 由(*)得0OM ON ⋅=,所以2MON π∠=,综上,2MON π∠=,设xOM θ∠=,则2xON πθ∠=±,(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,因为,M N 在椭圆22182x y +=上,所以2222cos sin 182OM OM θθ+=,2228cos 4sin OMθθ=+,同理2228sin 4cos ONθθ=+,2222222288(cos 4sin )(sin 4cos )(13sin )(13cos )OMONθθθθθθ⋅=++=++222299139sin cos 4(2sin cos )4sin 244θθθθθ=++=+=+,2sin 2[0,1]θ∈,所以sin 21θ=时,2288OMON⋅取得最大值254,所以OM ON165=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交,考查直线相切.解题关键是首先利用设而不求的思想方法结合韦达定理求得2MON π∠=,然后设点的坐标(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,易得出OM ON ⋅的最小值.题型2面积类的最值(范围)问题1、(2021江西南昌高三模拟)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1l :by x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则b tan c α=,又222a b c =+,得,b csin cos a aαα==, ∴ ()121229012|+|90F F c sin a c e b c a EF EF b c a sin sin a aαα======++-+,解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=;(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184+x y y x m ⎧+=⎪⎨⎪=-⎩,得2234280x mx m -+-=,所以1221243283x x m m x x ⎧+=⎪⎪⎨-⎪=⎪⎩, 由(1)知直线1l :y x =,代入椭圆得,A B ⎛ ⎝,得3AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝ ,12CD x =-===而21l k =-与11l k =,知21l l ⊥,∴ 12ACBD S AB CD =⨯=,由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤ ⎥⎝⎦, ∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.2.(2021·浙江高三模拟)已知:抛物线21:2C y x =,曲线()222:104x C y x +=<,过2C 上一点P 作1C 的两条切线,切点分别为A .(1)若()2,0P -,求两条切线的方程;(2)求PAB △面积的取值范围.【答案】(1)()122y x =±+;(2)(]1,8. 【分析】(1)设所求切线的方程为()2y k x =+,将该直线的方程与抛物线的方程联立,由0∆=可求出k 的值,即可求得所求的两条切线的方程;(2)设()11,A x y 、()22,B x y 、()P m n ,,写出抛物线22y x =在点A 、B 处的切线方程,将点P 的坐标代入两切线方程,可求得直线AB 的方程,将直线AB 的方程与抛物线1C 的方程联立,列出韦达定理,利用三角形的面积公式可得出PAB △面积关于m 的表达式,利用函数思想可求得PAB △面积的取值范围. 【详解】(1)显然切线斜率存在,设切线方程为()2y k x =+,由()222y k x y x ⎧=+⎨=⎩,得2240-+=ky y k ,由204160k k ≠⎧⎨∆=-=⎩,得12k =±, 因此,两条切线的方程为()122y x =±+; (2)设()11,A x y 、()22,B x y 、()P m n ,,先证明出抛物线22y x =在其上一点()00,x y 处的切线方程为00y y x x =+.证明:联立0022y y x x y x=+⎧⎨=⎩,消去x 可得200220y y y x -+=,即220020y y y y -+=,即()200y y -=,解得0y y =,所以,直线00y y x x =+与抛物线22y x =相切于点()00,x y .所以,切线PA 的方程为11yy x x =+,可得11ny m x =+,切线PB 的方程为22yy x x =+,可得22ny m x =+,AB ∴的方程为ny m x =+,P 到AB的距离d =.由22ny m x y x=+⎧⎨=⎩,得2220y ny m -+=, 由韦达定理可得122y y n +=,122y y m =,()P m n ,为曲线2C 上一点,则2214m n +=,所以,2214m n =-且20m -≤<,AB ==220n m ->,()332222121224PABm SAB d n m m ⎛⎫=⋅==-=-- ⎪⎝⎭,20m -≤<,()(]22121451,444m m m --+=-++∈,则(]322121,84PABm S m ⎛⎫--∈⎪⎝⎭= .因此,PAB △面积的取值范围为(]1,8.【点睛】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.3.(2021·浙江高三其他模拟)如图,已知椭圆2214x y +=的左、右顶点分别为A ,B ,()2,2P ,线段OP(O 为坐标原点)交椭圆于点C ,D 在线段OC 上(不包括端点),连接AD 并延长,交椭圆于另一点E ,连接PE 并延长,交椭圆于另一点F ,连接BF ,DF .记1S ,2S 分别为BCD △和BDF 的面积.(1)求OC 的值;(2)求12S S ⋅的最大值.【答案】(1;(2)25.