5土的抗剪强度ppt课件
合集下载
《土的抗剪强度》课件
边坡稳定性分析的方法包括极限平衡法、有限元法和 离散元法等。这些方法可以根据工程实际情况选择, 以获得更准确的边坡稳定性评估结果。
挡土墙设计
挡土墙是工程中常用的支挡结构,主要用于防止土体滑移和坍塌。在挡土墙设计中,需要考 虑土的抗剪强度,以确保挡土墙的稳定性和安全性。
挡土墙的设计需要考虑多种因素,如土的性质、挡土墙的高度和宽度、荷载类型和大小等。 这些因素都会影响土的抗剪强度,进而影响挡土墙的稳定性和安全性。
提出了相应的加固措施和监测方案。
总结与展望
06
本课程主要内容总结
土的抗剪强度定义
土的抗剪强度影响因素
土的抗剪强度是指土体抵抗剪切破坏的极 限能力,是土力学中的重要参数。
土的抗剪强度受到多种因素的影响,如土 的颗粒组成、含水量、密度、孔隙比、有 机质含量等。
土的抗剪强度指标
土的抗剪强度与工程实践
通过试验测定土的抗剪强度指标,包括内 摩擦角和粘聚力,是评价土体稳定性的重 要依据。
了解土的抗剪强度对于工程实践具有重要 的意义,如地基承载力计算、边坡稳定性 分析、挡土墙设计等。
未来研究方向与展望
新型试验方法研究
随着科技的发展,未来可以探索更加准确、高效、环保的土的抗剪强 度试验方法。
非均质土的抗剪强度研究
对于非均质土,其抗剪强度具有空间变异性和各向异性,未来可以深 入研究其抗剪强度的变化规律。
土的抗剪强度理论
库伦-摩尔理论
库伦-摩尔理论是土的抗剪强度理论的经典理论之一,它基于摩擦和粘聚力原理,描述了土的剪切破坏 机理。
该理论认为,土的抗剪强度是由剪切面上的摩擦力和粘聚力共同作用的结果,其中摩擦力主要取决于土 颗粒之间的摩擦角,而粘聚力则与土的粘聚力和孔隙水压力有关。
第六章-土的抗剪强度
力 ➢ 1、不固结不排水试验(UU)
➢ 2、固结不排水试验(CU)
学 ➢ 3、固结排水试验(CD)
三轴压缩实验优缺点
土 ➢ 优点:
(1)可严格控制排水条件
力 (2)可量测孔隙水压力 (3)破裂面在最软弱处 ➢ 缺点:
学 (1)2=3,轴对称 (2)实验比较复杂
三、真三轴试验
土 力 学
四、无侧限抗压强度试验
力
f
cu
1 2
1
3
13 1uf 3uf 13
学 在不排水条件土 下体 ,孔 饱隙 和水压 B力 1,系改数变周
压力增量只会水 引压 起力 孔的 隙变化引 ,起 而土 不体 会 有效应力的变样 化在 ,剪 各切 试破坏应 前力 的相 有等 效 以抗剪强度不变。
二、固结不排水抗剪强度
0点说明未受任何固结压力的土,它不具有抗
学 ③土单元体的任何一个面上τ=τf时,就会发生剪 切破坏。此时土单元体的应力状态满足极限平 衡条件。
四 极限平衡条件的应用
土 已知土内一点M的主应力σ1m和σ3m ,以及土的内 摩擦角C、φ,可以判断该点土体是否破坏。
对于无粘性土
力1
m
sin
1 1 m 1m
3m 3m
m
学
>
m
m
<
m
莫尔应力圆的
半径
1 2
1
3
圆心:
(1 2
1
3
,0 )
