小学奥数培优等差数列含答案
四年级下册数学试题-奥数培优:利用等差规律计算(含答案)全国通用
课 题 利用等差规律计算【精品】教学内容在小学数学竞赛中,常出现一类有规律的数列求和问题在三年级我们已介绍过高斯的故事,他之所以算得快,算得正确,就在于他善于观察,发现了等差数列求和规律.1+2+3+---+98+99+10050101=1+100+2+99++50+51 1444442444443共()()()= 101×50,即 (100 +1)×(100÷2)=101×50=5050.按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项……最后一个数叫末项.如果一个数列从第二项开始,每一项与它前面一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差.如:1,2,3,4.…是等差数列,公差为l ;l ,3,5,7,…是等差数列,公差为2;5,10,15,20,…是等差数列,公差为5.由高斯的巧算可知,在等差数列中,有如下规律:项数=(末项首项)÷公差+1第几项=首项+(项-1)×公差总和=(首项十末项)×项数÷2本讲用各种实例展示了等差数列的广泛应用价值,我们要求同学们注意灵活应用这三个公式计算下面各题:(1) 2+5+8+…+23+26+29;(2)(2+4+6+...+100) - (1+3+5+ (99)解(1)这是一个公差为3、首项为2、末项为29、项数为(29 -2) ÷3+1=10的等差数列求和,原式= (2+29)×10÷2=31×10÷2=155.(2)解法一原式=(2+100)×50÷2-(1+99)×50÷2=2550 - 2500=50,解法二原式= (2-1)+(4-3)+(6-5)+…+(100 - 99)=l×50= 50.两种解法相比较,解法一直接套公式,平平淡淡;解法二从整体上把握了题目的运算结构和数字特点,运用交换律和结合律把原式转化成了整齐的结构“1+1+…+1”,因而解得更巧、更好计算:l÷2010 +2÷2010 +3÷2010 +…+2008÷2010+2009÷2010+ 2010÷2010如果按照原式的顺序,先算各个商,再求和,既繁又难,由于除数都相同,被除数组成一个等差数列:1,2,3,4,…,2008,2009,2010.所以可根据除法的运算性质,先求全部被除数的和,再求商解原式= (1+1+2+3+…+2009+2010)÷2010= (1- 2010)×2010÷2÷2010=1000. 5此题解法巧在根据题目特点,运用除法性质进行转化计算中又应用乘除混合运算的简化运算.使整个解答显得简捷明快。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学奥数等差数列练习及答案
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2 项数=(末项-首项)公差+1 末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项- 首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+ 1,便可求出(2)根据公式:末项=首项+公差(项数-1 )解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67 个数,第201 个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从1 00~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。
要求和可以利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1 到2000 的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1 的所有两位数的和。
分析一:在两位数中,被1 0除余1最小的是1 1 ,的是91 。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们可以根据求和公式来计算。
小学五年级奥数《等差数列题解》.doc
小学五年级奥数《等差数列题解》知识点:①等差数列的和 = (首项+末项)×项数÷2②项数 = (末项-首项)÷公差+1③公差 = 第二项-首项④等差数列的第n项 = 首项+(n-1)×公差⑤首项 = 末项-公差×(项数-1)⑥末项 =首项+公差×(项数-1)1、计算:1+3+5+7+……+95+97+99=(1+99)×50÷2=25002、求首项为5,末项为155,项数是51的等差数列的和。
(5+155)×51÷2=160×51÷2=80×51=40803、计算:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=1000000-999000=10004、计算:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999=【(1999+1)×1999÷2】÷1999=10005、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数多4。
求这60个数的和。
(1)末项为:7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=75006、数列3、8、13、18、……的第80项是多少?3+(80-1)×5=3+79×5=3+395=3987、求3+7+11+……+99=?①项数:(99-3)÷4+1=96÷4+1=25②和:(3+99)×25÷2=102×25÷2=12758、计算:1+3+5+7+9+11+13+9+7+5+3+1方法一:1+3+5+7+9+11+13+11+9+7+5+3+1=(1+13)×7÷2+(1+11)×6÷2=(1+13)7+15=49+36=85方法二:1=121+3+4=221+3+5=321+3+5+7=421+3+5+7+9=521+3+5+7+9+11=621+3+5+7+9+11+13=721+3+5+7+9+11+13+9+7+5+3+1=72+62=49+36=85赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
小学奥数教程-等差数列计算题1 (含答案)
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LLL 和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089L(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=L⑵13578799L++++++=⑶471013404346L+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:L()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500L++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:L()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学五年级下册奥数培优2.等差数列问题
第二节 等差数列【专题讲解】像(1)1,2,3,4,5,...(2)10,20,30,40,50,...(2)41, , ,1 , ,...这种从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d 表示。