【分析】(1)先根据点P 的坐标得到直线OP 的方程,并将其与椭圆的方程联立,求出点C 的坐标,再利用两点间的距离公式求OC 的值即可;(2)设出直线PF 的方程,将其与椭圆方程联立,结合根与系数的关系得到AF BD k k =,进而可得BCD △和BDF 的面积的表达式,最后利用基本不等式求最值即可. 【详解】解:(1)因为()2,2P ,所以直线OP 的方程为y x =,将直线OP 的方程与椭圆的方程联立,可得221,4x y y x⎧+=⎪⎨⎪=⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩又由题意得点C位于第一象限,所以C.因此5OC ==. (2)由题意易知直线PF 的斜率一定存在且大于1,故设直线PF 的方程为()22y k x -=-(1k >),即22y kx k =+-,联立方程,得221,422,x y y kx k ⎧+=⎪⎨⎪=+-⎩化简得()()()2221416144830k x k k x k k ++-+-+=,由0∆>得()()()22216141444830k k k k k --+⨯-+>⎡⎤⎣⎦,即830k ->,得38k >,故1k >. 设()11,E x y ,()22,F x y ,则()()1222122161,144483.14k k x x k k k x x k ⎧-+=⎪+⎪⎨-+⎪=⎪+⎩易知()2,0A -,连接AF ,所以直线AE 的斜率112AE y k x =+,直线AF 的斜率222AF y k x =+,所以12122211AE AF x x k k y y +++=+()()()()()()1221122222222222x kx k x kx k kx k kx k ++-+++-=+-+- ()()()()12122212122242222(22)kx x x x k k x x k k x x k +++-=+-++-()()()()()()()()()222222284831622422144483822222214k k k k k k k k k k k k k k k -++-+-+=-++--+-+81648kk-=-2=.①因为点D 在直线y x =上,所以D D x y =,又()2,0B , 所以直线AD 的斜率2D AD D y k x =+,直线BD 的斜率2DBD D y k x =-,所以22112D D AD BD D D x x k k y y +-+=+=.② 又11AE AD k k =,③ 则由①②③可得11AF BDk k =,即AF BD k k =.设(),D m m(0m <<),则2122BDFBDAS S SBAm m ===⋅=. 又C,所以CD m m ⎫==-=-⎪⎭又点B 到直线CD 的距离d ==所以11122BDCS SCD d m m ⎫==⋅=-=-⎪⎭. 因此2122225S S m m ⎡⎤⎫⋅=-≤=⎪⎭⎢⎥⎣⎦,当且仅当m m =-,即5m =时等号成立,所以12S S ⋅的最大值是25. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.(2021·全国高三其他模拟)已知1A ,2A 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,B 为椭圆C 的上顶点,点2A 到直线1A B,椭圆C 过点⎝.(1)求椭圆C 的标准方程;(2)设直线l 过点1A ,且与x 轴垂直,P ,Q 为直线l 上关于x 轴对称的两点,直线2A P 与椭圆C 相交于异于2A 的点D ,直线DQ 与x 轴的交点为E ,当2PA Q △与PEQ 的面积之差取得最大值时,求直线2A P 的方程.【答案】(1)22143x y +=;(2)360x -=或360x -=. 【分析】(1)由点到直线的距离得一个,a b 的关系式,已知点的坐标代入又得一个关系式,,两者联立解得,a b ,得椭圆方程;(2)设直线2A P 的方程为2(0)x my m =+≠,依次求得P 点,Q 点,D 点,E 点坐标,然后计算面积之差222PA Q PEQ PA E S S S -=△△△,再结合基本不等式求得最大值.由此可得直线方程.【详解】(1)由题意知2(,0)A a ,1(,0)A a -,(0,)B b ,则直线1A B 的方程为by x b a=+, 即0bx ay ab -+=,所以点2A 到直线1A B的距离d ==2234b a =.① 又椭圆C过点3⎛ ⎝,所以224213a b +=.② 联立①②,解得24a =,23b =,故椭圆C 的标准方程为22143x y +=.(2)由(1)知2(2,0)A ,直线l 的方程为2x =-.由题意知直线2A P 的斜率存在且不为0, 设直线2A P 的方程为2(0)x my m =+≠,联立2,2,x x my =-⎧⎨=+⎩解得2,4,x y m =-⎧⎪⎨=-⎪⎩即42,P m ⎛⎫-- ⎪⎝⎭,42,Q m ⎛⎫- ⎪⎝⎭.联立222(0),1,43x my m x y =+≠⎧⎪⎨+=⎪⎩消去x 整理得()2234120m y my ++=,解得0y =或21234m y m -=+. 由点D 异于点2A 可得2226812,3434m m D m m ⎛⎫-+- ⎪++⎝⎭, 所以直线DQ 的方程为222124684(2)203434m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 令0y =,得226432E m x m -+=+,所以22222641223232m m A E m m -+=-=++, 所以2PA Q △与PEQ 的面积之差为222PA Q PEQ PA E S S S -=△△△. (利用点的对称关系,将面积差问题转化为求2PA E S △)因为2222112448||48222232323||||PA Em m S m m m m m -=⨯⋅⋅==≤+++△当且仅当m =时取等号.