土
A
I. II. III.
c
力
莫尔圆与抗剪强度之间的关系
抗剪强度包线与莫尔应力圆之间的关系有三种:
学 •(1)整个莫尔圆位于抗剪强度包线的下方 •(2)莫尔圆与抗剪强度包线相切(切点为A) •(3)莫尔圆与抗剪强度包线相割
➢ 2、固结不排水试验(CU)
学 ➢ 3、固结排水试验(CD)
三轴压缩实验优缺点
土 ➢ 优点:
(1)可严格控制排水条件
力 (2)可量测孔隙水压力 (3)破裂面在最软弱处 ➢ 缺点:
学 (1)2=3,轴对称 (2)实验比较复杂
三、真三轴试验
土 力 学
四、无侧限抗压强度试验
力
f
cu
1 2
1
3
13 1uf 3uf 13
学 在不排水条件土 下体 ,孔 饱隙 和水压 B力 1,系改数变周
压力增量只会水 引压 起力 孔的 隙变化引 ,起 而土 不体 会 有效应力的变样 化在 ,剪 各切 试破坏应 前力 的相 有等 效 以抗剪强度不变。
二、固结不排水抗剪强度
0点说明未受任何固结压力的土,它不具有抗
学 ③土单元体的任何一个面上τ=τf时,就会发生剪 切破坏。此时土单元体的应力状态满足极限平 衡条件。
四 极限平衡条件的应用
土 已知土内一点M的主应力σ1m和σ3m ,以及土的内 摩擦角C、φ,可以判断该点土体是否破坏。
对于无粘性土
力1
m
sin
1 1 m 1m
3m 3m
m
学
>
m
m
<
m
莫尔应力圆的
半径
1 2
1
3
圆心:
(1 2
1
3
,0 )
土
A
I. II. III.
c
力
莫尔圆与抗剪强度之间的关系
抗剪强度包线与莫尔应力圆之间的关系有三种:
学 •(1)整个莫尔圆位于抗剪强度包线的下方 •(2)莫尔圆与抗剪强度包线相切(切点为A) •(3)莫尔圆与抗剪强度包线相割
土的抗剪强度和极限承载力课件
d——基础埋置深度(m),从室外地面标高计算
m——基础底面以上土的加权重度,地下水位以下取浮重度
b ——基础地面宽度,大于6m时,按6m取值,对于砂土小 于
3m时按3m取值
(3)确定地基承载力特征值修正
《规范》规定:当b>3m或d>0.5m,地基承载力特征值 应该进行修正
f a f a kb ( b 3 ) b m ( d 0 . 5 )
3 f1 t
a 2 4 n o 5 2 c ta 4n o 5 1.8 8 k9 Pa 2 2
计算结果表明: 3f小于该单元土体实际小主应 力 3,实际应力圆半径小于极限应力圆半径 ,
所以,该单元土体处于弹性平衡状态
在剪切面上 f 1 290 45 255
1776年,库仑根据砂土剪切试验
f
砂土
后来,根据粘性土剪切试验
f
库仑定律:土的抗剪强
度是剪切面上的法向总应
力 的线性函数
f tan
f tanc
c
粘土
c:土的粘聚力
:土的内摩擦角
二、土体抗剪强度影响因素
摩擦力的两个来源 1.滑动摩擦:剪切面土粒间表面的粗糙所产生的摩 擦 2.咬合摩擦:土粒间互相嵌入所产生的咬合力
c
三轴试验优缺点
• 优点: ①试验中能严格控制试样排水条件,量测孔隙水压
力,了解土中有效应力变化情况 ②试样中的应力分布比较均匀 • 缺点: ①试验仪器复杂,操作技术要求高,试样制备较复
杂
②试验在2=3的轴对称条件下进行,与土体实际
受力情况可能不符
三、无侧限抗压强度试验
土力学课件土的抗剪强度与地基承载力_图文文库94页PPT
土的抗剪强度指 标 c、; 对于无粘性土, c=0
内摩 擦角
粘聚 力
开封大学 土木建筑工程学院
土的抗剪强度一般可分为两部分: 一部分与颗粒间的法向应力有关,通常呈正比例关系,其本 质是内摩阻力; 另一部分是与法向应力无关的土粒之间的粘结力,通常称为 粘聚力。
土 的影 抗响 剪因 强素 度
颗粒间的有效法向应力
5 土的抗剪强度与地基承载力
学习目标:
了解土中一点的应力状态、剪切试验方法和成果表达 方式,熟悉强度指标的选用、和防治措施以及土坡稳 定分析方法。
掌握土体抗剪强度规律、土中一点的极限平衡条件, 以及直接剪切试验、三轴剪切试验的原理,会判别土 的状态。
掌握地基承载力的确定方法。
开封大学 土木建筑工程学院
1213sin2
开封大学 土木建筑工程学院
1 2
(
1
3)
1 2
(
1
3)
cos
2
1 2
( 1
3 ) sin
2
即:
平移滑动
流滑 开封大学 土木建筑工程学院
乌江武隆鸡冠岭山体崩塌
1994年4月30日 崩塌体积400万方,10 万方进入乌江 死4人,伤5人,失踪12 人;击沉多艘船只 1994年7月2-3日降雨引 起再次滑坡 滑坡体崩入乌江近百万方; 江水位差数米,无法通航。