在等差数列a 1,a 2,a 3,...a n 中,它的公差是d ,那么 a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2da 4=a 3+d =(a 1+2d )+d =a 1+3d......观察上述规律,我们不难发现下面的公式:a n =a 1+(n -1)d ,这就是等差数列的通项公式,我们可以用通项公式求出等差数列中任意一项。
例一求等差数列3,8,13,18,...的第38项和第69项。
2141143练习一1.求等差数列1,4,7,10,13,...的第20项和第80项。
2.超市工作人员在商品上依次编号,分别为4,8,12,16,...请问第34个商品上标注的是什么数字?第58个呢?3.商店中推行打包促销活动,每6个商品为一包。
第一包中每个商品的编号依次为3,6,9,12,15,18;第二包中商品编号依次为21,24,27,30,33,36。
以此类推,请问第20包的第3个商品编号为多少?例二36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习二1.仓库里有一叠被编上号的书,共40本。
已知每下面一本书都比上面一本书的编号多5,最后一本书的编号是225,问第一本书的编号是几?2.学校举办运动会,共54个人参加,每人都有参赛号码。
已知前一个人的号码比后一个人的号码总是少4,最后一个人的号码是215,第一个人的号码是多少?例三等差数列4,12,20,...中,580是第几项?练习三1.等差数列3,9,15,21,...中,381是第几项?2.糖果生产商为机器编号,依次为7,13,19,25,...问编号为433的机器是第几个?3.医院为病床编号,依次为8,14,20,26,...问编号为284的病床是第几张?例四一批货箱,上面的标号是按等差数列排列的,第一项是3.6,第五项是12,求它的第二项。
奥数等差数列
第七讲等差数列(1)1; 2; 3; 4; 5; 6; 7; 8;(2)2: 4; 6: 8; 10: 12; 14; 16;—(3)1; 4; 9: 16: 25; 36; 49;…上面三组数都是数列.数列中称为项;第一个数叫第一项:又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列. 后项与前项的差叫做这个等差数列的公差.如等差数列:4; 7; 10; 13: 16; 19: 22; 25; 28.首项是4;末项是28:共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1; 5: 9: 13: 17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置:小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形:最上面的一层有5根圆木:每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+-+97+98+99+100二?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4; 7: 10; ......... 295: 298中298是第几项?2.蜗牛每小时都比前一小时多爬0. 1米:第10小时蜗牛爬了1. 9米:第一小时蜗牛爬多少米?3.在树立俄;10: 13: 16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0. 1+0. 3+0. 58. +0. 7+0. 9+0 11+0 13+0 15+-0 99 的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级:各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12:求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4. 9米;以后每秒落下的距离是都比前一秒多9. 8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1; 2: 3;•••; 98; 99; 1002; 3: 4;…99; 100; 1013; 4: 5;…;100; 101: 102100, 101, 102, -197, 198, 199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8; 15; 22; ( ); 36;•••;(2)17; 1; 15;1: 13; 1; ( ); ( );9;1;•••;(3)45; 1; 43;3: 41; 5; ( );( );37; 9;•••;(4)1; 2; 4; 8: 16; ( ); 64;•••;(5)10; 20; 21:42; 43; ( );( );174; 175;•••;(6) 1 ; 2; 3; 5:8: 13; 21 ;( );55.(7)1; 2; 3; 2: 3; 4; 3: 4; 5; 4; 5; 6; 6; 7;…从第一个数算起;前100个数的和是多少?练习与思考(第1题30分:其余每题10分:共100分.)(1)找规律;在括号内填上合适的数.(2)1,3,9,27, ( ),243;(3)2, 7, 12, 17,22, ( ), ( ),37;(4)1,3, 2,4, 3, ( ),4;(5)0,3,8, 15, 24, ( ) ,.48;(6)6, 3, 8, 5, 10, 7, 12,9, ( ), 11;(7)2, 3, 5, ( ), ( ), 17, 23;(8)81,64, ( ); 36; ( ); 16; 9: 4; 1;(9)1; 8; 9; 17; 26; ( ); 69;(10)4; 11; 18; 25; ( ); 39; 46;2.一串数按下面规律排列:1; 3: 5; 2; 4: 6; 3: 5; 7; 4: 6; 8; 5; 7; 9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?在平面中任意作100条直线;这些直线最多能形成多少个交点?5. 在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?序! 12315算51+12+33+51+72+<序! 6789• • •算53+111+132+153+17• • •根据上面的规律;第40个序号的算式是什么?算式T+103 ”的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.rFh-k rfzii_* cE二二二壬已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?4.己知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8 在方格纸上画折线(如本讲例4图);小方格的边长是1:图中的1; 2; 3; 4;…分别表示折线扩大第1: 2: 3; 4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2: 3; 4; 8:16:(); 64;128.(2)5;10; 15; 20;25: ( ); 35;40.(3)4;7:10: 13; 16;( ): 22; 25.(4)1; 1 :2; 3; 5:8; 13;21 ;()(5)1024:512; 256: ( ):64: 32: 16; 8: 4.