(在利用基本不等式求最值时,要特别注意“拆、拼、凑"等技巧)故当2PA Q △与PEQ 的面积之差取得最大值时,直线2A P的方程为360x +-=或360x -=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交问题,解题方法是解析几何的基本方法:设直线2AP 方程为2(0)x my m =+≠,直线与直线相交得交点坐标,直线与椭圆相交得交点坐标,然后求得三角形面积(之差),再结合基本不等式求得最大值,得出结论. 题型3斜率类的最值(范围)问题1.(2021·成都市高三模拟)设椭圆22213x y a +=(a >)的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围. 【解析】(1)设(),0F c ,由113eOF OA FA+=,即()113c c a a a c +=-,2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.(2)设直线l 的斜率为k (0k ≠),则直线l 的方程为()2y k x =-.设()11,B x y ,()22,M x y ,()30,H y .在△MAO 中,MOA MAO MA MO ∠≤∠⇔≤,即()222222222x y x y -+≤+,化简得21x ≥. 由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩,消去y ,整理得()2222431616120k x k x k +-+-=.于是2128643k x k -=+, 从而121243ky k =-+.由(1)知()1,0F ,所以()31,FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭,由BF HF ⊥,得0BF HF ⋅=,所以2322129404343ky k k k -+=++,解得239412k y k-=, 因此直线MH 的方程为219412k y x k k-=-+.由方程组()2194122k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩,消去y ,解得()222209121k x k +=+.于是()222091121k k +≥+,解得k ≤或k ≥, 所以直线l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭.【点评】由MOA MAO ∠≤∠,可得到不等式21x ≥,此时只要用k 去表示2x ,就能得到有关k 的不等式,这也是k 需要满足的唯一一个不等式,解这个不等式就能求出k 的取值范围.2.(2020·上海高三其他模拟)已知椭圆()2222:10x y C a b a b+=>>长轴的两顶点为A 、B ,左右焦点分别为1F 、2F ,焦距为2c 且2a c =,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3.(1)求椭圆C 的方程;(2)在双曲线22:143x y T -=上取点Q (异于顶点),直线OQ 与椭圆C 交于点P ,若直线AP 、BP 、AQ 、BQ 的斜率分别为1k 、2k 、3k 、4k .试证明:1234k k k k +++为定值;(3)在椭圆C 外的抛物线K :24y x =上取一点E ,1EF 、2EF 的斜率分别为1'k 、2'k ,求121''k k 的取值范围.【答案】(1)22143x y +=;(2)证明过程见详解;(3)5(,0)(0,)24-⋃+∞. 【分析】(1)本小题先建立方程组2222223a cb a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,再求出2a =,b =1c =,最后求出椭圆C 的方程即可;(2)本小题先得到112132x k k y +=-,再得到234232x k k y +=,接着判断1122x y x y =,最后得到结论即可; (3)本小题先用233(,)4y E y 表示出432123161''16y k k y -=,(2383y >且32y ≠-),再建立函数1()16t f t t =-求导得到()f t 的取值范围,最后求导121''k k 的取值范围. 【详解】(1)因为过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3,所以223ba=,所以2222223a c b a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得:2a =,b =1c =,所以椭圆C 的方程:22143x y +=; (2)由(1)可知:(2,0)A -、(2,0)B 、1(1,0)F -、2(1,0)F ,设点11(,)P x y ,则2211143x y +=,整理得:2211443y x -=-, 1111111122211111223422423y y x y x y x k k y x x x y +=+===-+---; 设点22(,)P x y ,则2222143x y -=,整理得:2222443y x -=, 2222222342222222223422423y y x y x y xk k y x x x y +=+===+--.又因为OP 与OQ 共线,所以12x x λ=,12y y λ=,所以1122x y x y =, 所以121212341212333()0222x x x x k k k k y y y y +++=-+=-+=,所以1234k k k k +++为定值; (3)设233(,)4y E y ,由2221434x y y x⎧+=⎪⎨⎪=⎩,解得:222383x y ⎧=⎪⎪⎨⎪=⎪⎩, 由E 在椭圆C 外的抛物线K :24y x =上一点,则2383y >, 则3123'14y k y =+,(2383y >且32y ≠-);3223'14y k y =-,(2383y >且32y ≠-), 则23331222433316''161144y y y k k y y y =⋅=--+,(2383y >且32y ≠-), 则432123161''16y k k y -=,(2383y >且32y ≠-), 令23y t =,(83t >且4t ≠),设1()16t f t t =-,(83t >且4t ≠),则211'()016f t t =+>,所以1()16t f t t=-在8(,4)3,(4,)+∞上单调递增, 所以()f t 的取值范围:5(,0)(0,)24-⋃+∞,所以121''k k 的取值范围5(,0)(0,)24-⋃+∞. 