开封大学 土木建筑工程学院
2000年西藏易贡巨型滑坡
Hale Waihona Puke 开封大学 土木建筑工程学院§5.2.1 土的抗剪强度规律—库仑定律
1776年,库仑根据砂土剪切试验得出:
第七章-土的抗剪强度--土质学与土力学教学课件
第七章 土的抗剪强度
★ 概述 ★抗剪强度的基本理论 ★抗剪强度的试验方法
概述
剪切破坏
土工建筑物(如: 路堤、土坝等)
沉降过大 强度破坏
土体破坏
建筑物事故
研究土的强度特性,就是研究土的抗剪强度特性
概述
土的抗剪强度:土体抵抗剪切破坏的极限能力
概述
大阪的港口码头档土墙由于液化前倾
剪切面(剪切带):土体剪切破坏是沿某一面发生与剪切方向一致的 相对位移,这个面通常称为剪切面。
tg
45
2
1 3
2
f c tan
c
O
3
c ctg 1 3
2
1f
抗剪强度的基本理论
三、莫尔~库仑破坏标准
强度线
极限应力圆
应力圆与强度线相离: σ1<σ1f 应力圆与强度线相切: σ1=σ1f 应力圆与强度线相割: σ1>σ1f
弹性平衡状态 极限平衡状态 破坏状态
抗剪强度的基本理论
应力圆,绘出各应力圆的公切线即为土的抗剪强度包线
抗剪强度包线
c
抗剪强度的基本理论
2.三轴剪切试验 量表
四、抗剪强度的试验方法 无侧限抗压强度试验
量力环
qu
试
加压框
样
架
升降
螺杆
qu
无侧限压缩仪
无侧限抗压强度试验是三轴剪切试验的特例,对试样不施加周围压力,即3=0,
只施加轴向压力直至发生破坏,试样在无侧限压力条件下,剪切破坏时试样承
概述
广州京光广场基坑塌方
使基坑旁办公室、民 工宿舍和仓库倒塌, 死3人,伤17人。
概述
2000年西藏易贡巨型滑坡
黄崖沟
龙观嘴
★ 概述 ★抗剪强度的基本理论 ★抗剪强度的试验方法
概述
剪切破坏
土工建筑物(如: 路堤、土坝等)
沉降过大 强度破坏
土体破坏
建筑物事故
研究土的强度特性,就是研究土的抗剪强度特性
概述
土的抗剪强度:土体抵抗剪切破坏的极限能力
概述
大阪的港口码头档土墙由于液化前倾
剪切面(剪切带):土体剪切破坏是沿某一面发生与剪切方向一致的 相对位移,这个面通常称为剪切面。
tg
45
2
1 3
2
f c tan
c
O
3
c ctg 1 3
2
1f
抗剪强度的基本理论
三、莫尔~库仑破坏标准
强度线
极限应力圆
应力圆与强度线相离: σ1<σ1f 应力圆与强度线相切: σ1=σ1f 应力圆与强度线相割: σ1>σ1f
弹性平衡状态 极限平衡状态 破坏状态
抗剪强度的基本理论
应力圆,绘出各应力圆的公切线即为土的抗剪强度包线
抗剪强度包线
c
抗剪强度的基本理论
2.三轴剪切试验 量表
四、抗剪强度的试验方法 无侧限抗压强度试验
量力环
qu
试
加压框
样
架
升降
螺杆
qu
无侧限压缩仪
无侧限抗压强度试验是三轴剪切试验的特例,对试样不施加周围压力,即3=0,
只施加轴向压力直至发生破坏,试样在无侧限压力条件下,剪切破坏时试样承
概述
广州京光广场基坑塌方
使基坑旁办公室、民 工宿舍和仓库倒塌, 死3人,伤17人。
概述
2000年西藏易贡巨型滑坡
黄崖沟
龙观嘴
土力学第五章土的抗剪强度
第五章 土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基
土
▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基
土
▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验
土的抗剪强理论PPT课件
二、三轴试验
三轴剪切试验,又称三轴压缩试验,是室内测定土的抗剪强度的一种较为完整的试验方 法。通常采用3-4个圆柱形式样,分别在不同的周围压力下测得土的抗剪强度
1.三轴剪切试验仪器
三轴剪切试验所采用的仪器可分 为应变控制仪和应力控制仪。
1–调压筒;2–周围压力表;3–周围压力阀;4–排水阀; 5–体变管;6–排水管;7–变形量表; 8–量力环;9–排 气孔;10–轴向加压设备;11–压力室;12–量管阀; 13–零位指示器;14–孔隙压力表;15–量管;16–孔隙 压力阀;17–离合器;18–手轮;19–马达;20–变速箱
§5.2土的强度理论
土的抗剪强度
排水条件(最重要) 剪切速率 应力状态 应力历史
应该指出:
土的c、 φ实际上只是表达关系试验成果的两个数学参数,从物理意义上
来说,在不同的法向应力作用下,土的粘聚力也不可能是常数。
§5.2土的强度理论
提问:对于某一种土来说,其抗剪强度τf 也相同吗?
