钢的热处理工艺
钢的普通热处理
三、 回火的分类、组织及应用
回火 回火温度
类型
(℃ )
低温回火 150~250
中温回火 250~500
高温回火 500~600
回火后 组织
M回
T回
S回
回火后硬度
性能特点
(HRC)
58~64 硬度高, 耐磨性好,
脆性、 内应力降低。
35~50
良好弹性 ,屈强比高, 一定的韧性和抗疲劳性
一般规律: 随T回↑,钢的强度、硬度↓,塑性、韧性↑。(高合金钢不遵循)
40钢力学性能与回火温度的关系
淬火钢硬度随回火温度的变化
❖ 合金钢的回火(与碳钢相比)
➢ 回火稳定性高
回火温度相应升高
➢ 合金碳化物弥散析出
二次硬化
➢ 残余奥氏体多
需多次回火
四、钢的回火脆性
➢ 回火脆性的概念:淬火钢在某些温度范围内回
1. M在过冷奥氏体低温转变中形成, M回在 淬火钢低温回火中形成;二者形态相似,光镜下
M回比M黑;强度硬度相差不大,但M回脆性已大 大降低。
回火索氏体 马氏体
2. S在过冷奥氏体高温转变中形成,S回在淬 火钢高温回火中形成;S呈层片状,S回呈颗粒状; S回比S的塑性要好。
回火马氏体
淬火钢回火后性能的变化
淬火 精度要求高的工件
新型淬火介质: 聚乙烯醇、三硝盐水溶液等。
淬火工艺
淬火后的组织:一般,
亚共析钢 0.5%C时,为M 0.5%C时,为M+A残
共析钢:M+A残 过共析钢: M+粒状Fe3C+A残
15钢淬火组织:M板条
45钢淬火组织:M板条+M片状
T8钢淬火组织:M片状+A残
10钢的热处理工艺
形变热处理
高温形变热处理是把钢加热至奥氏体化,保温一段时间,在该温度下进行塑性变形,随后淬火处理,获得马氏体组织。
高温形变热处理的应用??碳钢、低合金结构钢及机械加工量不大的锻件或轧材。
根据性能要求,高温形变热处理在淬火后,还需要进行回火。高温形变热处理的塑性变形是在奥氏体再结晶温度以上的范围内进行的,因而强化程度(一般在10%~30%之间)不如低温形变热处理大。
1.过热
2.过烧
3.氧化
4.脱碳
由于加热温度过高或时间过长造成奥氏体晶粒粗大的缺陷
淬火加热温度太高造成奥氏体晶界出现局部熔化或发生氧化的现象
淬火加热时工件与周围的氧等发生的化学反应
淬火加热时,钢中的碳与空气中的氧等发生反应生成含碳气体逸出
第三节 其他类型热处理
钢的表面热处理
化学热处理
形变热处理
(2)渗碳后的组织 常用于渗碳的钢为低碳钢和低碳合金钢,如20、20Cr、20CrMnTi、12CrNi3等。渗碳后缓冷组织自表面至心部依次为:过共析组织(珠光体+碳化物)、共析组织(珠光体)、亚共析组织(珠光体+铁素体)的过渡区,直至心部的原始组织。
(3)渗碳后的热处理 渗碳后的热处理方法有:直接淬火法、一次淬火法和二次淬火法。
从经济性原则考虑,正火的生产周期短,操作简单,工艺成本低,在满足使用和工艺性能的前提下,应尽可能用正火代替退火。
第二节 钢的淬火与回火
一、淬火 将钢加热到Ac1或Ac3以上,保温一定时间,然后快速(大于临界冷却速度)冷却以获得马氏体(下贝氏体)组织的热处理工艺称为淬火。
1.淬火应力
与渗碳相比,渗氮温度低且渗氮后不再进行热处理,所以工件变形小。 为了提高渗碳工件的心部强韧性,需要在渗氮前对工件进行调质处理。
钢的热处理工艺方式
钢的热处理工艺方式
钢的热处理工艺方式有多种,通常根据钢材的用途和要求来选择合适的热处理工艺。
以下是几种常见的钢的热处理工艺方式:
1. 淬火(Quenching):将高温加热后的钢材迅速冷却,使其组织转变为马氏体或贝氏体,从而增加钢材的硬度和强度。
2. 回火(Tempering):在淬火后,将钢材重新加热至一定温度,然后冷却至室温,通过调整回火温度和时间,可以使钢材的硬度和强度适度下降,同时还能提高钢材的韧性。
3. 规定化处理(Normalizing):将高温加热后的钢材在空气中冷却,使其组织均匀化,消除内部应力,提高钢材的韧性和延展性。
4. 淬火与回火组合(Quenching and Tempering):首先进行淬火使钢材达到一定的硬度和强度,然后进行回火处理以提高钢材的韧性,同时保持较高的强度。
5. 固溶处理(Solution Treatment):将钢材加热至足够高的温度后快速冷却,使固溶体内的溶质均匀溶解,从而改善钢材的塑性和加工性能。
6. 淬火回火组合与固溶处理相结合:根据具体需求,可以将淬火回火组合和固溶处理相结合,以综合提高钢材的硬度、韧性和耐蚀性等性能。
上述的热处理工艺方式只是钢材热处理中的一部分,不同钢材和具体要求还可以采用其他的热处理工艺方式,如时效处理、退火处理等。
热处理的选择和控制对于钢材的性能和质量有着重要的影响,需要根据具体情况进行调整和优化。