【点睛】本题考查求椭圆的标准方程,圆锥曲线相关的定值问题、圆锥曲线相关的参数取值范围问题,是偏难题.3.(2021·广东茂名市·高三月考)已知点N 为圆1C :()22116x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点M 、P 分别是线段1C N ,2C N 上的点,且20MP C N ⋅=,222C N C P =.(1)求点M 的轨迹方程;(2)过点()2,0A -且斜率为()0k k >的直线与点M 的轨迹交于A ,G 两点,点H 在点M 的轨迹上,GA HA ⊥,当2AG AH =2k <<.【答案】(1)22143x y +=;(2)证明见解析 【分析】(1)由已知可得214MC MC +=,可判断点M 在以12,C C 为交点的椭圆上,即可求出方程;(2)将直线方程代入椭圆,利用弦长公式可求出AG =,同理可得AH =知可得3246380k k k -+-=,利用导数结合零点存在性定理即可证明. 【详解】(1)222C N C P =,P ∴是2C N 的中点,20MP C N ⋅=,2MP C N ∴⊥,∴点M 在2C N 的垂直平分线上,2||MN MC ∴=,121||42MN MC MC MC +=+=>,∴点M 在以12,C C 为交点的椭圆上,且2,1a c ==,则b =M 的轨迹方程为22143x y +=; (2)可得直线AG 的方程为(2)(0)y k x k =+>, 与椭圆方程联立可得()2222341616120kxk x k +++-=,设()11,G x y ,则2121612(2)34k x k -⋅-=+,可得()21223434k x k-=+,则12234AG k =+=+,由题可得,直线AH 的方程为1(2)y x k =-+,故同理可得AH =由2AG AH =可得2223443k k k=++,即3246380k k k -+-=, 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,则()f t 在()0,∞+单调递增,又260,(2)60f f =<=>,因此()f t 在()0,∞+有唯一零点,且零点k在)22k <<.【点睛】本题考查椭圆的轨迹方程,解题的关键是利用椭圆定义得出M 的轨迹为椭圆;考查参数范围的证明,解题的关键是利用弦长公式求出弦长,利用已知得出3246380k k k -+-=,再利用导数证明.4.(2021·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,过点1F 的直线l 与椭圆C 交于M ,N 两点(点M 位于x 轴上方),2MNF ,12MF F △的周长分别为8,6. (1)求椭圆C 的方程;(2)若1||MF m MN =,且2334m ≤<,设直线l 的倾斜角为θ,求sin θ的取值范围. 【答案】(1)22143x y +=;(2)0,3⎛ ⎝⎦. 【分析】(1)根据椭圆的定义可得2MNF ,12MF F △的周长分别为4,22a a c +,结合222a b c =+可得答案.(2)根据题意设出直线l 的方程与椭圆方程联立,写出韦达定理,由1||MF m MN =,得出11MF F N,得出,M N的纵坐标12,y y 的关系,从而可求出答案.【详解】(1)设椭圆C 的半焦距为c ,因为2MNF ,12MF F △的周长分别为8,6,所以根据椭圆的定义得22248226a a c a b c =⎧⎪+=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=.(2)由条件1||MF m MN =,且2334m ≤<,则12MF MF >,所以直线l 的斜率存在. 根据题意,可设直线l 的方程为(1)(0).y k x k =+>.联立22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去x ,得()22234690k y ky k +--=,则()2214410k k ∆=+>,设()11,M x y ,()22,N x y ,则122634k y y k +=+①,2122934k y y k-=+②, 又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-.设1mmλ=-,[2,3)λ∈,则11MF F N λ=,所以12y y λ③,把③代入①得()226(1)34k y k λ=-+,()126(1)34ky k λλ-=-+,并结合②可得()2212222236934(1)34k k y y k kλλ--==+-+,则22(1)434kλλ-=+,即214234k λλ+-=+, 因为12λλ+-在[2,3)λ∈上单调递增,所以114223λλ≤+-<,即21442343k ≤<+,且0k >,解得02k <≤,即0tan 2θ<≤,所以0sin 3θ<≤. 故sin θ的取值范围是0,3⎛ ⎝⎦.【点睛】本题考查求椭圆方程和直线与椭圆的位置关系,解答本题的关键是由122634ky y k +=+,2122934k y y k-=+,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-,得出关系求解,属于中档题.题型4向量类的最值(范围)问题1.(2021·陕西咸阳市·高三三模(理))已知12B B 、分别是椭圆22221(0)x y a b a b+=>>短轴两端点,离心率为12,P 是椭圆C 上异于1B 、2B 的任一点,12PB B △的面积最大值为(1)求椭圆C 的标准方程; (2)过椭圆C 右焦点F 的直线l 交椭圆C 于M N 、两点,O 为坐标原点,求OM ON +的取值范围.【答案】(1)22143x y +=;(2)[]0,2. 