⑴ τf 随剪切面上所受的法向应力σ而变,这就是土区别于其他许多建筑材
§5.2土的强度理论
§5.2 土的抗剪强度理论
一、库仑定律-土的强度规律 二、摩尔-库仑-强度理论 三、摩尔-库仑破坏准则-土的极限平衡条件
§5.2土的强度理论
一、库仑定律-土的强度规律 1、总应力库伦定律与抗剪强度指标
土体发生剪切破坏时,沿其内部某一滑动面发生相对滑动,而该滑动 面上的剪应力就等于土的抗剪强度。
特点: 试样是轴对称应力状态。垂直应力z一般是大主应力;径向 与切向应力总是相等r=,亦即1=z;2=3=r
方法: 首先试样施加静水压力—室压(围压) 1=2=3=const; 然后通过活塞杆施加的是应力差 Δ1= 1-3 。
三轴剪切试验,又称三轴压缩试验,是室内测定土的抗剪强度的一种较为完整的试验方 法。通常采用3-4个圆柱形式样,分别在不同的周围压力下测得土的抗剪强度
1.三轴剪切试验仪器
三轴剪切试验所采用的仪器可分 为应变控制仪和应力控制仪。
1–调压筒;2–周围压力表;3–周围压力阀;4–排水阀; 5–体变管;6–排水管;7–变形量表; 8–量力环;9–排 气孔;10–轴向加压设备;11–压力室;12–量管阀; 13–零位指示器;14–孔隙压力表;15–量管;16–孔隙 压力阀;17–离合器;18–手轮;19–马达;20–变速箱
§5.2土的强度理论
土的抗剪强度
排水条件(最重要) 剪切速率 应力状态 应力历史
应该指出:
土的c、 φ实际上只是表达关系试验成果的两个数学参数,从物理意义上
来说,在不同的法向应力作用下,土的粘聚力也不可能是常数。
§5.2土的强度理论
提问:对于某一种土来说,其抗剪强度τf 也相同吗?
⑴ τf 随剪切面上所受的法向应力σ而变,这就是土区别于其他许多建筑材
§5.2土的强度理论
§5.2 土的抗剪强度理论
一、库仑定律-土的强度规律 二、摩尔-库仑-强度理论 三、摩尔-库仑破坏准则-土的极限平衡条件
§5.2土的强度理论
一、库仑定律-土的强度规律 1、总应力库伦定律与抗剪强度指标
土体发生剪切破坏时,沿其内部某一滑动面发生相对滑动,而该滑动 面上的剪应力就等于土的抗剪强度。
特点: 试样是轴对称应力状态。垂直应力z一般是大主应力;径向 与切向应力总是相等r=,亦即1=z;2=3=r
方法: 首先试样施加静水压力—室压(围压) 1=2=3=const; 然后通过活塞杆施加的是应力差 Δ1= 1-3 。
5.土的抗剪强度
§5.2
土的抗剪强度试验
一、直接剪切试验
试验仪器:直剪仪(应力控制式,应变控制式)
剪切试验
剪前施加在试样顶面上 P A 的竖向压力为剪破面上 T A 的法向应力,剪应力由 剪切力除以试样面积 在法向应力作用下,剪应力与剪切位移关系曲线, 根据曲线得到该作用下,土的抗剪强度
总应力强度指标与有效应力强度指标
库仑定律
f
tan c
说明:施加于试样上的垂直法向应力为总应力,c、为总
应力意义上的土的黏聚力和内摩擦角,称之为总应力强度指标
根据有效应力原理:土的抗剪强度并不是由剪切面上的
法向总应力决定,而是取决于剪切面上的法向有效应力
f tan c = u tan c
3 f
2 o o 1 tan 45 2 c tan 45 189 . 8 kPa 2 2
计算结果表明: 3f小于该单元土体实际小主应 力 3,实际应力圆半径小于极限应力圆半径 , 所以,该单元土体处于弹性平衡状态 。
5.4.2
砂土临界孔隙比的概念
由不同初始空隙比的试样在同一压力下进行剪切试验,可以得 出初始孔隙比e0与体积变化⊿V/V之间的关系,如下图所示, 相应于体积变化为零的初始孔隙比称为临界孔隙比ecr。在三轴 试验中,临界孔隙比与侧压力3有关,不同的3可以得出不同 的值。 如果饱和砂土的初始孔隙比e0大 于临界孔隙比ecr,在剪应力作 用下由于剪缩必然使孔隙水压力 增高,而有效应力降低,致使砂 土的抗剪能力降低。