热处理工艺
3、不完全退火: 亚共析钢在Ac1~Ac3之间或过共析钢在Ac1~
4、球化退火:是使钢中的碳化物球化,获 得粒状珠光体的ቤተ መጻሕፍቲ ባይዱ种热处理工艺。
用途:主要应用于共析钢、过共析钢和高碳合金工具钢。 目的:降低硬度、均匀组织、改善切削加工性能,为淬 火做准备。 工艺参数: 加热温度:Ac1+20~30℃;过高-过低过共析钢球化退火后的组织:铁素体和球状渗碳体的混 合物,叫做球状珠光体或粒状珠光体,用P粒表示; 加热时间:一般为2~4小时或按公式计算 冷却速度:炉冷或Ar1以下〒20℃长时间等温,600 ℃ Q 8 .5 以后出炉空冷。 4
二、钢的正火(正常化或常化)
1、定义:是指将钢加热到Ac3(或ACcm)以上约 30~50℃,保温,完全A化后,从炉中取出空冷以得 到珠光体类型组织的热处理工艺,称为正火。 2、应用: ①改善切削加工性能:预备热处理 (含碳低于0.25%的---HB140-190)低碳钢 ②消除热加工缺陷,为淬火做组织准备:(中碳结构钢 铸、锻、轧件、焊接件的魏氏组织、粗大晶粒、带状 组织) ③消除过共析钢中的Fe3CⅡ,有利于球化退火的进行 (抑制二次碳化物的析出,获得伪共析体。) ④提高普通结构件的机械性能:作为最终热处理,代替 调质处理,力学性能要求不高的 中低碳钢和中低合金钢件
过共析钢的室温平衡组织为: P+Fe3CⅡ,不 仅硬度高,而且增大了钢的脆性,所以切削加 工困难,淬火时易变形、开裂;; 加热温度为Ac1以上20~30℃,在A中保留大 量的未溶渗碳体质点,并造成A的碳浓度分布 不均匀,在随后的缓冷过程中,或以原有的渗 碳体质点为核心,或在A富碳区产生新的核心, 均匀的形成颗粒状渗碳体; 球化退火前,若二次渗碳体网较厚,可先正火。
钢的热处理工艺
钢的热处理第一章钢的热处理热处理工艺包括:将钢材或钢制件加热到预定温度,在此温度下保温一定时间。
然后一定的冷却速度冷却下来,达到热处理所预定的对钢材及钢制件的组织与性能的要求。
1□□钢的加热1.1□制定钢的加热制度加热温度、加热速度、保温时间。
1.1.1加热温度的选择加热温度取决于热处理的目的。
热处理分为:淬火、退火、正火、和回火等。
淬火的目的是为了得到细小的马氏体组织,使钢具有高的硬度;退火及正火的目的是获得均匀的珠光体组织,因此其加热温度不同。
在具体制定加热温度时应按以下原则:热处理工艺种类及目的要求;被加热钢材及钢制件的化学成分和原始状态;钢材及钢制件的尺寸和形状以及加热条件来制定。
对于碳钢及低合金钢的加热温度:亚共析钢淬火温度:A C3以上30~50℃;过共析钢淬火温度:A C3以上30~50℃;亚共析钢完全退火:A C3以上20~30℃;过共析钢不完全退火:A C3以上20~30℃;正火A C3或A CM以上30~50℃;1.1.2加热速度的选择必须根据钢的化学成分及导热性能;钢的原始状态及应力状态;钢的尺寸及形状来确定加热速度。
如钢的原始状态存在着铸造应力或轧煅热变形残余应力时,在加热是应特别注意。
对这类钢要特别控制低温阶段的加热速度。
钢的变形与热裂倾向是以钢的化学成分及原始状态不同而不同,主要有以下几点:a) 低碳钢比高碳钢热烈倾向小;b) 碳钢比合金钢变形开裂倾向小;c) 钢坯和成品件比钢锭变形和开裂倾向小;d) 小截面比大截面的钢变形和开裂倾向小。
1.1.3钢在加热时的缺陷a) 过热:过热就是由于加热温度过高,加热时间过长使奥氏体晶粒过分长大。
粗大的奥氏体晶粒在冷却时产生粗大的组织,并往往出现魏氏组织,结果是钢的冲击韧性、塑性明显下降。
已过火的钢可以在次正火或退火加以纠正。
b) 强烈过热:加热温度过高或加热保温时间过长,使氧或硫沿晶界渗入钢中或者钢中的硫与氧在高温下溶解于奥氏体中,在冷却过程中硫或氧以化合物形态沿粗大的奥氏体晶界析出。
钢材常用的热处理方法及常见零件的热处理
钢材常用的热处理方法及常见零件的热处理工艺一、钢材常用的热处理方法1、正火钢的正火就是将钢加热到适当温度,保温一定时间,然后在空气中进行冷却。
正火的目的是为了材料的组织均匀,增加强度与靭性,消除粗切削加工后的加工硬化现象,改善切削加工性能,并为其后的淬火做细化晶粒的组织准备。
2、淬火钢的淬火就是将钢加热到临界温度以上,保持一定时间,然后在适当的淬火介质中进行冷却,以获得较好的组织结构和性能。
钢经过淬火后,其硬度和强度均显著提高。
钢的加热情况可以其灼热的颜色来判定。
钢加热温度的选择见表1。
钢经过淬火,虽然会提高其硬度和强度,但由于淬火会产生内应力使钢变脆,所以淬火后必须进行回火。