【分析】(1)根据题中条件,列出方程组求出,a b ,即可得出椭圆方程;(2)先讨论直线l 的斜率为0的情况,可求出0OM ON +=;再讨论直线的斜率不为0的情况,直线l 的方程为:1x my =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,利用韦达定理,以及向量模的坐标表示,得到(2OM ON +=.【详解】(1)由题意可得:22212ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2a b =⎧⎪⎨=⎪⎩;所以椭圆C 的方程为221.43x y +=(2)当直线l 的斜率为0时,0OM ON +=,0OM ON +=当直线的斜率不为0时,因为()1,0F ,设直线l 的方程为:1x my =+,与椭圆C 交于()11,M x y ,()22,N x y , 由221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x 得()22:34690m y my ++-=, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,()()22236363414410m m m ∆=++=+>,又()()12121212,2,OM ON x x y y my my y y +++=+++=, 所以(OM ON my +===令2110,344t m ⎛⎤=∈ ⎥+⎝⎦,则()()()222222223433449164313434m m t t t m m t ++++===+++, 因为二次函数243y t t =+在10,4t ⎛⎤∈ ⎥⎝⎦上显然单调递增,所以(]2430,1y t t =+∈,因此((]20,2OM ON +=;综上知,[]0,2OM ON +∈.【点睛】求解椭圆中弦长、向量的模长等问题时,一般需要联立直线与椭圆方程,利用韦达定理,结合弦长公式或两点间距离公式、向量模的坐标表示等,表示出所求的量,再结合基本不等式或利用函数单调性等,即可求解.2.(2021·安徽高三月考(理))已知椭圆()2222:10x y Ca b a b+=>>的左焦点为F,过点F 的直线l 与椭圆交于A ,B 两点,当直线l x ⊥轴时,AB =tan AOB ∠=(1)求椭圆C 的方程;(2)设直线l l '⊥,直线l '与直线l 、x 轴、y 轴分别交于点M 、P 、Q ,当点M 为线段AB 中点时,求PM PFPO PQ⋅⋅的取值范围.【答案】(1)2212x y +=;(2)()1,+∞.【分析】(1,2AOB AOF ∠=∠,进而根据几何关系解得1bc ==,a =即可得答案;(2)由题设():1l y k x =+,与椭圆联立方程得2222,2121k k M k k ⎛⎫- ⎪++⎝⎭,进而得直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,所以22,021k P k ⎛⎫- ⎪+⎝⎭,进而根据几何关系得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为求22PM PO的取值范围问题求解即可.【详解】解:(1)由题意可知(),0F c -,直线l x⊥轴时,22b AB a==22tan tan 1tan AOF AOB AOF ∠∠==-∠tanAOF ∠=, ∵0,2AOF π⎛⎫∠∈⎪⎝⎭,∴2tan 2b AF a AOF FO c∠===,解得:1bc ==,a =C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,依题意直线l 斜率一定存在且不为零,设():1l y k x =+,代入椭圆方程得:()2222214220kx k x k +++-=,则2122421k x x k -+=+,()121222221k y y k x x k +=++=+.故2222,2121k k M k k ⎛⎫- ⎪++⎝⎭, 直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,令0y =,则22,021k P k ⎛⎫- ⎪+⎝⎭, ∵PMMF ⊥,OQ PO ⊥,∴2PM PF PM ⋅=,2PO PQ PO ⋅=,∴222222222222222221212111121k k k PMk k k PM PF k k k PO PQ POk k ⎛⎫--⎛⎫-+ ⎪ ⎪+++⋅+⎝⎭⎝⎭====+⋅⎛⎫- ⎪+⎝⎭, ∵()20,k ∈+∞,∴()2111,k +∈+∞,∴ ()1,PM PFPO PQ⋅∈+∞⋅. 【点睛】本题考查椭圆的性质求方程,直线与椭圆的位置关系求范围问题,考查运算求解能力,化归转化能力,是中档题.本题第二问解题的关键在于根据PMMF ⊥,OQ PO ⊥得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为22PM PO范围的求解.3.(2021·浙江高三其他模拟)如图,椭圆()2222:10x y C a b a b+=>>的左顶点为A ,离心率为12,长轴长为4,椭圆C 和抛物线()2:20F y px p =>有相同的焦点,直线:0l x y m -+=与椭圆交于M ,N 两点,与抛物线交于P ,Q 两点.(1)求抛物线F 的方程;(2)若点D ,E 满足AD AM AN =+,AE AP AQ =+,求AD AE ⋅的取值范围.【答案】(1)24y x =;(2)144,4877AD AE ⎛⋅∈+⎝⎭. 【分析】(1)根据题意可得2a =,1c =,再根据12p=即可求解. (2)将直线:0l x y m -+=与椭圆方程联立,设()11,M x y ,()22,N x y,利用韦达定理可得864,77m m AD ⎛⎫=- ⎪⎝⎭,再将直线:0l x y m -+=与抛物线方程联立设()33,P x y ,()44,Q x y ,利用韦达定理可得()82,4AE m =-,再由从而可得216963277AD AE m m ⋅=-+,配方即可求解.