二、三轴剪切试验
应变控制式三轴仪:压力室,加压系统,量测系统
组成。 应力控制式三轴仪。
5第五章-土的抗剪强度
或继续剪切至剪切位移为4mm时停机,记下破坏值;
当剪切过程中测力计读数无峰值时,应剪切至剪切位 移为6mm时停机,该试验所得的强度称为快剪强度, 相应的指标称为快剪强度指标,以cQ,φQ表示
(二)固结快剪(R) 试验时对试样施加垂直压力后,每小时测读垂
直变形一次,直至变形稳定。变形稳定标准为
变形量每小时不大于0.005mm,在拔去固定销,
下面将根据莫尔-库仑破坏准则来研究某一土 体单元处于极限平衡状态时的应力条件及其大 、小主应力之间的关系,该关系称为土的极限 平衡条件。 根据莫尔-库仑破坏准则,当单元土体达到极 限平衡状态时,莫尔应力圆恰好与库仑抗剪强 度线相切。
根据图中的几何关系并经过三角公式的变换 ,可得
上式即为土的极限平衡条件。当土的强度指标c ,υ 为已知,若土中某点的大小主应力σ1和σ3满 足上列关系式时,则该土体正好处于极限平衡或 破坏状态。
上述三种方法的试验结果如图5-10所示。从
图中可以看出, cQ > cR >cS ,而υQ <υR < υS。 直剪试验的设备简单 ,试样的制备和安装 方便,且操作容易掌
握,至今仍为工程单
位广泛采用。
二、三轴压缩试验
三轴压缩试验直接量测的是试样在不同恒定周围压 力下的抗压强度,然后利用莫尔-库仑准则间接推 求土的抗剪强度。 三轴压缩仪主要由压力室、加压系统和量测系统三 大部分组成。 三轴是指一个竖向和两个侧向而言,由于压力室和 试样均为圆柱形,因此,两个侧向(或称周围)的 应力相等并为小主应力σ3 ,而竖向(或轴向)的应 力为大主应力σ1。在增加σ1时保持σ3 不变,这样条 件下的试验称为常规三轴压缩试验。
从图中还可以看出,按照莫尔-库仑破坏准则 ,当土处于极限平衡状态时,其极限应力圆与
《土的抗剪强度》课件
未来研究方向
继续深入研究土壤的抗剪强度特性,以应对更 复杂的工程挑战。
应力方向和大小
土壤受到的应力方向和大小 会对其抗剪强度产生直接影 响。
土的抗剪强度 - 实验方法及三轴剪切试验等是常用来测试土壤抗剪强度的实验方法。
2
实验结果分析
根据实验结果,我们可以评估土壤的抗剪强度特性,并了解其在不同条件下的变 化规律。
3
仪器与设备
使用专业的仪器和设备进行实验,确保准确性和可靠性。
土的抗剪强度 - 应用
岩土工程中的应用
了解土壤的抗剪强度可以帮助工程师正确评估土壤 的稳定性,并采取相应的加固措施。
土木工程中的应用
土壤的抗剪强度对土建结构的设计和施工都有着重 要的影响,如地基的承载能力等。
土的抗剪强度 - 结论
土工领域的重要性
了解土壤的抗剪强度对岩土工程和土木工程来 说至关重要,能够确保工程的稳定性和安全性。
《土的抗剪强度》PPT课 件
探索土的力学特性及其在工程中的重要性。
土的抗剪强度 - 简介
土的抗剪强度是指土壤抵抗剪切应力的能力。这个概念在岩土工程和土木工 程中具有重要意义。
土的抗剪强度 - 影响因素
土的类型
不同类型的土壤具有不同的 抗剪强度特性,如黏土、砂 土和壤土等。
土的密度和湿度
土壤的密度和湿度会影响其 颗粒间的协调性,从而影响 其抗剪强度。
第5章土的抗剪强度
f c tan
A
如果 σ1 <σ1f :不破坏; 如果 σ1 ≥σ1f :破坏。
f c tan
A
3 3f 3
1 1
3 1
1f
1
【例题1】已知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°,问该 单元土体处于什么状态?