3、回火钢的回火就是将钢件淬火后再加热到适当温度,并保温一定时间,然后在空气中或在水、油等介质中冷却到室温。
回火的目的是为了消除淬火时产生的内应力,减少脆性,提高钢的塑性和韧性,改善加工性能。
钢的回火分为高温回火、中温回火和低温回火3种。
碳素工具钢的回火温度见表2。
表2碳素工具钢的回火温度4、退火钢的退火就是将钢加热到临界温度以上,保温适当时间,然后在炉中缓缓冷却。
退火的目的是为了消除内应力和组织不均匀及晶粒粗大等现象,降低硬度,消除坯件的冷硬现象,提岛切削加工性能。
碳钢的退火规范见表3。
表3碳钢的退火规范注:临界温度是指在该温度下,钢的组织发生了变化。
二、几种常见零件的热处理1、齿轮机床齿轮的热处理见表3。
2、蜗轮蜗轮的热处理见表43、丝杠丝杠广泛应用于机床和各种机械的传动机构中。
丝杠传动能保证直线移动有较高的精确性和均匀性。
为此,丝杠必须具有一定的强度及较高的耐磨性和精度保持性。
丝杠的材料必须具有足够的机械性能和良好的切削加工性。
经过热处理后,应具有较高的硬度和最小的变形。
为了避免弯曲变形,丝杠的热处理通常都在井式炉中进行。
丝杠如果变形,必须进行校直(并且,最好是热校直)。
但是经过校直的丝杠,必须进行彻底的消除内应力的处理。
钢材热处理的四种方法
钢材热处理的四种方法
钢材热处理是钢铁制造业中的一项重要工艺,它能够改变钢材的组织结构和性能,增强钢材的强度、韧性和耐磨性。
现在,我们将介绍热处理钢材的四种方法。
1. 火焰淬火
火焰淬火是一种常见的钢材热处理方法,它通过在钢材表面加热的同时,使用水、油或空气急冷的方式来迅速冷却钢材。
这种方法可以提高钢材的硬度和韧性,适用于生产高强度、高韧性的组件。
2. 淬火加回火
淬火加回火是一种将淬火和加回火结合起来的热处理方法。
首先,在高温下进行淬火,然后在适当的温度下进行回火,可以使钢材获得较高的强度和韧性。
这种方法适用于制造高强度和高耐磨性的零件。
3. 退火
退火是一种将钢材加热至一定温度,然后缓慢冷却的热处理方法。
这种方法可以使钢材改善韧性和可塑性,较好地适用于制造需要弯曲、拉伸和冲压的钢材产品。
4. 软化处理
软化处理是一种将钢材加热至高温,然后缓慢冷却的热处理方法。
这种方法可以使钢材获得较高的可塑性和韧性,具有优良的加工和成形
性能。
总的来说,这四种方法是钢材热处理中较为基础和常见的方法。
每种方法都有其特定的优缺点和适用范围,因此在选择热处理方法时,需要结合不同的钢材类型和使用条件来进行选择。
钢材热处理的四种方法
钢材热处理的四种方法钢材热处理是指通过加热、保温和冷却等一系列工艺,改变钢材的组织和性能,以达到一定的技术要求。
在工程实践中,钢材热处理是非常重要的一环,可以有效提高钢材的硬度、强度、韧性和耐磨性等性能。
下面将介绍钢材热处理的四种常见方法。
首先,淬火是一种常见的钢材热处理方法。
淬火是指将钢材加热至临界温度以上,然后迅速冷却到室温或低温,使其组织发生相变,从而获得高硬度和高强度。
淬火是通过快速冷却来固溶过饱和的碳元素,形成马氏体组织,从而提高钢材的硬度。
淬火后的钢材具有较高的表面硬度和内部强度,适用于制作刀具、弹簧等工件。
其次,回火是钢材热处理的另一种重要方法。
回火是指将淬火后的钢材加热至较低的温度,保温一定时间后再冷却,目的是消除淬火产生的残余应力和改善硬度。
回火可以使钢材获得适当的硬度和韧性,提高其耐磨性和抗断裂性能,适用于制作各种机械零件和工具。
另外,正火是一种钢材热处理方法,也称为退火。
正火是将钢材加热至适当温度,保温一定时间后缓慢冷却,目的是使钢材内部组织发生均匀的晶粒再结晶和析出碳化物,从而获得较好的韧性和塑性。
正火后的钢材具有较低的硬度和较高的韧性,适用于制作焊接零件和需要较高韧性的零件。
最后,固溶处理是一种钢材热处理方法,主要用于不锈钢和高温合金等特殊钢材。
固溶处理是将钢材加热至固溶温度,然后保温一定时间后迅速冷却,目的是溶解钢材中的合金元素和固溶相,从而提高钢材的塑性和加工性能。
固溶处理后的钢材具有较好的塑性和韧性,适用于制作航空发动机零件和化工设备等高温高压工件。
综上所述,钢材热处理的四种方法分别是淬火、回火、正火和固溶处理。
每种方法都有其适用的钢材和工件类型,通过合理选择和控制热处理工艺参数,可以使钢材获得理想的组织和性能,满足不同工程要求。
在实际生产中,需要根据具体情况选择合适的热处理方法,以确保钢材具有良好的性能和可靠的使用寿命。
常用钢热处理工艺
常用钢热处理工艺热处理是一种通过改变金属结构来改善其力学性能的方法。
常用钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。