(6)2;5:11: 20: 32;( ): 65; 86.(7)1;3:2; 4; 3: 5;( ): 6: 5.(8)1; 4; 9; 16; 25; ( ); 49; 64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵:那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ - +22+24+262.1+2+3+4+5+6+ …+1996+1997+1998三、应用题(第1〜4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9:那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米:用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张:其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2; 4; 8; 16; 32: 64; - : 1024; 2048的和;方法如下:S = 2+4+8+16+32+64+ …+1024+204822S = 4+8+16+32+64+ …+1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 - 2 = 4094即数列2: 4; 8; 16; 32: 64;…;1024; 2048 的和是4094.仔细阅读上面的求和方法;然后利用这种方法求卜面数列的和.1: 3: 9; 27; 81: 243;…;177147: 531441.。
小学奥数培优等差数列含答案
第四讲等差数列一解题方法若干个数排成一列;称为数列..数列中的每一个数称为一项;其中第一项称为首项;最后一项称为末项;数列中数的个数称为项数..从第二项开始;后项与其相邻的前项之差都相等的数列称为等差数列;后项与前项的差称为公差..引例:等差数列:3、6、9、…、96;这是一个首项为3;末项为96;项数为32;公差为3的数列..计算等差数列的相关公式:1通项公式:第几项=首项+项数-1×公差2项数公式:项数=末项-首项÷公差+13求和公式:总和=首项+末项×项数÷2注:在等差数列中;如果已知首项、末项、公差;求总和时;应先求出项数;然后再利用等差数列求和公式求和..例题1 有一个数列:4、7、10、13、…、25;这个数列共有多少项解:由等差数列的项数公式:项数=末项-首项÷公差+1;可得;项数=25-4÷3+1=8;所以这个数列共有8项..引申 1、有一个数列:2;6;10;14;…;106;这个数列共有多少项 ..答:这个数列共有27项2、有一个数列:5;8;11;…;92;95;98;这个数列共有多少项答: 这个数列共有19项3、在等差数列中;首项=1;末项=57;公差=2;这个等差数列共有多少项答:这个等差数列共有29项..例题2 有一等差数列:2;7;12;17;…;这个等差数列的第100项是多少解:由等差数列的通项公式:第几项=首项+项数-1×公差;可得;第100项=2+1OO-1×5=497;所以这个等差数列的第100项是497..引申 1、求1;5;9;13;…;这个等差数列的第3O项.. 答案:第30项是117..2、求等差数列2;5;8;11;…的第100项..答案: 第100项是299..3、一等差数列;首项=7;公差=3;项数=15;它的末项是多少答案:末项是49..例题3 计算2+4+6+8+…+1990的和..提示:仔细观察数列中的特点;相邻两个数都相差2;所以可以用等差数列的求和公式来求..解:因为首项是2;末项是1990;公差是2;昕以;项数=1990-2÷2+1=995;再根据等差数列的求和公式:总和=首项+末项×项数÷2;解出2+4+6+8+…+1990=2+1990×995÷2=991020..计算1+2+3+4+…+53+54+55的和.. 2、计算5+10+15+20+ +190+195+200的和..3、计算100+99+98+…+61+60的和例题4 计算1+3+5+…+l99l-2+4+6+…+1990提示:仔细观察算式中的被减数与减数;可以发现它们都是等差数列相加;根据题意可以知道首项、末项和公差;但并没有给出项数;这需要我们求项数;按照这样的思路求得项数后;再运用求和公式即可解答..解:被减数的项数=1991-1÷2+1=996;所以被减数的总和=1+1991×996÷2=992016;减数的项数=l990-2÷2+1=995;所以减数的总和=2+1990×995÷2=991020.所以原式=992016-991020=996..引申1、计算1+3+5+7+…+2003-2+4+6+8+…+2002 答案: 10022、计算2+4+6+…+100-1+3+5+…+99 答案:503、计算2OO1+1999+1997+1995-2OOO+1998+1996+1994..答案:4例题5 已知一列数:2;5;8;11;14;…;80;…;求80是这列数中第几个数..1、有一列数是这样排列的:3;11;19;27;35;43;51;…;求第12个数是多少.. 912、有一列数是这样排列的:2;11;20;29;38;47;56;…;求785是第几个数.. 88。
小学奥数等差数列求和习题及答案
等差数列求和知识精讲一、定义:一个数列的前〃项的和为这个数列的和.二、表达方式:常用S.来表示.三:求和公式:和=(首项+末项)X项数+2, = (%+%)x/? + 2.对于这个公式的得到可以从两个方而入手:(思路1) 1 + 2+3 +…+98 + 99 + 100= (14-100)+(2 + 99)+(3 + 98) + ... + (50 + 51) =101x50 = 5050共50个1.1(思路2)这道题目,还可以这样理解:和=1 + 2 + 3 + 4 +・・・+ 98 + 99 +100+ 和=ioo+ 99 + 98 + 97+…+ 3 + 2+12 倍和= 101+ 101+ 101+ 101+…+ 101+ 101+ 101即,和=(100 + 1)x100 + 2=101x50=5050.四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半:或者换句话说,各项和等于中间项乘以项数.譬如:① 4+8 + 12+…+ 32 + 36 = (4 + 36)x9 + 2 = 20x9 = 1800,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20x9;②65 + 63 + 61+…+5 + 3 + 1 = (1 + 65)x33 + 2 = 33x33=1089,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33x33 o例题精讲:例1:求和:(1) 1+2+3+4+5+6 = (2) 1+4+7+11+13=(3) 1+4+7+11+13+-+85=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如(3)式项数二(85-1) 4-3+1=29和二(1+85) X294-2=1247答案:(1) 21 (2) 36 (3) 1247例2:求以下各等差数列的和.(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如⑴式二(1+199) X 1994-2=19900答案:(1) 19900 (2) 1160 (3) 5355例3: 一个等差数列2, 4, 6, 8, 10, 12, 14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8x7 = 56答案:56例4:求1+5+9+13+17……+401该数列的和是多少.