八年级上三角形证明难题
八年级全等三角形证明经典50题
八年级全等三角形证明经典50题篇一:海淀区初二数学全等三角形经典50题证明海淀名校全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD?BD解析:延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE 2. 已知:D是AB中点,∠ACB=90°,求证:CD?12AB3. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
??因为BC=ED,CF=DF,∠BCF=∠EDF。
??所以三角形BCF全等于三角形EDF(边角边)。
??所以BF=EF,∠CBF=∠DEF。
????连接BE。
??在三角形BEF中,BF=EF。
??所以∠EBF=∠BEF。
??又因为∠ABC=∠AED。
??所以∠ABE=∠AEB。
??所以AB=AE。
????在三角形ABF和三角形AEF 中,??AB=AE,BF=EF,??∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。
??所以三角形ABF和三角形AEF全等。
??所以∠BAF=∠EAF (∠1=∠2)。
??4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:??过E点,作EG//AC,交AD延长线于G??则∠DEG=∠DCA,∠DGE=∠2??又∵CD=DE??∴⊿ADC≌⊿GDE (AAS)??∴EG=AC??∵EF//AB??∴∠DFE=∠1??∵∠1=∠2??∴∠DFE=∠DGE??∴EF=EG??∴EF=AC5. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CB证明:??在AC上截取AE=AB,连接ED??∵AD平分∠BAC??∴∠EAD=∠BAD??又∵AE=AB,AD=AD??∴⊿AED≌⊿ABD (SAS)??∴∠AED=∠B,DE=DB??∵AC=AB+BD??AC=AE+CE??∴CE=DE??∴∠C=∠EDC??∵∠AED=∠C+∠EDC=2∠C??∴∠B=2∠C6. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:??在AE上取F,使EF=EB,连接CF ??因为CE⊥AB ??所以∠CEB=∠CEF=90° ??因为EB=EF,CE=CE,??所以△CEB≌△CEF ??所以∠B=∠CFE ??因为∠B+∠D=180°,∠CFE+∠CFA=180° ??所以∠D=∠CFA ??因为AC平分∠BAD ??所以∠DAC=∠FAC ??又因为AC=AC ??所以△ADC≌△AFC(SAS)??所以AD=AF ??所以AE=AF+FE=AD+BE ????12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
八年级数学上册第12章全等三角形证明经典50题(含答案)
3. 已知:∠ 1=∠2,CD=DE,EF//AB ,求证: EF=AC
A 12
F
C D E B
过 C 作 CG∥EF 交 AD 的延长线于点 G
CG∥EF,可得,∠ EFD=CGD
DE= DC
第 3 页 共 46 页
∠FDE=∠ GDC(对顶角) ∴△EFD≌△ CGD EF=CG ∠CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠1= ∠2 ∴∠ CGD=∠2 ∴△AGC 为等腰三角形, AC= CG 又 EF=CG ∴EF= AC
∵∠ EAB= ∠ BDE,
∴∠ AED= ∠ABD ,
∴四边形 ABDE 是平行四边形。
∴得: AE=BD ,
∵AF=CD,EF=BC ,
∴三角形 AEF 全等于三角形 DBC,
∴∠ F=∠C。
14.已知: AB=CD ,∠ A= ∠D,求证:∠ B=∠C
第 14 页 共 46 页
A
D
B
C
证明:设线段 AB,CD 所在的直线交于 E,(当 AD<BC 时,E 点是射 线 BA,CD 的交点, 当 AD>BC 时,E 点是射线 AB,DC 的交点) 。则: △AED 是等腰三角形。 ∴ AE=DE 而 AB=CD ∴BE=CE (等量加等量,或等量减等量) ∴△ BEC 是等腰三角形 ∴∠ B=∠C.