现场试验:十字板剪切试验、现场大型直剪试验
影响土抗剪强度指标的因素 土的种类 土样的天然结构是否被扰动 应力状态和应力历史 排水条件(室内试验时的一个需要考虑的最重要影响因 素)
室内直剪仪
室内直剪仪
三轴仪
三轴仪
无恻限压缩仪
抗剪强度理论的发展
本科只介绍的部分
(1)经典强度理论(Mohr- Coulomb强度理论)
n 1
3
m
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
1 2
(1
3)
1 2
(1
3) cos 2
1 2
(1
3)sin 2
1
2
2
2
2
1
3
2
2
ds
3 ds sin
1 ds cos
2、莫尔应力圆
正应力:压为正,拉为负; 剪应力:逆时针为正,顺时针为负。
1、不能用于反映土体的抗拉强度及破坏特性; 2、不能反映高压下土体的强度及破坏特性; 3、不能反映土体强度及破坏的中间主应力效应。
(a) 红砂岩
(b) 花岗岩
(c)破坏面方向
现代强度理论(考虑了中间主应力效应的强度理论)
Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则 Drucker-Prager强度准则 其它
A
如果 σ1 <σ1f :不破坏; 如果 σ1 ≥σ1f :破坏。
f c tan
A
3 3f 3
1 1
3 1
1f
1
【例题1】已知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°,问该 单元土体处于什么状态?
现场试验:十字板剪切试验、现场大型直剪试验
影响土抗剪强度指标的因素 土的种类 土样的天然结构是否被扰动 应力状态和应力历史 排水条件(室内试验时的一个需要考虑的最重要影响因 素)
室内直剪仪
室内直剪仪
三轴仪
三轴仪
无恻限压缩仪
抗剪强度理论的发展
本科只介绍的部分
(1)经典强度理论(Mohr- Coulomb强度理论)
n 1
3
m
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
1 2
(1
3)
1 2
(1
3) cos 2
1 2
(1
3)sin 2
1
2
2
2
2
1
3
2
2
ds
3 ds sin
1 ds cos
2、莫尔应力圆
正应力:压为正,拉为负; 剪应力:逆时针为正,顺时针为负。
1、不能用于反映土体的抗拉强度及破坏特性; 2、不能反映高压下土体的强度及破坏特性; 3、不能反映土体强度及破坏的中间主应力效应。
(a) 红砂岩
(b) 花岗岩
(c)破坏面方向
现代强度理论(考虑了中间主应力效应的强度理论)
Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则 Drucker-Prager强度准则 其它
cA岩土力学课件--第五章 土的抗剪强度
学习中,既要看到摩擦强度和粘聚强度间有区别的一 面又要看到它们之间有相同的一面。
29.01.2021
岩土力学
四、密度对抗剪强度的影响—密度—有效应力—抗剪 强度的唯一性关系
影响抗剪强度最主要的因素: ①土的组成 ②土的密度 ③土的结构及所受应力状态
证明土的密度——有效应力——抗剪强度唯一性关系
(a)排水试验:密度增大, ef e0 (b) 固结不排水试验 e f 不变
msin111m m33m m
m 单元体已破坏
m 单元体处于弹性平衡状态 m 单元体处于塑性平衡状态 达极限平衡所要求的大主应力
13mtg2(45 2)
1 m 土体已破坏,反之,处于弹性平衡状态
29.01.2021
岩土力学
§3 土的抗剪强度试验方法
一、三轴剪切试验
(一)常规三轴剪切试验方法
岩土力学
(1 3) (1 3) f
(13)r
l
(三)三轴试验中的应力路径和破坏主应力线
1.三轴排水
增加偏 差 31应 0 力 u0
q
所以
p
12(1
3)
1 2
1
q
12(1
3)
121
应力路径:直线 p=q
Kf
a
450
p
图5-13 排水剪切应力路径