分析:这个数列的首项是1,末项是401,项数是(401-1) =4+1=101,所以根据求和公式, 可有:和二(1+401) X101-? 2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+ (61-1) X3=182根据求和公式:和二(2+182) X614-2=5612例6:把自然数依次排成“三角形阵",如图.第一排1个数;第二排3个数:第三排5个数:…求:1(1)第十二排第一个数是几?最后一个数是几? 2 3 45 6 7 8 910 11 12 13 14 15 16(2) 207排在第几排第几个数?...................(3)第13排各数的和是多少?分析:整体看就是自然数列,每排的个数的规律是1,3, 5, 7...即为奇数数列假设排数为n(n>2de自然数),那么这排之前的数共有(n-1) (n-1)个.(1)第十二排共有23个数.前而共有(1+21) Xll+2=121个数,所以第十二排的第一个数为122,最后一个数为122+ (23-1) X 1=144(2)前十四排共有196个数,前十五排共有225个数,所以207在第十五排,第十五排的第一个数是197,所以207是第(207-197=10)个数(3)前十二排共有144个数,所以第十三排的第一个数是145,而第十三排共有25 个数,所以最后一个数是145+ (25-1) X 1=169,所以和二(145+169) X25^-2=3925答案:(1) 122; 144 (2)第十五排第10个数(3) 3925例7: 15个连续奇数的和是1995,其中最大的奇数是多少?分析:由中项定理,中间的数即第8个数为:1995 - 15 = 133,所以这个数列最大的奇数即第15个数是:133 + 2x(15-8) = 147 0答案:147.例8:把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?分析:由题可知:由210拆成的7个数必构成等差数列,那么中间一个数为210 + 7=30,所以, 这7 个数分别是15、20、25、30、35、40、45.即第1个数是15,第6个数是40.答案:第1个数:15:第6个数:40.例9:等差数列15, 19, 23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?分析:公差二19T5=4项数二(443-15) 4-4+1=108倒数第二项=443-4=439奇数项组成的数列为:15, 23, 31……439,公差为8,和为(15+439) X 544-2=12258 偶数项组成的数列为:19, 27, 35……443,公差为8,和为(19+443) X544-2=12474 差为12474-12258=216答案:216例10:在1〜100这一百个自然数中,所有能被9整除的数的和是多少?分析:每9个连续数中必有一个数是9的倍数,在1〜100中,我们很容易知道能被9整除的最小的数是9 = 9x1,最大的数是99 = 9x11,这些数构成公差为9的等差数列,这个数列一共有:11 — 1 + 1 = 11 项,所以,所求数的和是:9 + 18 + 27 +…+99 = (9 +99)x11+2 = 594. 也可以从找规律角度分析.答案:594例11: 一串数按下面的规律排列:1、2、3、2、3、4、3、4、5、4、5、6……问:从左面第一个数起,前105个数的和是多少?分析:这些数字直接看没有什么规律,但是如果3个一组,会发现这样一个数列:6, 9,12, 15 ............即求首项是6,公差是3,项数是105+3=35的和末项末+3* (35-1) =108和二(6+108) *35+2=1995例12:在下而12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16 已经填好,这12个数的和为.□ □□ □□画□□画□□□分析:由题意知:这个数列是一个等差数列,又由题目给出的两个数10和16知:公差为2, 那么第一个方格填26 ,最后一个方格是4 ,由等差数列求和公式知和为:(4 + 26)x12 + 2 = 180.答案:180.本讲小结:L 一个数列的前〃项的和为这个数列的和,我们称为.2.求和公式:和=(首项+末项)x项数+2 , = (% + %)x〃 +2.3.对于任意一个奇数项的等差数列,各项和等于中间项乘以项数.练习:1.求和:(1) 1+3+5+7+9= (2) 1+2+3+4+・・・+21 二(3) 1+3+5+7+94-- + 39=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和. 答案:(1) 25 (2) 231 (3) 4002.求以下各等差数列的和.(1)1+2+3+…+100(2)3+6+9+…+39分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和. 答案:(1) 5050 (2) 2733. 一个等差数列4, 8, 12,16, 20, 24, 28, 32, 36这个数列的和是多少?分析:根据中项定理,这个数列一共有9项,各项的和等于中间项乘以项数,即为:20X9=180答案:1804.所有两位单数的和是多少?分析:即求首项是11,末项是99的奇数数列的和为多少.和二(11+99) X 45+2=2475答案:24755.数列1、5、9、13、……,这串数列中,前91个数和是多少?分析:首项是1,公差是4,项数是91,根据重要公式,可得:末项= 1+ (91-1) X4=361和二(1+361) X914-2=16471答案:164716.如图,把边长为1的小正方形叠成“金字塔形〞图,其中黑白相间染色,如果最底层有15个正方形,问:“金字塔〞中有多少个染白色的正方形,有多少个染黑色的正方于分析:由题意可知,从上到下每层的正方形个数组成等差数列, 厂其中4=1, 〞 = 2,?=15,所以〃 = (15-D+2 + l=8,所以,白色方格数是:1 + 2 + 3 +…+ 8=(l + 8)x8 + 2 = 36黑色方格数是:1 + 2 + 3 +…+7=(l + 7)x7 + 2 = 28.答案:287. (2005 + 2006 + 2007 + 2021 + 2021 + 2021 + 2021^ 2021 =.分析:根据中项定理知:2005 + 2006 + 2007 + 2021 + 2021 + 2021 + 2021=2021 x 7,所以原式= 2021x7^2021 = 7 o答案:7.8.把248分成8个连续偶数的和,其中最大的那个数是多少?分析:公差为2的递增等差数列.平均数:248 ・ 8=31,第4 个数:31-1=30:首项:30-6=24:末项:24+ (8-1) X2=38O即:最大的数为38.答案:389.求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.分析:解法1:可以看出,2, 4, 6, 2000是一个公差为2的等差数列,1, 3, 5,…,1999也是一个公差为2的等差数列,且项数均为1000.所以:原式二(2+2000)X10004-2- (1+1999) X1000-?2=1000解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式二1000X1=100010.在1~ 100这一百个自然数中,所有不能被9整除的数的和是多少?分析:先计算1~ 100的自然数和,再减去能被9整除的自然数和,就是所有不能被9整除的自然数和了^ 1 + 2 +…+100 = (1 + 100)x100 +2 = 5050 ,9 + 18 + 27 +…+99 = (9 + 99)x11+2 = 594 ,所有不能被9整除的自然数和:5050-594 = 4456.如果直接计算不能被9整除的自然数和,是很麻烦的,所以先计算所有1~100的自然数和,再排除掉能被9整除的自然数和,这样计算过程变得简便多了.答案:59411.一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?分析:观察发现,这堆钢管的排列就是一个等差数列:首项是3,公差是1 ,末项是10, 项数是8根据求和公式,和二(3+10)根+2=52 (根)所以这堆钢管共有52根.答案:52根.12.求100以内除以3余2的所有数的和.解析:100以内除以3余2的数为2、5、8、11、……98公差为3的等差数列,首先求出一共有多少项,(98-2)+3+1 = 33 ,再利用公式求和(2+98)x 33 + 2 = 1650 0。