AE=AD+BE
第 11 页 共 46 页
在 AE 上取 F,使 EF=EB,连接 CF ∵ CE⊥AB ∴∠ CEB=∠CEF=90° ∵ EB=EF, CE=CE, ∴△ CEB≌△CEF ∴∠ B=∠ CFE ∵∠ B+∠ D=180°,∠ CFE+∠ CFA=180° ∴∠ D=∠ CFA ∵AC 平分∠ BAD ∴∠ DAC =∠ FAC 又∵ AC=AC ∴△ ADC ≌△ AFC(SAS) ∴AD =AF ∴AE=AF+FE=AD +BE
八年级上册数学全等三角形证明题
八年级上册数学全等三角形证明题一、全等三角形证明题1 20题及解析。
(一)题目1。
1. 题目。
已知:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:AF = EF。
2. 解析。
证明:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS(边角边)全等判定定理,可得△BDG≌△CDA。
所以BG = AC,∠G = ∠CAD。
又因为BE = AC,所以BG = BE。
所以∠G = ∠BEG。
因为∠BEG = ∠AEF(对顶角相等),所以∠AEF = ∠CAD。
所以AF = EF。
(二)题目2。
1. 题目。
如图,在△ABC和△DEF中,AB = DE,BE = CF,∠B = ∠DEF。
求证:AC = DF。
2. 解析。
因为BE = CF,所以BE + EC = CF+EC,即BC = EF。
在△ABC和△DEF中,AB = DE,∠B = ∠DEF,BC = EF。
根据SAS全等判定定理,可得△ABC≌△DEF。
所以AC = DF。
(三)题目3。
1. 题目。
已知:如图,AB = CD,AE = DF,CE = FB。
求证:AF = DE。
2. 解析。
因为CE = FB,所以CE + EF = FB + EF,即CF = BE。
在△AEB和△DFC中,AB = CD,AE = DF,BE = CF。
根据SSS(边边边)全等判定定理,可得△AEB≌△DFC。
所以∠B = ∠C。
在△ABF和△DCE中,AB = CD,∠B = ∠C,BF = CE。
根据SAS全等判定定理,可得△ABF≌△DCE。
所以AF = DE。
(四)题目4。
1. 题目。
如图,在Rt△ABC中,∠ACB = 90°,CA = CB,D是AC上一点,E在BC的延长线上,且AE = BD,BD的延长线与AE交于点F。
八年级全等三角形证明经典50题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+2 1<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
八年级三角形的证明题
八年级三角形的证明题一、等腰三角形性质相关证明题(8题)1. 已知:在△ABC中,AB = AC,AD是BC边上的中线。
求证:AD⊥BC。
- 证明:- 因为AB = AC,AD是BC边上的中线,所以BD = DC(中线的定义)。
- 在△ABD和△ACD中,AB = AC(已知),BD = CD(已证),AD = AD(公共边)。
- 所以△ABD≌△ACD(SSS)。
- 则∠ADB=∠ADC(全等三角形对应角相等)。
- 又因为∠ADB + ∠ADC = 180°(平角的定义),所以∠ADB = ∠ADC = 90°,即AD⊥BC。
2. 已知:在等腰△ABC中,AB = AC,∠A = 36°,求证:∠B = 72°。
- 证明:- 因为AB = AC,所以∠B = ∠C(等腰三角形两底角相等)。
- 又因为∠A+∠B + ∠C = 180°(三角形内角和定理),∠A = 36°。
- 设∠B = x,则∠C = x,可得方程36°+x + x = 180°。
- 2x=180° - 36°,2x = 144°,解得x = 72°,即∠B = 72°。
3. 已知:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。
求∠A的度数。
- 证明:- 设∠A=x,因为AD = BD,所以∠ABD = ∠A=x(等边对等角)。
- 则∠BDC=∠A + ∠ABD = 2x(三角形外角性质)。
- 因为BD = BC,所以∠C = ∠BDC = 2x。
- 又因为AB = AC,所以∠ABC = ∠C = 2x。
- 根据三角形内角和定理,∠A+∠ABC+∠C = 180°,即x + 2x+2x = 180°。
- 5x = 180°,解得x = 36°,所以∠A = 36°。
八年级数学上册第十二章全等三角形重难点归纳(带答案)
八年级数学上册第十二章全等三角形重难点归纳单选题1、如图,若△ABC≌△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.2、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.3、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.4、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.5、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,{CE=BDBC=CB∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.6、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF⊥CF即可判定.