下面对这几种常用钢热处理工艺进行详细介绍。
1. 退火退火是指将钢加热到一定温度,然后缓慢冷却。
退火工艺分为完全退火和等温退火两种。
完全退火是将钢材加热至超过临界温度,然后慢慢降温。
等温退火是将钢材加热至超过临界温度,然后在等温时间内,使钢材的温度均匀,从而使钢材的组织变得均匀,于是提高了钢材的韧性。
2. 正火正火是将钢加热到一定温度,然后快速冷却。
正火一般分为低温正火,中温正火和高温正火三种。
低温正火使钢材的硬度提高,但是韧性降低。
高温正火使钢材的韧性提高,但是硬度降低。
中温正火平衡了钢材的硬度和韧性。
3. 淬火淬火是指将钢加热到超过临界温度,然后快速冷却。
淬火一般分为油淬、水淬和气淬三种。
油淬适用于要求较低的钢材,水淬适用于要求较高的钢材,气淬适用于要求最高的钢材。
淬火后钢材的硬度很高,但是韧性降低,此时需要回火来消除内部应力,提高钢材的韧性。
4. 回火回火是将淬火后的钢在一定温度下加热一段时间,然后由于自然冷却所形成的工艺。
回火分为低温回火和高温回火两种。
低温回火提高了钢材的韧性,但是硬度降低。
高温回火提高了钢材的韧性,但是硬度降低。
5. 表面淬火表面淬火是一种特殊的热处理工艺,用于提高钢材的表面硬度和耐磨性。
表面淬火和淬火不同的是,只在钢材表面进行加热和快速冷却。
这种技术对钢材表面的耐磨性提高很大,但是对钢材硬度的提高不大。
总之,钢材热处理是提高钢材力学性能的重要方法,常用的钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。
选择适当的热处理工艺可以使钢材达到最佳的机械性能。
钢的常用热处理方法及应用
7.中速、重载 齿
8.高速、轻载或高速、中载,有冲源自的小齿 轮轮9.高速、中载,无猛烈冲击,如机床主轴箱 齿轮
10.高速、中载、有冲击、外形复杂的重要 齿轮,如汽车变速箱齿轮(20CrMnTi淬透性 较高,过热敏感性小,渗碳速度快,过渡层 均匀,渗碳后直接淬火变形较小,正火后切 削加工性良好,低温冲击韧性也较好)
表面硬度要求高、变形小的齿 轮。 (2)20Cr:渗碳、淬火、低温 回火56~62HRC,用于高速、
40Cr、40MnB、(40MnVB):高频淬火,50~55HRC
压力中等、并有冲击的齿轮。 (3)40Cr:调质,
220~250HB,用于圆周速度
20Cr、20MnVB:渗碳,淬火,低温回火或渗碳后高频淬火, 不大,中等单位压力的齿轮;
低速,精度要求不高,稍有冲击,疲劳载荷可
轴
忽略的主轴;或在滚动轴承中工作,轻载,υ <1m/s的次要花键轴
类 6.在滚动或滑动轴承中工作,轻或中等载荷转 45:正火或调质,228~255HB;轴颈或装配部位表面淬 速稍高pυ≤150N·m/(cm2·s),精度要求较高, 火,45~50HRC 冲击,疲劳载荷不大
14.载荷不高的大齿轮,如大型龙门刨齿轮 15.低速、载荷不大、精密传动齿轮 齿 16.精密传动、有一定耐磨性的大齿轮 轮 17.要求抗腐蚀性的计量泵齿轮 18.要求高耐磨性的鼓风机齿轮
19.要求耐磨、保持间隙精度的25L油泵齿轮
20.拖拉机后桥齿轮(小模数)、内燃机车变速 箱齿轮 ( m = 6~8)
0.02~3.0mm,硬度高,在共渗层为0.02~0.04mm时 切削性能和使用寿命适用于要求硬度高、耐磨的中、小型及薄片的零件和
具有66~70HRC
刀具等
50号钢热处理
50号钢热处理导语:50号钢是一种常见的结构钢,广泛应用于建筑、桥梁、机械制造等领域。
为了提高50号钢的力学性能和耐磨性,热处理是一种常用的方法。
本文将介绍50号钢的热处理工艺及其对材料性能的影响。
一、热处理的概念和作用热处理是指将金属材料加热到一定温度,然后进行冷却过程的一系列工艺。
通过控制加热温度和冷却速度,可以改变钢材的组织结构,从而改善其力学性能和耐磨性。
50号钢经过热处理后,可以获得更高的强度和硬度,提高其使用寿命和耐磨性。
二、50号钢的热处理工艺1. 预热:将50号钢加热到适当的温度,以使钢材内部温度均匀。
预热温度一般为800-900摄氏度。
2. 保温:将预热后的钢材保持在一定温度下,使其达到均匀的组织结构。
保温时间根据钢材的厚度和要求的性能而定,通常为1-2小时。
3. 空冷或快速冷却:根据需要,可以选择空冷或快速冷却的方式进行钢材的冷却。
空冷是指将钢材放置在自然环境中进行冷却;快速冷却可以通过水淬、油淬等方式进行。
4. 回火:将冷却后的钢材加热到适当温度,然后进行适当时间的保温,最后冷却至室温。
回火的目的是消除内部应力,提高钢材的韧性和塑性。
三、热处理对50号钢的影响1. 强度提高:经过热处理后,50号钢的晶粒细化,晶界清晰,内部应力得到释放,从而提高了钢材的强度。