小学生奥数等差数列练习题及答案
小学生奥数等差数列练习题及答案1.小学生奥数等差数列练习题及答案1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、……。
从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。
3、把1988表示成28个连续偶数的和,那么其中的那个偶数是多少?。
解答:28个偶数成14组,对称的2个数是一组,即最小数和数是一组,每组和为:1988÷14=142,最小数与数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:34×29+29=35×2934×30+30=35×3034×31+31=35×3134×32+32=35×3234×33+33=35×33以上数的和为35×(29+30+31+32+33)=54255、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
4年级奥数培优讲义-1-等差数列-难版
- 1 - 精品资料之奥数培优讲义适用:华杯、希望、年级:四年级科目:小学奥数内容:奥数培优教程(资料来源于学校内部,供各位老师学习交流使用,欢迎大家下载参考)按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项。
第二个数叫第二项,…,最后一个数叫做末项。
(1)1,2,3,4,5,...,100; (2)1,3,5,...,33; (3)5,10,15, (105)这三个数列都有共同的规律:从第二项起,每一项与它前面一项的差都相等,这样的数列叫等差数列。
后项与前项的差叫该数列的公差。
如第一个数列中,公差=2-l=1;第二个数列中,公差=3-l=2;第三个数列中,公差=10-5=5。
等差数列的求和公式:和=(首项+末项)×项数÷2 以及另外两个重要公式:(1)项数=(末项-首项)÷公差+l (2)末项=首项+公差×(项数-1)【例1】★把比100大的奇数从小到大排成一列,其中第21个是多少?【解析】该数列为等差数列,首项为101,公差为2,第21个数的项数为21.则101+(21-1)×2=141【小试牛刀】2,5,8,11,14……是按照规律排列的一串数,第21项是多少? 【解析】此数列为一个等差数列,将第21项看做末项。
末项=2+(21-1)×3=62【例2】★从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。
【解析】199 典型例题知识梳理【小试牛刀】观察右面的五个数:19、37、55、a 、91排列的规律,推知a =________ 。
【解析】19+18=37,37+18=55,所以a =55+18=73【例3】★2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【解析】方法一:利用等差数列的“中项定理”,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值,五个连续偶数的中间一个数应为320564÷=,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.【小试牛刀】1、3、5、7、9、11、是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?【解析】我们可以找中间的两个数其中一个为y ,那么这8个数为:6y -,4y -,2y -,y ,2y +,4y +,6y +,8y +,根据题意可得:88256y +=,所以31y =,最大的奇数是839y +=.【例4】★在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994. 【解析】每个数比前一个数大7,根据求通项1(1)n a a n d =+-的公式得1()1n n a a d =-÷+,列式得: (19946)7284-÷=2841285+=即第285个数是1994.【小试牛刀】5、8、11、14、17、20、,这个数列有多少项?它的第201项是多少?65是其中的第几项?【解析】它是一个无限数列,所以项数有无限多项.第n 项=首项+公差1n ⨯-(),所以,第201项532011605=+⨯-=(),对于数列5,8,11,,65,一共有:6553121n =-÷+=(),即65是第21项.【例5】★★⑴如果一个等差数列的第4项为21,第6项为33,求它的第8项.⑵如果一个等差数列的第3项为16,第11项为72,求它的第6项.【解析】⑴要求第8项,必须知道首项和公差.第6项-第4项64=-⨯()公差 ,所以 , 公差6=;第4项=首项3+⨯公差 ,21=首项36+⨯,所以,首项3= ;第8项=首项7+⨯公差45= .⑵公差7=,首项2=,第6项37=.【小试牛刀】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是多少?【解析】71-50=21。
全国通用四年级下册数学试题-培优:等差数列应用(解析版)
差数列,其中首项a1 1 ,公差d 2 ,末项an =35 ,那么n (an a1) d 1 (35 1) 2 1 18 ;
再看投放石子每次走的路程依次组成的数列:1,4,7,10,这又是一个等差数列,其中首项a ,1 1 ,
公 差 d , 3 , 项 数 n 18 . 末 项 a , a , (n 1) d , 1 (18 1) 3 52 , 其 和 为
【答案】19
7、小明进行加法珠算练习,用1 2 3 4 ,当加到某个数时,和是 1000.在验算时发现重复加了一 个数,这个数是多少?
【解析】通 过 尝 试 可 以 得 到 1 2 3 1000 990 10 .
【答案】10
44 (1 44) 44 2 990 . 于 是 , 重 复 计 算 的 数 是
8、黑板上写有从 1 开始的一些连续奇数: 1,3,5,7,9,…,
擦去其中一个奇数以后,剩下的所有奇数的和是 2008,那么擦去的奇数是 .
【解析】1,3,5,7, ,(2n 1 ),这 n 个奇数之和等于 n2 ,452 2025 ,擦去的奇数是 2025 2008 17 . 【答案】17
【答案】 27
13、若干个同样的盒子排成一排,小明把 50 多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子, 然后他外出了,小光从每个有棋子的盒子里各拿了一个棋子放在空盒内,再把盒子重新排了一下,小明回来后 仔细查看了一下,没有发现有人动过这些盒子和棋子.共有多少个盒子?