解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴12BD⋅AM=12CE⋅AN∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF平分∠BFE,BF⊥CF∴∠AFE=45°故④正确.故答案为C.小提示:本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.8、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED答案:B分析:根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,,{DE=DCBD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.10、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.填空题11、如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=18cm,AB=11cm,那么DE的长度为_____________________cm.答案:3.5分析:过C点作CF⊥AB于F,如图,根据角平分线的性质得到CF=CE,再证明Rt△ACE≌Rt△ACF得到AF=AE,证明△CBF≌△CDE得到BF=DE,然后利用等线段代换,利用AF=AE得到11+DE=18-DE,从而可求出DE的长.解:过C点作CF⊥AB于F,如图,∵AC平分∠BAD,CE⊥AD,CF⊥AB,∴CF=CE,在Rt△ACE和Rt△ACF中,,{AC=ACCF=CE∴Rt△ACE≌Rt△ACF(HL),∴AF=AE,∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D,在△CBF和△CDE中,{∠CBF=∠D∠CFB=∠CEDCF=CE,∴△CBF≌△CDE(AAS),∴BF=DE,∵AF=AE,∴AB+BF=AD-DE,即11+DE=18-DE,∴DE=3.5cm.所以答案是:3.5.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.12、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)分析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC =∠DAC∠D =∠B AC =AC,∴△ABC ≌△ADC (AAS ),所以答案是:∠D =∠B .小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .13、如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF,OA =OB ,则图中有__________对全等三角形.答案:3分析:根据角平分线的性质得到PE =PF ,根据全等三角形的判定定理判断即可.解:如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF ,∴∠1=∠2,在△AOP 和△BOP 中,{OA =OB ,∠1=∠2,OP =OP ,∴△AOP ≌△BOP (SAS ),∴AP =BP ,在Rt △EOP 和Rt △FOP 中,{PE =PF ,OP =OP,∴Rt △EOP ≌Rt △FOP (HL ),在Rt △AEP 和Rt △BFP 中,{PA =PB,PE =PF,∴Rt △AEP ≌Rt △BFP (HL ),∴图中有3对全等三角形.所以答案是:3.小提示:本题考查的是角平分线的性质、全等三角形的判定,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是________.答案:5分析:过D 作DE ⊥AB 于E ,由△DAE ≌△DAC 得到DE 的长,进而解答;解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE =∠DAC ,∠DEA =∠DCA =90°,DA =DA ,∴△DAE ≌△DAC (AAS ),∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =12×5×2=5,所以答案是:5;小提示:本题考查了角平分线的概念,全等三角形的判定(AAS )和性质;熟练掌握全等三角形的判定和性质是解题的关键.15、如图,在等腰Rt △ABC 中,AC =BC ,D 为△ABC 内一点,且∠BCD =∠CAD ,若CD =4,则△BCD 的面积为________.答案:8分析:由线段CD 的长求ΔBCD 的面积,故过B 作CD 的垂线,则由三角形面积公式可知:S ΔBCD =12×CD ×BE ,再由题中的∠BCD =∠CAD 和等腰直角三角形ABC ,即可求证ΔACD ≌ΔCBE ,最后由CD =BE =4即可求解. 解:过点B 作CD 的垂线,交CD 的延长线于点E∵∠ACB =90°∴∠BCD +∠ACD =90°∵∠BCD =∠CAD∴∠ACD +∠CAD =90°∴∠ADC =90°∵BE ⊥CD∴∠E =90°∴∠BCD +∠CBE =90°∴∠ACD =∠CBE∵AC =CB∴ΔACD ≌ΔCBE∴CD =BE =4∴SΔBCD=12×CD×BE=12×4×4=8故答案是:8.小提示:本题主要考察全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线.解答题16、已知:等腰Rt△ABC和等腰Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,延长DE交BC于点F,若∠BAE=68°,则∠DFC的度数为;(2)如图2,连接EC、BD,延长EA交BD于点M,若∠AEC=90°,求证:点M为BD中点;(3)如图3,连接EC、BD,点G是CE的中点,连接AG,交BD于点H,AG=9,HG=5,直接写出△AEC的面积.