2. 硬度增加:通过控制热处理工艺,可以使50号钢获得更高的硬度,提高其耐磨性能。
3. 韧性改善:适当的回火处理可以消除冷却过程中产生的脆性组织,提高50号钢的韧性和塑性。
4. 尺寸稳定性:热处理可以改变钢材的组织结构,减少热处理后的尺寸变化,提高50号钢的尺寸稳定性。
5. 抗腐蚀性能:热处理可以改变钢材的组织结构,提高其抗腐蚀性能,延长50号钢的使用寿命。
四、热处理中的注意事项1. 温度控制:热处理过程中,要严格控制加热和保温温度,避免温度过高或过低导致材料性能下降。
2. 冷却速度控制:冷却速度过快可能导致钢材出现开裂等缺陷,冷却过慢则可能影响材料的硬度和强度。
钢的热处理
3.处理温度低,变形极小,比渗碳及表面淬火的变形小得多,一般渗氮是加工路线中最后一道工序,氮化后最多需要精磨或研磨抛光
4.具有很高的抗腐蚀性
缺点:1.渗碳时间太长,2强化渗氮必须采用特殊的合金钢
另外,由于氮的渗入,工件会略有“长大”现象。在设计尺寸要求极为严格的工件时应考虑补救
这种方法易行,设备简单,但火焰加热温度不易控制,淬火质量不够稳定
适用于单件或小批量生产的大型零件和需要局部淬火的工具或零件,如大型轴类、大模数齿轮、凹槽小孔等
常用钢材为中碳钢,如35、45及中谈合金钢,如40Cr、65Mn等,还可用于灰铸铁件、合金铸铁件。碳含量过低,淬火后硬度低,而碳和合金过高,则易脆裂,因此,以含碳量在0.35%~0.5%之间的碳素钢最适宜
低温碳氮共渗主要是为了提高合金工具钢、高速钢制工具、刀具的热硬性和耐磨性,这种碳氮共渗的结果和渗氮相似,共渗层深度可达0.02~0.06mm
中温碳氮共渗主要适用于承受压力不是很大而只受磨损的中碳结构钢零件。共渗层深度一般为0.3~0.8mm
高温碳氮共渗主要用于承受压力很大的中碳钢及合金钢的小型结构零件,也可用于低碳钢件代替渗碳,层获得1~2mm的共渗层;中温或高温碳氮共渗用于提高表面硬度、耐磨性和抗疲劳性能
3.稳定工件尺寸
钢的表面热处理
是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性,或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性及表面硬度比化学热处理更高的处理方法
名称
操作
特点
目的和应用
感应加热表面淬火
是利用感应电流通过工件表面所产生的热效应,使表面加热并经行快速冷却的淬火工艺。
3.适用于汽车、机车、柴油机、纺织机械、农业机械、机床、齿轮、枪炮、工具、模具等各种要求耐磨、耐蚀、耐疲劳的零件
热处理的4种方法
钢铁热处理的四种基本工艺什么是退火钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。
退火的目的:退火所能达到的目的主在是:消除锻件及焊接结构的应力,消除冷加工后的加工应力,避免零件在加热和使用过程中产生变形及开裂;消除铸件和锻件的不均匀组织和粗大晶粒,消除合金钢硬而脆的特性,改善其切削加工的性能,胀管时的管头,胀接前也要进行退火。
(1) 降低硬度,改善切削加工性;(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
正火与退火的区别,处理温度正火的冷却速度比退火快,得到的组织较细,工件的强度和硬度比退火高。
对于高碳钢的工件,正火后硬度偏高,切削加工性能变差,故宜采用退火工艺。
从经济方面考虑,正火比退火的生产周期短,设备利用率高,生产效率高,节约能源、降低成本以及操作简便,所以在满足工作性能及加工要求的条件下,应尽量以正火代替退火。
退火和正火可在电阻炉或煤、油、煤气炉中进行,最常用的是电阻炉。
电阻炉是利用电流通过电阻丝产生的热量来加热工件,同时用热电偶等电热仪表控制温度,操作简单、温度准确。
在加热过程中,由于工件与外界介质在高温下发生化学反应,当加热温度和加热速度控制不当或装炉不合适时,会造成工件氧化、脱碳、过热、过烧及变形等缺陷。
因此要严格控制加热温度和加热速度等。
图2-2为退火和正火的加热温度范围。
什么样叫金属冷加工硬化现象?在工程中,有时需用对钢件进行冷加工,如锻打、压延、弯曲、冲压等。
当冷加工产生塑性变形时,不但其外形发生了变化,其内部的晶粒形状也会发生变化,晶粒沿受力方向被拉长。
冷加工塑性变形较大时,还会产生较大内应力。
这种现象称为冷加工硬化。
利用冷加工硬化对钢材使用强度的提高是有限的,而冷加工硬化引起的塑性降低及残存的内应力则是有害的。
55钢热处理工艺