【详解】(1)因为椭圆C 的离心率为12,长轴长为4,2412a c a =⎧⎪⎨=⎪⎩,,,所以2a =,1c =,因为椭圆C 和抛物线F 有相同的焦点,所以12p=,即2p =,所以抛物线F 的方程为24y x =. (2)由(1)知椭圆22:143x y C +=,由221430x yx y m ⎧+=⎪⎨⎪-+=⎩,,得22784120x mx m ++-=, ()22164474120m m ∆=-⨯⨯->,得27m <,m <<设()11,M x y ,()22,N x y ,则1287mx x +=-,所以()1212627m y y x x m +=++=. 易知()2,0A -,所以()1212864,4,77m m AD AM AN x x y y ⎛⎫=+=+++=-⎪⎝⎭. 由240y x x y m ⎧=⎨-+=⎩,,得()22240x m x m +-+=.()2222440m m ∆=-->,得1m <. 设()33,P x y ,()44,Q x y ,则3442x x m +=-,所以()343424y y x x m +=++=,所以()()34344,82,4AE AP AQ x x y y m =+=+++=-.所以()864,82,477m m AD AE m ⎛⎫⋅=-⋅- ⎪⎝⎭()28616964824327777m m m m m ⎛⎫=-⋅-+⨯=-+ ⎪⎝⎭,1m <<, 易知函数216963277y m m =-+在()m ∈上单调递减,所以144,487AD AE ⎛⋅∈ ⎝⎭. 【点睛】求解圆锥曲线中最值或范围问题的一般方法:一是建立关系,二是求最值或范围,即先由题设条件建立关于所求目标的函数关系式,再对目标函数求最值,如本题中需先将直线方程分别与椭圆、抛物线方程联立,利用根与系数的关系将AD ,AE 用m 表示出来,再结合m 的范围及函数的单调性求AD AE ⋅的取值范围.4.(2021·海南海口市·高三模拟)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴正半轴上,过F 的直线l 与抛物线交于A 、B 两点,且满足3OA OB ⋅=-.(1)求抛物线的方程;(2)在x 轴负半轴上一点(),0M m ,使得AMB ∠是锐角,求m 的取值范围.【答案】(1)24y x =;(2)(),1-∞-.【分析】(1)设抛物线方程()220y px p =>,直线l 的方程2px ty =+,联立方程组结合韦达定理可得12y y 、12x x ,再由平面向量数量积的坐标表示即可得p ,即可得解;(2)由题意结合平面向量数量积的概念可转化条件为0MA MB ⋅>,进而可得22234m m t m-->恒成立,解不等式22304m m m --<即可得解.【详解】(1)设抛物线方程()220y px p =>,直线l 的方程2p x ty =+, 联立消去x 得222p y p ty ⎛⎫=+⎪⎝⎭,即2220y pty p --=,>0∆, 设()11,A x y ,()22,B x y ,则122y y pt +=,212y y p =-,所以()22121212122224p p pt p x x ty ty t y y y y ⎛⎫⎛⎫=++=+++ ⎪⎪⎝⎭⎝⎭()22222244pt p p t p pt =⋅-+⋅+=,所以22212123344p OA OB x x y y p p ⋅=+=-=-=-,解得2p =或2p =-(舍去), 故所求抛物线方程为24y x =;(2)因为AMB ∠是锐角,所以0MA MB ⋅>恒成立,即()()12120x m x m y y --+>, 所以()21212120x x m x x m y y -+++>,由(1)得121=x x ,124y y =-,124y y t +=,()2121242x x t y y p t +=++=+,所以()2214240m t m -++->,而0m <,所以22234m m t m-->对于t R ∀∈恒成立,所以22304m m m --<,又0m <,所以2230m m m ⎧-->⎨<⎩,解得1m <-,所以m 的取值范围为(),1-∞-.【点睛】本题考查了平面向量数量积的应用及直线与抛物线的综合应用,考查了转化化归思想与运算求解能力,属于中档题.题型5坐标类的最值(范围)问题1.(2021·上海静安区·高三二模)已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(1)求过点F 、O ,并且与抛物线28y x =的准线相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 的横坐标的取值范围.【答案】(1)(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++= ⎪⎝⎭;(2)1,0.2⎛⎫- ⎪⎝⎭【分析】(1)求得点()1,0F -,可知圆心M 在直线12x =-上,设点1,2Mt ⎛⎫- ⎪⎝⎭,根据已知条件得出关于实数t 的等式,求出t 的值,即可得出所求圆的方程;(2)设直线AB 的方程为()()10y k x k =+≠,设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆的方程联立,列出韦达定理,求出线段AB 的垂直平分线方程,可求得点G 的横坐标,利用不等式的基本性质可求得点G 的横坐标的取值范围.【详解】(1)抛物线28y x =的准线为2x =-,椭圆2212x y +=的左焦点为()1,0F -,圆过点F 、O ,∴圆心M 在直线12x =-上.设1,2Mt ⎛⎫- ⎪⎝⎭,则圆的半径为()13222r ⎛⎫=---= ⎪⎝⎭. 由OM r =32=,解得t =于是,所求圆的方程为(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++=⎪⎝⎭; (2)设直线AB 的方程为()()10y k x k =+≠,联立()22112y k x x y ⎧=+⎪⎨+=⎪⎩,整理可得()2222124220k x k x k +++-=, 因为直线AB 过椭圆的左焦点F ,所以方程()2222124220kxk x k +++-=有两个不相等的实根.