*破坏主应力线 K ,f ——破坏点的连线
29.01.2021
.C
.B
(二)莫尔——库伦破坏准则——极限平衡条件 1.土体中剪切破坏面位置的确定
f f()
.A
(1)在地面荷载p作用下,土中 某点M的应力状态应力圆在强度
p
包线下面,该点应力条件处于弹
性状态应力圆正好与强度相切,
29.01.2021
岩土力学
四、密度对抗剪强度的影响—密度—有效应力—抗剪 强度的唯一性关系
影响抗剪强度最主要的因素: ①土的组成 ②土的密度 ③土的结构及所受应力状态
证明土的密度——有效应力——抗剪强度唯一性关系
(a)排水试验:密度增大, ef e0 (b) 固结不排水试验 e f 不变
msin111m m33m m
m 单元体已破坏
m 单元体处于弹性平衡状态 m 单元体处于塑性平衡状态 达极限平衡所要求的大主应力
13mtg2(45 2)
1 m 土体已破坏,反之,处于弹性平衡状态
29.01.2021
岩土力学
§3 土的抗剪强度试验方法
一、三轴剪切试验
(一)常规三轴剪切试验方法
岩土力学
(1 3) (1 3) f
(13)r
l
(三)三轴试验中的应力路径和破坏主应力线
1.三轴排水
增加偏 差 31应 0 力 u0
q
所以
p
12(1
3)
1 2
1
q
12(1
3)
121
应力路径:直线 p=q
Kf
a
450
p
图5-13 排水剪切应力路径
*破坏主应力线 K ,f ——破坏点的连线
29.01.2021
.C
.B
(二)莫尔——库伦破坏准则——极限平衡条件 1.土体中剪切破坏面位置的确定
f f()
.A
(1)在地面荷载p作用下,土中 某点M的应力状态应力圆在强度
p
包线下面,该点应力条件处于弹
性状态应力圆正好与强度相切,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
31
三轴压缩试验
三轴压缩仪的试验原理:
对同一种土至少取3个平行试样,分别在
不同周围压力3 和轴压1 作用下剪切破坏,将
试验结果绘制为若干个极限应力圆。根据莫尔 -库伦理论,这一组极限应力圆的公共切线即 为土的抗剪强度包线,可近似取为一条直线, 直线的方程即为库伦公式所表示的方程。
.
32
c
0
三轴压缩试验原理
1213sin2
以上 ,与1,3 可用莫尔圆表示, 如下图。
.
16
(二)、土的极限平衡条件的建立
如果给定了土的抗剪强度参数和c以及土中某点的应力 状态,则可将抗剪强度包线与莫尔应力圆画在同一张坐标图上。 它们之间的关系有三种情况:
(1)莫尔圆位于抗剪强度包线下方(圆1),说明该点在任何
平面上的剪应力都小于土所能发挥的抗剪强度
有效应力法考虑了孔隙水压力的影响,只计入作用于 粒间的有效应力,试验证明,对于同一种土,不论采用何 种试验方法,只要能准确测量出孔隙水压力,则所得的 有效抗剪强度指标是相同的.它们有唯一对应的关系. 但测量孔隙水压力时,比较麻烦,需要精确评价地基强 度和稳定性时常采用.
.
13
抗剪强度的来源:
1)无粘性土:来源于土粒间的摩擦力(内摩擦力)。 包括: a.一部分由于土颗粒粗糙产生的表面摩擦力;
.
9
一.库仑公式
1)库伦公式基本形式(总应力抗剪强度公式)
f ctg
式中
— f—剪切破坏面上的剪应力,即土的抗剪强度(KPa )
——破坏面上的法向应力(KPa )
—c—土的粘聚力, (KPa )对于无粘性土,c 0 ——土的内摩擦角(º)
c,称为抗剪强度指标,同一种土,它们与试验方法有关
.
10
无粘性土
.
33
仪
三 轴 压 缩
的 优 点
能较严格地控制排水条件 剪切破坏面为最薄弱面
仪
三 轴 压 缩
的 缺 点
试验设备、试验过程相对复杂
试样的受力状态为轴对称情况, 与实际土体的受力状态未必相符
.
34
.
35
.
36
.
37
无侧限抗压强度试验
➢ 三轴压缩试验当周围压力为零时即为无侧限试验
f,
因此不会发生剪切破坏;
(2)圆3实际上不存在;
(3)圆2,说明在A点所代
表的平面上剪应力正好等于 c
抗剪强度 f ,该点
处于极限平衡状态。
.
17
.