55钢热处理工艺55钢热处理工艺介绍•55钢是一种高强度、高硬度的钢材,广泛应用于工程结构和机械制造领域。
•热处理是提高钢材性能的重要工艺之一,能够改善钢材的力学性能和耐磨性。
热处理工艺的步骤1.加热:将55钢加热至适当温度,通常采用炉加热或者感应加热的方法。
2.保温:将加热后的钢材保持在一定温度下,使其达到均匀的显微组织。
3.冷却:将保温过程中的钢材迅速冷却,以形成所需的组织结构。
热处理工艺的类型•淬火:将加热后的钢材迅速冷却至室温,使其产生马氏体组织,提高硬度和强度。
•回火:将淬火后的钢材加热至适当温度,然后冷却,使其组织变得更稳定,提高韧性和耐蚀性。
热处理工艺参数的选择•加热温度:根据钢材的成分和所需性能来确定,一般在°C之间。
•保温时间:根据钢材尺寸和所需性能来确定,一般为1-2小时。
•冷却介质:根据钢材的类型和硬度要求来选择,常用的介质有水、油和气体等。
热处理后的性能改善•高硬度:经过淬火处理后,55钢的硬度显著提高,适用于需要高强度和耐磨性的场合。
•较高韧性:经过适当的回火处理,55钢的韧性得到提高,适用于需要较高韧性和耐冲击性的场合。
•良好的耐腐蚀性:经过热处理后,钢材的晶界清晰,晶粒细小,耐腐蚀性得到改善。
注意事项•热处理过程中,需严格控制加热温度和保温时间,以避免钢材发生过热或过淬。
•冷却介质的选择要根据具体情况来确定,以免引起钢材变形或开裂。
•热处理后的钢材需进行合理的贮存和管理,以保证其性能不受损害。
结论•55钢热处理是提高钢材性能的重要工艺,能够使钢材达到一定的硬度、韧性和耐腐蚀性要求。
•合理选择热处理工艺和参数,以及严格控制操作过程,能够保证钢材的质量和性能达到预期效果。
行业应用•55钢热处理工艺广泛应用于航空航天、汽车制造、机械制造、建筑工程等领域。
•在航空航天领域,55钢经过热处理后能够提供更高的飞行速度和载荷能力,使飞机更加安全可靠。
•在汽车制造领域,经过热处理后的55钢能够提供更好的结构强度和抗疲劳性能,提高汽车的安全性和耐久性。
45钢热处理工艺过程
45钢热处理工艺过程钢热处理工艺过程是为了改变钢材的组织结构和性能,提高其机械性能和耐用性。
钢材经过热处理后,可以获得不同的硬度、强度、塑性和耐腐蚀性能。
下面将介绍一些常见的钢热处理工艺过程。
1. 灭火灭火是钢材热处理的一种重要工艺,通过迅速冷却,使钢材的高温组织转变为马氏体,从而提高硬度和强度。
常见的灭火方法有水淬、油淬、盐浴淬等。
灭火过程中需要控制冷却速率,在不引起开裂的情况下,获得所需的硬度和强度。
2. 规定温度回火回火是一种控制钢材硬度和强度的方法。
通过在适当温度下加热一段时间,然后迅速冷却,可以使马氏体转变为多贝氏体或者余氏体,从而改变钢材的硬度和强度。
回火可以消除钢材的内应力,提高其塑性和韧性。
常见的回火温度有低温回火、中温回火和高温回火。
3. 正火正火是通过加热将钢材加热到适当温度,然后在空气中冷却使得钢材组织得到一定的改善。
正火可以使钢材得到均匀的组织,提高耐磨性和韧性。
不同的正火温度和冷却速率将获得不同的组织和性能。
4. 淬火-回火淬火-回火是将钢材加热至适当温度进行淬火后,再进行回火处理。
淬火可以提高钢材的硬度和强度,回火可以提高钢材的韧性和塑性。
淬火-回火的参数可以根据钢材的要求进行选择,以达到最佳的性能。
5. 淬硬退火淬硬退火是一种同时进行淬火和退火的工艺。
通过将钢材加热至适当温度进行淬火,然后迅速退火,使钢材的硬度、强度和耐磨性得到提高,同时保留一定的韧性和塑性。
6. 回火-高温回火回火和高温回火可以使淬火后的钢材获得不同的组织和性能。
回火温度较低可以提高硬度和强度,而高温回火温度可以降低硬度,提高韧性和塑性。
7. 焊接后热处理焊接后的钢材会产生应力和组织不均匀,需要进行热处理以消除应力和改善组织。
常见的焊后热处理方法有焊后回火、焊后退火等。
以上是钢热处理工艺过程的一些常见方法,每一种工艺过程的参数选择和控制都需要根据具体钢材的要求进行调整。
通过选择合适的工艺过程并进行良好的控制,可以获得具有良好性能的钢材。
热处理讲稿-钢的常规热处理
3. 回火工艺选择和计算
a. 回火温度选择原则 在生产中按照回火硬度来选择回火温度,各种钢的
回火温度与硬度的关系曲线可从手册中查到,淬火温 度高的、工件尺寸小的,通常采用回火温度范围的上 限温度,反之则选下限温度。
b. 回火时间的选择原则 保证工件透烧和组织转变充分,内应力得到消除。
回火时间th可用下式定量计算: 回火温度保持时间 th =
﹣11Cr+ 100V + 60Mo + 60W + 60Si + 700P+3 (硫效应)
Ms (℃) =
39﹣423C﹣30.4Mn﹣17.7Ni﹣12.1Cr﹣7.5Mo﹣3 .7W