设点()11,A x y 、()22,B x y ,设AB 的中点为()00,N x y ,则2122412k x x k+=-+,202221k x k =-+,()002112k y k x k =+=+.直线AB 的垂直平分线NG 的方程为()001y y x x k-=--, 令0y =,则222002222211212121242G k k k x x ky k k k k =+=-+=-=-+++++. 因为0k ≠,所以10.2G x -<<故点G 的横坐标的取值范围1,02⎛⎫- ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.2.(2021·新疆高三其他模拟(理))已知抛物线()2204y px p =<<的焦点为F ,点P 在抛物线上,点P的纵坐标为6,且10PF =.(1)求抛物线的标准方程;(2)若A ,B 为抛物线上的两个动点(异于P 点)且AP AB ⊥,求点B 纵坐标的取值范围.【答案】(1)24y x =;(2)2y <-或14y ≥.【分析】(1)根据抛物线的焦半径公式求解即可;(2)先根据抛物线的方程及点P 的纵坐标求得()9,6P ,再根据AP AB ⊥得到()2121261660y y y y ++++=,利用判别式0∆≥,得到22y ≤-或214y ≥,最后验证当22y =-时,12y =-,与题意不符,最后得到点B 的纵坐标y 的取值范围. 【详解】解:(1)设(),6p P x ,则36182P x p p==, 由102p pPF x =+=,得18102p p +=,解得2p =或18,∵04p <<,所以2p =.∴24y x =.(2)由(1)得()9,6P ,设()11,A x y ,()22,B x y ,由题意可知:直线AP ,AB 的斜率存在, 设为AP k ,AB k ,且1211212221211216699444AP AB y y y y y y k k y y y x x x ----⋅=⨯=⨯----()()1214416y y y =⨯=-++, 整理得()2121261660y y y y ++++=,由题意知0∆≥,即()()222641660y y ∆=+-+≥∴22212280y y --≥即22y ≤-或214y ≥,又当22y =-时,211440y y ++=,∴12y =-,与题意不符,舍去,综上所述,点B 的纵坐标2y 的取值范围为22y <-或214y ≥.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.3.(2021·上海金山区·高三一模)已知点P 在抛物线2:4C y x =上,过点P 作圆222:(3)M x y r-+=(0r <≤)的两条切线,与抛物线C 分别交于A 、B 两点,切线PA 、PB 与圆M 分别相切于点E 、F .(1)若点P 到圆心M 的距离与它到抛物线C 的准线的距离相等,求点P 的坐标;(2)若点P 的坐标为(1,2),且r =PE PF ⋅的值;(3)若点P 的坐标为(1,2),设线段AB 中点的纵坐标t ,求t 的取值范围. 【答案】(1)(2,或(2,-;(2)3;(3)[10,6)--.【分析】(1)设出P 点的坐标,根据已知条件列方程组,解方程组求得P 点坐标. (2)先求得||PE 和||PF ,然后结合向量数量积运算求得PE PF ⋅.(2)设出过P 的圆的切线方程,利用圆心到直线的距离等于半径列方程,化简写出根与系数关系,联立切线和抛物线的方程,求得,A B 的纵坐标,由此求得线段AB 中点的纵坐标t 的表达式,进而求得t 的取值范围.【详解】(1)设点P 的坐标为(,)x y ,则241y x x ⎧==+,解得2x y =⎧⎪⎨=⎪⎩2x y =⎧⎪⎨=-⎪⎩,即点P的坐标为(2,或(2,-;(2)当点P 的坐标为(1,2),且r =||PM ==,在直角三角形PME中,||PE ==,且30MPE ∠=︒,同理,||PF =30MPF ∠=︒,从而||||co cos 603s PE PF PE PF EPF ∠=⋅⋅︒==;(3)由题意知切线PA 、PB 的斜率均存在且不为零,设切线方程为2(1)y k x -=-,r =,得222(4)840r k k r -++-=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。

圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||2PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅u u u r u u u r的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 02x 2-),B (x 020x 2-,OA OB ⋅u u u r u u u r=2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--•--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅u u u r u u u r=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅u u u r u u u r的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x 2),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥,当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x 2)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。

作PQ ⊥右准线于点Q , 则由椭圆的第二定义||4||5PA e PQ ==, ∴5||||||||4PA PB PQ PB +=+, 显然点P 应是过B 向右准线作垂线与椭圆的交点,最小值为174。