【解析】 这道看似蹊跷的题想要求出共有多少个盒子,必须先弄清楚小明盒子中的棋子是怎样放的. 我们设除了空盒子以外一共有 n 个盒子.小明回来查看时,原来那个空盒子现在不空了,但是小明 却没有发现有人动过这些盒子和棋子,那么一定是有另一个盒子现在变成了空盒子.这样,原来小 明放置棋子时必有一个盒子只装着一个棋子. 原来只装着一个棋子的盒子变成了空盒子以后,还需要一个盒子装一个棋子来代替它,那么这个代 替它的盒子原来一定只装着 2 个棋子,依此类推,可以推断出小明所放的棋子依次是 0,1,2, 3, ,n. 根 据 这 个 等 差 数 列 的 和 等 于 50 多 , 通 过 尝 试 求 出 当 n 10 时 , 1 2 3 10 (1 10)10 2 55 满足题意,其余均不满足.这样,只能是n 10 ,即共有 11 个盒子.
小学奥数教程-等差数列计算题2 (含答案)
一、常用公式1. (1)1232n n n ⨯+++++=L ; 2. 2222(1)(21)1236n n n n ⨯+⨯+++++=L ;3. ()2223333(1)1231234n n n n ⨯+++++=++++=L L ;4. ()()()213572112311321n n n n n +++++-=++++-++-++++=L L L ;5. 等比数列求和公式:0111111(1)1n n n a q S a q a q a q q --=++⋅⋅⋅+=-(1q ≠);6. 平方差公式:()()22a b a b a b -=+-;7. 完全平方公式:()2222a b a ab b +=++,()2222a b a ab b -=-+;用文字表述为:两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:()2222a b a ab b ±=±+.为便于记忆,可形象的叙述为:“首平方,尾平方,2倍乘积在中央”.二、常用技巧1. 1001abcabc abc =⨯;2.10101ababab ab =⨯;3. ··10.1428577=,··20.2857147=,··30.4285717=,··40.5714287=,··50.7142857=,··60.8571427=;4. 1111111111123321n n n ⨯=L L L L 123123个个,其中9n ≤.一、前n 项和【例 1】 222213519++++L【考点】公式法之求和公式 【难度】2星 【题型】计算 【解析】 222213519++++L2222222(12319)(2418)=++++-+++L L 222119203941296=⨯⨯⨯-⨯+++L ()12470910196=-⨯⨯⨯2470285=-2185=公式法计算例题精讲知识点拨【答案】2185【巩固】 222222222221245781011131416++++++++++【考点】公式法之求和公式 【难度】3星 【题型】计算 【解析】 原式22222222(1216)(3691215)=+++-++++L2222222221617335611(1216)3(12345)96614964951001⨯⨯⨯⨯=+++-⨯++++=-⨯=-=L 【答案】1001【例 2】 计算:36496481400+++++L【考点】公式法之求和公式 【难度】3星 【题型】计算 【解析】 原式222267820=++++L ()2222222221232012345=++++-++++L11202141561166=⨯⨯⨯-⨯⨯⨯ 2870552815=-=【答案】2815【例 3】 计算:3333333313579111315+++++++【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 原式()333333333123414152414=++++++-+++L L ()()223331515181274⨯+=-⨯+++L22576002784=-⨯⨯8128=【答案】8128【巩固】 计算:333313599++++=L ___________.【考点】公式法之求和公式 【难度】3星 【题型】填空 【解析】 与公式()()222333112124n n n n ++++=++=L L 相比,333313599++++L 缺少偶数项,所以可以先补上偶数项.原式()()333333312310024100=++++-+++L L()2233331100101212504=⨯⨯-⨯+++L 22322111001012505144=⨯⨯-⨯⨯⨯ ()22250101251=⨯-⨯12497500=【答案】12497500【例 4】 计算:33312320061232006+++⋅⋅⋅++++⋅⋅⋅+【考点】公式法之求和公式 【难度】3星 【题型】填空 【解析】 原式()212320061232006+++⋅⋅⋅+=+++⋅⋅⋅+1232006=+++⋅⋅⋅+()12006200612=⨯⨯+2013021=【答案】2013021【例 5】 计算:2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯=L 。
小学奥数教程-等差数列计算题.教师版(11)全国通用(含答案)
2a ba 22ab b 2.为便于记忆,可形象的叙述为:首平方,尾平方,2倍乘积在中央、常用技巧1. abcabc abc 1001 ;2. ababab ab 10101 ;3. 1 0.142857 , 2 0.285714 , 30.428571 ,7 7 7 4 1 5 1 6—0.571428 , — 0.714285 , — 0.857142 ; 7 7 7 4. %驰 %邨 123|||n||(321 ,其中 n 9.n 个1n 个1且隹例题精讲一'、前n 项和 【例 1】12 32 52"192【考点】公式法之求和公式 【解析】12 32 52 "I 192(12 22 32 ||| 192) (221 /2 2 —19 20 39 4 (1 2 6自tut/、常用公式1.2 3III2. 12 22 323. 13 23 334.5.6. 7.