18
土处于极限平衡状态下时
根据极限应力圆与 抗剪强度包线相切 的几何关系,可建 立以下极限平衡条 件:
1 213 cco t1 213 sin
粘性土
.
11
(2)有效应力抗剪强度公式
fc''t gc'(u)t g'
式中 ' ——剪切破坏面上的有效法向应力(KPa ) u ——土中的超静孔隙水压力(KPa ) c ' ——土的有效粘聚力(KPa ) ' ——土的有效内摩擦角(º)
c ' ' 称为土的有效抗剪强度指标,同一种土,其值理论上 与试验方法无关,应接近于常数。
土的抗剪强度
内蒙古科技大学 建筑与土木工程学院岩土教研组
王英浩
.
1
概述
➢土的破坏主要是由于剪切 引起的,剪切破坏是土体破 坏的重要特点.
➢工程时间中与土的抗剪强 度有关的工程主要有以下3 类:
(1)土质土坝的稳定
(2)土压力
(3)地基的承载力问题
.
2
工程实例-土坡稳定
.
3
工程实例-土坡稳定
.
4
b.另一部分是粗颗粒之间互相镶嵌,联锁作用 产生的咬合力。 2)粘性土:除内摩擦力外,还有内聚力。
内聚力主要来源于:土颗粒之间的电分子吸引力和土中胶 结物质(硅、铁物质和碳酸盐等)对土粒的胶结作用。
.
14
二.莫尔-库仑强度理论 (一)、土体中任一点的应力状态
假定土层为均匀、连续的半空间材料,研究地面以下任一 深度处M点的应力状态。
.
21
第二节 抗剪强度的测定方法
➢测定土抗剪强度指标的试验称为剪切试验 ➢按照常用的试验仪器将剪切试验分为
直接剪切试验 三轴压缩试验 无侧向抗压强度试验 十字板剪切试验 ➢近似模拟
.
22
直接剪切试验
应变控制式直剪仪
.
23
.
24
.
25
.
26
.
27
.
28
应变控制式直剪仪的试验原理:
对同一种土至少取4个平行试样,分别在不同垂直压
工程实例-土压力
.
5
工程实例-土压力
.
6
工程实例-地基承载力问题
.
7
工程实例-地基承载力问题
.
8
第一节 土的抗剪强度概述
土的抗剪强度:是指土体抵抗剪切破坏的极限能力。
滑动面(破坏面):当土体受到荷载作用后,土中各点 将产生剪应力,若某点的剪应力达到其抗剪强度,在 剪切面两侧的土体将产生相对位移而产生滑动破 坏,该剪切面称为滑动面或破坏面。
问题:总应力法与有效应力法的优缺点是什么?
.
12
总应力法比有效应力法简单,因为试验时不需测量孔 隙水压力,进行稳定分析时也不考虑孔隙水压力,只需 测量总应力即可.但是对于同一种土,施加相同的总应 力,如果试验方法不同,或者说控制的排水条件不同,则 所得的强度指标也就不相同.也就是说,总应力和土的 抗剪强度没有唯一对应的关系,应用较多.
.
19
化简后得:
粘性土:
1
3
tan2452ctan45
2
2
3
1
tan2452ctan45
2
2
无粘性土:
1
3
tan2 45来自231
tan
2
45
2
.
20
破坏面与大主应力作用面间的夹角
破裂角:
2 f 90
f
45 2
破裂面
问题:土体的最大剪应力面是否即剪切破裂面?
对于饱和软粘土,在不排水条件下,其内摩擦角为 0,此时土体的最大剪应力面即为剪切破裂面.
下面仅研究平面问题,
在土体中取一微单元体,
作用在该单元体上的两个
主应力为 1,313,
则作用在与大主应力作用面成角的 mn平面上的正应力
和剪应力 可根据静力平衡条件求得:
3dssi ndssi ndcso s0 1dcso sdcso . sdssi n0 15
12131213cos2
力下剪切破坏,将试验结果绘制抗剪强度f与相应 垂直压力的关系图。试验结果表明,对于粘性土f ~ 基本上呈直线关系,直线方程可用库伦公式表示; 对于无粘性土, f ~ 则是通过原点的直线。
.
29
.
30
直 接的 剪优 切点 仪
构造简单 操作方便
直 接的 剪缺 切点 仪
限定剪切面不一定是最薄弱面 剪切面上剪应力分布不均匀 剪切面在剪切过程中是逐渐缩小的 不能严格控制排水条件,不能量测孔隙水压力