五、 回火工艺
定义 回火是将淬硬后的工件加热到Ac1以下的某一温度,保温
一段时间后,再冷却到室温的热处理工艺。
级淬火 e 贝氏体等温淬
火
4. 马氏体分级淬火
a . 图中c、d曲线。工件在盐浴或碱浴的分级温 度(接近Ms点)中保持一定时间,再出炉空冷。
b. 由于在靠近Ms点温度停留,使工件截面均匀 冷却后再空冷,使相变应力和热应力大大降低,有 效地减少变形和开裂的倾向。
5. 贝氏体等温淬火 a. 在260-400℃等温,获得下贝氏体组织的淬火,
二、退火工艺
定义 退火是将工件加热到适当温度,保温一段时间后再进行缓慢冷却的热处理
工艺。 类型
完全退火— 亚共析钢铸、轧、锻和焊接件, Ac3+30~70℃ 球化退火— 适应共析和过共析钢 ,Ac1+20~30℃ 去应力退火— 消除内应力,﹤Ac3 再结晶退火— 亦形变过程中的中间退火,再结晶温度以上150 ~200℃。 均匀化退火— 亦扩散退火,熔点以下100~200℃ ( 还有不完全退火、等温退火、预防白点退火等) 目的 ① 降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ② 减少或消除铸、锻、焊等引起的诸如偏析和晶粒粗大等组织缺陷,为尔 后的热处理作组织准备。 ③ 降低或消除工件的内应力,防止变形和开裂。
钢的热处理工艺
工艺参数
加热温度:一般碳钢和低合金钢600-700℃;温度太高,晶粒
粗化,温度太低,再结晶不充分。
保温时间: 1-3h。
冷却速度:随炉冷至500℃,出炉空冷。
1. 退火分类与常用工艺
去应力退火
冷变形后的金属在低于再结晶温度加热,以去除由于形
变加工、锻造、焊接等所引起的应力,但仍保留冷作硬
2.3. 正火工艺
双(多)重正火:对工件进行两次或两次以上的正火。
AC3+(150-200)℃
AC3+(30-50)℃
温度/℃
Ac3
时间
工艺说明
@ 含有粗大组织或魏氏组织的锻件和铸件,如20Mn、
20CrMoV、15Cr等低合金钢铸件。
@ 第一次正火消除组大组织。
然 后 冷 至 A r1- ( 2 0 - 3 0 ) ℃ , 并 在 此 温 度 等 温 较 长 时 间 , 随 后 炉 冷 至
550℃后空冷的工艺。
温度/℃
AC1+(10-30)℃
.
Ac3
Ac1
Ar1-(20-30)℃ 550℃
随炉缓冷
时间
空冷
与普通球化退火相比,退火周期短,球化组织均匀,
适用于大件。
冷却速度:缓冷至500℃以下出
炉空冷, 大件、易畸变件冷至
200-300℃再出炉空冷 。
小结
01
退火得到接近平衡的组织, 是生产中常用的热处理方法,
退火种类繁多, 目的各不相同, 工艺差别较大; 大部分
退火工艺有3个基本特点, 一是加热温度在Ac1以上, 二
是慢冷, 三是得到珠光体型转变产物。
- 2 0 8 H B W , 球 化 级 别 2 - 3 级 。 加 工 路 线 : 备 料 - 锻 造 - 球化退火-车削
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
退火工艺规范示意图
(完全退火、 球化退火、 扩散退火、 去应力退火、 再结晶退火)
工艺参数:
名称 完全退火 球化退火 去应力退火 扩散退火 再结晶退火
温 度 ( °C ) Ac3 +20~30 Ac1 + 20~30
将工件加热到低于AC1的某一温度(一般为 500~600 ℃) ,保温后缓慢冷却。 去应力退火又称为低温退火,这种退火主要用 来消除铸件、锻件、焊接件、热轧件、冷拉件 等的残余应力。如果这些应力不予消除,将会 引起钢件在一定时间以后或在随后的切削加工 过程中产生变形或开裂。
再结晶退火 (Recrystallization Annealing )
• 等温退火转变过程较易控制,还可缩 短工件在炉内的停留时间,更适合孕 育期长的合金钢。
• 等温退火是完全退火工艺的改进。
球化退火(Soft Annealing)
球化退火是使钢中碳化物 (渗碳体)球状化,获得粒 状珠光体的一种热处理工艺。
操作:将工件加热到Ac1+ 20~30℃温度, 保温较长 时间后缓冷,使二次渗碳体 和珠光体中的渗碳体球状化, 然后出炉空冷。
再结晶退火
普通退火
等温退火
普通球化 退火
等温球化 退火
去应力退火
完全退火(Fully annealing)
定义:将工件加热到Ac3+20~30℃,保温后缓慢 冷却的退火工艺。 • 完全退火又称为重结晶退火(recrystallization annealing),简称退火,这种退火主要用于亚共 析成分的各种碳钢和合金钢。 • 完全退火常作为某些工件的预先热处理,也可作 为一些不重要工件的最终热处理工艺。 • 完全退火要点:加热温度 Ac3 + 20~30℃,缓冷, 适合亚共析钢。