知识点拨IIIIll 10 n (n 1) 2n 等比数列求和公式: 平方差公式: b2n (n 1) (2n 1)S n II IIl la〔q1a 〔q公式法计算22n (n 1) a 〔qn n 1III a 1(q n1)(q 3 2 1 n2;1);完全平方公式: 用文字表述为:2ab b 2,2 一2a 2ab b两数和(或差)的平方,等于这两个数的平方和, 加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:【难度】2星42 || 182)III 92) 【题型】计算57600 门平 c2 ---- 2 7 8 4 8128【答案】81281 2 23333-100 101 21 2 501 2 2 3 1 2 2 —100 101 2 50 51 4 42470 2470【答案】21851—9 10 19 6285 2185 222222【巩固】124 5 7 8 【考点】公式法之求和公式【解析】原式(12 22 I0 162) (12 22 ||| 162) 2222210 11 13 14 16【难度】3星 (32 62 92 122 152)32 (12 2232 4252) 【题型】计算16 17 33 5 6 11--------- 9 ---------6 61496 495 1001【答案】1001[例 2 ] 计算:36 49 64 81 III 400 【考点】公式法之求和公式 【难度】3星【解析】原式62 72 82 H 2021222 32 ” 20212 2 2 32 42 521 120 21 41 5 6 11 6 6 2870 55 2815【答案】2815【题型】计算【例3】 计算:13 33 53 73 【考点】公式法之求和公式 33339 11 13 15【难度】3星【题型】计算【解析】原式13 23 33 432215 15 1 ---------- 8 III 143 13 23 153 III 23 73 43 III314【巩固】计算:13 33 53 \\\ 【考点】公式法之求和公式 【解析】 与公式13 23\\\ n 3先补上偶数项. 3991 2【难度】3星212n n m -------- 相比,4【题型】填空13 33 53”993缺少偶数项,所以可以原式 13 23 33 \\\ 100323 43 \\\ 1003_2 _2_ 2502 1012 2 512 12497500 【答案】124975001 23 33 20063【例4 ] 计算:------------------------------ 11 2 3 2006【关键词】西城实验 2003 2 2001 22 13 5 I]) 2001 2 1 2003 1002 2 2008008其中也可以直接根据公式 1 3 5 7 “ 2n 1 n 2得出1 3 5 ” 2001 2003 10022【答案】2008008 【例 6】计算:1 22 2 32 3 42 \[[ 18 192 19 202 【考点】公式法之求和公式 【难度】3星【题型】计算【解析】 分拆(21) 22 23 22 (3 1 ) 32 33321HHi 再用公式4 川丁( I( (J (II ( ( ( ( ( ( \J I ) 。
三年级奥数题及参考答案等差数列基础练习
三年级奥数题及参考答案:等差数列基础练习编者导语:数学竞赛题代表了活的数学。
解竞赛题虽离不开一般的思维规律,离不开数学知识,也有一些使用频率较大的方法和技巧,但大都没有常规模式可套,也无万能范本可循。
且赛题内容不断更新,重要的是整体全局上的洞察力、敏锐的直觉和独创性的构思。
查字典数学网为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:等差数列基础练习,可以帮助到你们,助您快速通往高分之路!!1、一个递增(后项比前项大)的等差数列,第28项比第53项(多或少)个公差。
2、一个递增(后项比前项大)的等差数列,第53 项比第28 项(多或少)个公差。
3、一个递增(后项比前项大)的等差数列,第55 项比第37 项(多或少)个公差。
4、一个递增(后项比前项大)的等差数列,第55 项比第83 项(多或少)个公差。
5、一个递增(后项比前项大)的等差数列,第28项比第73项(多或少)个公差。
6、一个递增(后项比前项大)的等差数列,第90项比第73项(多或少)个公差。
7、一个递增(后项比前项大)的等差数列,首项比第73 项(多或少)个公差。
8、一个递增(后项比前项大)的等差数列,第87 项比首项(多或少)个公差。
9、一个递减(后项比前项小)的等差数列,第18项比第32 项(多或少)个公差。
10、一个递减(后项比前项小)的等差数列,第32项比第 18 项(多或少)个公差。
11、一个递减(后项比前项小)的等差数列,第74项比第26项(多或少)个公差。
12、一个递减(后项比前项小)的等差数列,第74项比第91 项(多或少)个公差。
13、一个递减(后项比前项小)的等差数列,第29项比第 86 项(多或少)个公差。
14、一个递减(后项比前项小)的等差数列,第123 项比第86项(多或少)个公差。
15、一个递减(后项比前项小)的等差数列,首项比第76 项(多或少)个公差。
16、一个递减(后项比前项小)的等差数列,第76项比首项(多或少)个公差。
小学奥数等差数列求和习题及答案
等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
小学奥数 等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
四年级下册数学试题-奥数培优:利用等差规律计算(含答案)全国通用
课 题利用等差规律计算教学内容在小学数学竞赛中,常出现一类有规律的数列求和问题在三年级我们已介绍过高斯的故事,他之所以算得快,算得正确,就在于他善于观察,发现了等差数列求和规律. 1+2+3+---+98+99+10050101=1+100+2+99++50+51 1444442444443共()()()= 101×50,即 (100 +1)×(100÷2)=101×50=5050.按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项……最后一个数叫末项.如果一个数列从第二项开始,每一项与它前面一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差.如: 1,2,3,4.…是等差数列,公差为l ; l ,3,5,7,…是等差数列,公差为2; 5,10,15,20,…是等差数列,公差为5.由高斯的巧算可知,在等差数列中,有如下规律: 项数=(末项首项)÷公差+1 第几项=首项+(项-1)×公差 总和=(首项十末项)×项数÷2本讲用各种实例展示了等差数列的广泛应用价值,我们要求同学们注意灵活应用这三个公式计算下面各题:(1) 2+5+8+…+23+26+29;(2)(2+4+6+...+100) - (1+3+5+ (99)解(1)这是一个公差为3、首项为2、末项为29、项数为(29 -2) ÷3+1=10的等差数列求和,原式= (2+29)×10÷2=31×10÷2=155.(2)解法一原式=(2+100)×50÷2-(1+99)×50÷2=2550 - 2500=50,解法二原式= (2-1)+(4-3)+(6-5)+…+(100 - 99)=l×50= 50.两种解法相比较,解法一直接套公式,平平淡淡;解法二从整体上把握了题目的运算结构和数字特点,运用交换律和结合律把原式转化成了整齐的结构“1+1+…+1”,因而解得更巧、更好计算:l÷2010 +2÷2010 +3÷2010 +…+2008÷2010+2009÷2010+ 2010÷2010如果按照原式的顺序,先算各个商,再求和,既繁又难,由于除数都相同,被除数组成一个等差数列:1,2,3,4,…,2008,2009,2010.所以可根据除法的运算性质,先求全部被除数的和,再求商解原式= (1+1+2+3+…+2009+2010)÷2010= (1- 2010)×2010÷2÷2010=1000. 5此题解法巧在根据题目特点,运用除法性质进行转化计算中又应用乘除混合运算的简化运算.使整个解答显得简捷明快。