(2)由椭圆的第一定义,设C 为椭圆的左焦点,则||2||PA a PC =-∴||||||2||10(||||)PA PB PA a PC PB PC +==-=+-,根据三角形中两边之差小于第三边,当P 运动到与B 、C 成一条直线时,便可取得最大和最小值。

当P 到P"位置时,||||||PB PC BC -=,||||PA PB +有最大值,最大值为10||10210BC +=+当P 到'P 位置时,||||||PB PC BC -=-,||||PA PB +有最小值,最小值为10||1010BC -=-(数形结合思想、椭圆定义、最值问题的结合)变式: 点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|PA|+|PF| 取得最小值,求点P 的坐标。

解:抛物线y 2=4x 的准线方程为x=-1,设P 到准线的距离为d ,则|PA|+|PF|=|PA |+d 。

要使|PA|+|PF|取得最小值,由图3可知过A 点的直线与准线垂直时,|PA|+|PF|取得最小值,把y=2代入y 2=4x ,得P (1,2)。

例2: 已知椭圆的中心在O,右焦点为F ,右准线为L ,若在L 上存在点M ,使线段OM 的垂直平分线经过点F ,求椭圆的离心率e 的取值范围?解:如果注意到形助数的特点,借助平面几何知识的最值构建使问题简单化,由于线段OM 的垂直平分线经过点F ,则,c OF MF ==利用平面几何折线段大于或等于直线段(中心到准线之间的距离),则有 2c ≥ca 2e ∴≥22,AP F O d X=1x y∴椭圆的离心率e 的取值范围椭圆的离心率e 的取值范围为⎪⎪⎭⎫⎢⎣⎡1,22 变式1: 已知双曲线22221,(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,求此双曲线的离心率e 的最大值? 解:双曲线的离心率e 的最大值为53变式2: 已知椭圆方程为 12222=+by a x ,(b a <<0)的左、右焦点分别为F 1、F 2,点P 在为椭圆上的任意一点,且|PF 1|=4|PF 2|,求此椭圆的离心率e 的最小值? 解:椭圆的离心率e 的最小值为53例3: 已知P 点在圆x 2+(y -2)2=1上移动,Q 点在椭圆2219x y +=上移动,试求|PQ|的最大值。

解:故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ |的最大值,只要求|O 1Q |的最大值.设Q (x ,y ),则|O 1Q |2= x 2+(y -4)2①因Q 在椭圆上,则x 2=9(1-y 2) ②将②代入①得|O 1Q |2= 9(1-y 2)+(y -4)2218272y ⎛⎫=-++ ⎪⎝⎭因为Q 在椭圆上移动,所以-1≤y ≤1,故当12y =时,1maxOQ =此时max 1PQ =【点晴】1.与圆有关的最值问题往往与圆心有关;2.函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不能被忽视.......................。

变式1: 设P 是椭圆22x a+2y = 1 ( a > 1 ) 短轴的一个端点, Q 为椭圆上的一个动点,求| PQ | 的最大值.解法1: 依题意可设 P (0, 1 ), Q (x , y ), 则| PQ 又因为Q 在椭圆上, 所以 2x = 2a (12y -) .2||PQ = 2a (12y -) + 2y -2y + 1= (12a -)2y -2y + 1 + 2a= (12a -) 221()1y a --211a -- + 1 + 2a . 因为 | y | ≤ 1, a > 1,若a 2, 则211a -≤1, 当y = 211a -时, | PQ | 取最大值2211a a a --;若1< a 2, 则当y = -1时, | PQ | 取最大值2 . 解法2:设P (0, 1 ), Q (cos a θ, sin θ), 则 2||PQ = 2a 2cos θ + 2(sin 1)θ- = (12a -)2sin θ-2sin θ+2a + 1 = (12a -)221(sin )1a θ---211a -+2a + 1. 注意到 |sin θ| ≤ 1, a > 1. 以下的讨论与解法1相同.变式2:已知△OFQ 的面积为6OF FQ m ⋅=u u u r u u u r(1646m ≤≤,求∠OFQ 正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),26||,1)OF c m c ==-u u u r 当 ||OQ uuu r 取得最小值时,求此双曲线的方程。

解析:(1)设∠OFQ =θ||||cos()1||||sin 262OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩u u u r u u u ru u u r u u u r 46tan θ⇒= 646m ≤≤ Q 4tan 1θ-≤≤-(2)设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b -= >> =-u u u r 则 ∴11||||262OFQ S OF y ∆=⋅=u u ur 146y =又∵OF FQ m ⋅=u u u r u u u r ,∴21116(,0)(,)()(1OF FQ c x c y x c c c ⋅=⋅-=-⋅= )u u u r u u u r 22211126963,||12.8c x OQ x y c ∴= ∴=+=+≥u u u r当且仅当c=4时,||OQ uuu r最小,此时Q 的坐标是6,6)或6,6)22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩,所求方程为22 1.412x y -= 【精要归纳】圆锥曲线的最值问题,常用以下方法解决:(1)当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;(2)范围实质为一个不等式关系,如何构建这种不等关系?例2中可以利用方程和垂直平分线性质构建。

相关文档
最新文档