图2-97 真空退火炉
退火目的
总体:改善组织,提高性能。
• 调整硬度。
适合切削加工的硬度范围为170-250HBS。
• 消除内应力(缓慢冷却)。 • 细化晶粒。 • 均匀成分。
使前面加工过程中造成粗大、不均匀的组织细 化和均匀化(相对而言),以提高性能。
退火种类
重结晶 退火
退火
低温 退火
完全退火 扩散退火 球化退火
状态 完全退火 球化退火
σb(Mpa) 810 620
δ(%) 15 20
ψ(%) HB
30
230
40
160
T12钢球化退火后强度、硬度更低,塑韧性更好, 碳化物对基体的分割作用均匀、彻底,有利于切 削加工性能。
渗碳体球化是自发的过程,需要较长的 保温时间,奥氏体共析转变时温度下降 要足够缓慢,以保证渗碳体完成自发球 化过程。
钢的热处理工艺
第十章 钢的热处理工艺
一般零件生产的工艺路线:
毛坯生产 预备热处理
机械加
工
最终热处理
机械精加工
预备热处理 : 退火 ; 正火等; 最终热处理 : 淬火+ 回火等。
10.1 钢的退火和正火
一、退火 Annealing
定义: 把零件加温到 适当温度(通常是在 临界温度以上,有时 在临界温度以下), 保温一定时间,然后 缓冷(炉冷、坑冷、 灰冷),以获得接近 平衡状态组织的热处 理工艺。
• 高速钢等温球化退火后得到细小颗粒状的碳化物。
球化退火要点: •加热温度:Ac1+ 20~ 30℃, •Fe3CⅡ和P中Fe3C球化, •适用于过共析钢。
球化退火组织为铁素体基 体上分布着颗粒状渗碳体
(写作:F +球状Cm ),
这种组织也称为球状珠光 体, 用P球表示。
球状珠光体
球化退火是不完全退火的一种,加热Ac1+ 20~30℃ 时没有完全奥氏体化。
45钢锻造后与完全退火后机械性能ຫໍສະໝຸດ 状态σbσs
δ
(Mpa) (Mpa) (%)
锻造 650~750 300~400 5~15
ψ
αk
HB
(%) (kJ.m-2)
20~40 200~400 230
完全 600~700 300~350 15~20 40~50 400~600 200 退火
45钢完全退火后强硬度有所下降,而塑韧性较大幅度提高 ——主要目的:改善组织与加工性能
对于有网状二次渗碳体的过共析钢,球 化退火前应先进行正火,以消除网状。
球化退火的主要目的在于降低硬度,均 匀组织,改善切削加工性,并为以后淬 火作好组织准备。
共析钢短时间球化退火组织 ( 化染 )
700
T10钢球化退火组织 ( 化染 )
500
去应力退火
(Stress-relief annealing )
晶粒细化的原因: 完全退火→相变重结晶过程 α →γ→α
——晶粒细化
α
γα
40钢退火前后金相组织
完全退火工艺缺陷:周期长;变温转变—组织大小不均。
等温退火(Isothermal Annealing )
• 等温退火:将亚共析钢加热到 Ac3+20~30℃,保温后快冷到Ar1以 下某一温度等温保持,使奥氏体转变 为珠光体组织,待相变完成后缓慢冷 却或出炉空冷。
T
ACm或AC3 AC1 +20~30℃
AC1
t
球化退火工艺关键:
加热温度略高于Ac1的好处: 保留较多的未溶碳化物或较大
的碳浓度梯度(分布不均匀)。
加热温度过高, Fe3CⅡ慢冷时 网状析出。
① Fe3C形态控制 ←控制奥氏体化程度 ② 球的大小控制 ←控制过冷奥氏体冷却转变的温度
T12钢完全退火与球化退火后组织与性能比较
将工件加热到 TR (最低再结晶温度)以上某 一温度 (为缩短处理时间,通常加热到较高温 度,一般为650~700 ℃) ,保温后缓慢冷却。 目的:消除加工硬化现象,恢复金属的塑性能 力,以便进行继续的塑性加工。
扩散退火 (Proliferation Annealing )
将工件加热至略低于固相线温度,长时间保温并缓 慢冷却的退火工艺。 扩散退火又称为均匀化退火,加热温度一般选在钢 熔点以下100~200 ℃ ,由于扩散退火温度很高, 退火后晶粒粗大,一般再进行完全退火或正火处理, 以细化晶粒。 目的:消除偏析现象,使化学成分和组织均匀化。
球化退火主要用于过共析 成分的碳钢及合金工具钢 (如制造刃具、量具、模具 的钢种)。
等温球化退火
(Isothermal Soft Annealing)
• 等温球化退火:将 钢加热到 Ac1+20~30℃ ,保 温后快冷到Ar1以下 某一温度等温保持, 使二次渗碳体和珠 光体中的渗碳体球 状化,然后出炉空 冷。