三年级奥数题及参考答案:等差数列基础练习
三年级奥数题及参考答案:等差数列根底练习编者导语:数学竞赛题代表了活的数学。
解竞赛题虽离不开一般的思维规律,离不开数学知识,也有一些使用频率较大的方法和技巧,但大都没有常规形式可套,也无万能范本可循。
且赛题内容不断更新,重要的是整体全局上的洞察力、敏锐的直觉和独创性的构思。
查字典数学网为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:等差数列根底练习,可以帮助到你们,助您快速通往高分之路!!1、一个递增〔后项比前项大〕的等差数列,第28项比第 53项________〔多或少〕______个公差。
2、一个递增〔后项比前项大〕的等差数列,第53 项比第28 项________〔多或少〕______个公差。
3、一个递增〔后项比前项大〕的等差数列,第55 项比第37 项________〔多或少〕______个公差。
4、一个递增〔后项比前项大〕的等差数列,第55 项比第83 项________〔多或少〕______个公差。
5、一个递增〔后项比前项大〕的等差数列,第28项比第73项________〔多或少〕______个公差。
6、一个递增〔后项比前项大〕的等差数列,第90项比第73项________〔多或少〕______个公差。
7、一个递增〔后项比前项大〕的等差数列,首项比第73 项________〔多或少〕______个公差。
8、一个递增〔后项比前项大〕的等差数列,第87 项比首项________〔多或少〕______个公差。
9、一个递减〔后项比前项小〕的等差数列,第18项比第 32 项________〔多或少〕______个公差。
10、一个递减〔后项比前项小〕的等差数列,第32项比第18 项________〔多或少〕______个公差。
11、一个递减〔后项比前项小〕的等差数列,第74项比第26项________〔多或少〕______个公差。
12、一个递减〔后项比前项小〕的等差数列,第74项比第91 项________〔多或少〕______个公差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲等差数列(一)
解题方法
若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引例】:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
计算等差数列的相关公式:
(1)通项公式:第几项=首项+(项数-1)×公差
(2)项数公式:项数=(末项-首项)÷公差+1
(3)求和公式:总和=(首项+末项)×项数÷2
注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项
【提示】仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
引申
1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
答:这个数列共有27项
2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?
答:这个数列共有19项
3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?
答:这个等差数列共有29项。
例题2有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?
提示:仔细观察可以发现,后项与其相邻的前项之差等于5,所以这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答
解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。
引申
1、求1,5,9,13,…,这个等差数列的第3O项。
答案:这个等差数列的第30项是117。
2、求等差数列2,5,8,11,…的第100项。
答案:这个等差数列的第100项是299。
3、一等差数列,首项=7,公差=3,项数=15,它的末项是多少?
答案:它的末项是49。
例题3计算2+4+6+8+…+1990的和。
提示:仔细观察数列中的特点,相邻两个数都相差2,所以可以用等差数列的求和公式来求。
解:因为首项是2,末项是1990,公差是2,昕以,项数=(1990-2)÷2+1=995,再根据等差数列的求和公式:总和=(首项+末项)×项数÷2,解出2+4+6+8+…+1990=(2+1990)×995÷
2=991020。
引申
1、计算1+2+3+4+…+53+54+55的和。
解:1+2+3+4+…+53+54+55=(l+55)×55÷2=1540。
2、计算5+10+15+20+⋯ +190+195+200的和。
解:首项=5,末项=200,公差=5,项数=(200-5)÷5+1=40,
5+10+15+20+…+190+195+200=(5+200)×40÷2=4100。
3、计算100+99+98+…+61+60的和
答:3280
例题4计算(1+3+5+...+l99l)-(2+4+6+ (1990)
提示:仔细观察算式中的被减数与减数,可以发现它们都是等差数列相加,根据题意可以知道首项、末项和公差,但并没有给出项数,这需要我们求项数,按照这样的思路求得项数后,再运用求和公式即可解答。
解:被减数的项数=(1991-1)÷2+1=996,所以被减数的总和=(1+1991)×996÷2=992016;减数的项数=(l990-2)÷2+1=995,所以减数的总和=(2+1990)×995÷2=991020.所以原式
=992016-991020=996。
引申
1、计算(1+3+5+7+...+2003)-(2+4+6+8+ (2002)
答案: 1002
2、计算(2+4+6+...+100)-(1+3+5+ (99)
答案:50
3、计算(2OO1+1999+1997+1995)-(2OOO+1998+1996+1994)。
答案:4
例题5 已知一列数:2,5,8,11,14,…,80,…,求80是这列数中第几个数。
提示:仔细观察这列数可以发现,后项与其相邻的前项之差等于3,所以这是一个以2为首项,以公差为3的等差数列,求80是这列数中第几个数,实际上是求该数列的项数。
解:这列数的首项是2,末项是80,公差是3,运用公式:项数=(末项-首项)÷公差+1
即(80-2)÷3+1=27,所以80是该数列的第27项。
引申
1、有一列数是这样排列的:3,11,19,27,35,43,51,…,求第12个数是多少。
答案:第12个数是91
2、有一列数是这样排列的:2,11,20,29,38,47,56,…,求785是第几个数。
答案:785是第88个数
3、在等差数列6,13,20,27,…中,从左到右数第几个数是1994?
答案:第285个数是1994。