答案:(1)68°;(2)见解析;(3)36分析:(1)由已知条件可得∠D=∠C=45°,对顶角∠AQD=∠CQF,则∠DAC=∠DFC,根据∠DAE=∠CAB即可的∠DFC=∠BAE;(2)过点B作ME的垂线交EM的延长线于N,证明△AEC≌△BNA,得AE=BN,进而可得AD=NB,再证明△DAM≌△BNM即可得证点M为BD中点;(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,先证明△ABE≌△ACD,进而证明△AEG≌△KCG,根据角度的计算以及三角形内角和定理求得∠BAD=∠KCA,进而证明△ABD≌△CAK,再根据∠CAG=∠ABD,∠BAC=90°,证明AH⊥BD,根据已知条件求得S△ABD最后证明S△AEC=S△ABD即可.(1)设DF交AC于Q,如图1,∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴∠D=∠C=45°∵∠AQD=∠CQF∵∠DAQ=180−∠D−∠AQD,∠QFC=180−∠C−∠CQF∴∠DAQ=∠QFC∵∠BAC=∠EAD=90°即∠BAE+∠EAQ=∠EAQ+∠QAD∴∠BAE=∠QAD∴∠DFC=∠BAE∵∠BAE=68°∴∠DFC=68°故答案为68°(2)如图2,过点B作ME的垂线交EM的延长线于N,∴∠N=90°∵∠AEC=90°∴∠N=∠AEC∵∠BAC=90°∴∠EAC+∠NAB=90°∵∠NAC+∠ACE=90°∴∠NAB=∠ECA∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AD=AE 又∵AC=AB∴△AEC≌△BNA∴NB=AE∵AE=AD∴AD=NB∵∠DAE=90°∴∠DAM=90°∴∠DAM=∠N又∵∠DMA=∠BMN∴△DAM≌△BNM∴DM=BM即M是BD的中点(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,如图∵∠BAC=∠EAD=90°即∠BAE+∠EAC=∠EAC+∠CAD∴∠BAE=∠CAD∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AE=AD在△ABE与△ACD中,{AE=AD∠BAE=∠CAD AB=AC∴△ABE≌△ACD(SAS)∴S△ABE=S△ABD,BE=CD∵G点是EC的中点∴EG=GC∵∠AGE=∠KGC,AG=GK∴△AGE≌△KGC(SAS)∴AE=CK,∠AEG=∠KCG∴AE=KC=AD,∠ACK=∠ACB+∠BCE+∠KCG=45°+∠AEC+∠BCE=45°+∠ABC+∠BAP=90°+∠BAE=∠BAD∴△AKC≌△ABD(SAS)∴BD=AK=18,∠CAK=∠ABD∵∠BAG+∠CAG=90°∴∠ABD+∠BAG=90°即∠AHB=90°∵AG=9,HG=5∴AH=AG−HG=9−5=4∴S△ABD=12BD⋅AH=12×18×4=36∵S△AEC=S△AEG+S△AGC=S△GCK+S△AGC=S△ACK=S△ABD=36∴S△AEC=36小提示:本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.17、如图,在四边形ABCD中,点E为对角线BD上一点,∠A=∠BEC,∠ABD=∠BCE,且AD=BE.(1)证明:①△ABD≅△ECB;②AD≌BC;(2)若BC=15,AD=6,请求出DE的长度.答案:(1)①证明见解析;②证明见解析(2)9分析:(1)①由ASA证明全等即可,②由①可证明;(2)由△ABD≌△ECB可证DE=BD-BE=15-6=9.(1)解:证明:①在△ABD和△ECB中,{∠A=∠BEC∠ABD=∠BCEAD=BE,∴△ABD≌△ECB(ASA),②由①得:△ABD≌△ECB∴∠ADB=∠EBC,∴AD∥BC;(2)∵△ABD≌△ECB,BC=15,AD=6,∴BD=BC=15,BE=AD=6,∴DE=BD-BE=15-6=9.小提示:本题考查了全等三角形的判定与性质、平行线的判定等知识,证明△ABD≌△ECB是解题的关键.18、如图1,已知ΔABC中,∠ACB=90°,AC=BC,BE、AD分别与过点C的直线垂直,且垂足分别为E,D.(1)猜想线段AD、DE、BE三者之间的数量关系,并给予证明.(2)如图2,当过点C的直线绕点C旋转到ΔABC的内部,其他条件不变,如图2所示,①线段AD、DE、BE三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;②若AD=2.8,DE=1.5时,求BE的长.答案:(1)DE=AD+BE,证明见解析(2)①发生改变,DE=AD−BE;②1.3分析:(1)证明ΔACD≅ΔCBE,可得AD=CE,CD=BE,即可求解;(2)①证明ΔACD ≅ΔCBE ,可得AD =CE ,CD =BE , 即可求解;②由①可得DE =AD −BE ,从而得到BE =AD −DE ,即可求解.(1)解:DE =AD +BE , 理由如下:∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD ≅ΔCBE (AAS ),∴AD =CE ,CD =BE ,∵ DE =EC +CD ,∴DE =AD +BE ;(2)解:①发生改变.∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD≅ΔCBE(AAS),∴AD=CE,CD=BE,∵DE=CE-CD,∴DE=AD−BE;②由①知:DE=AD−BE,∴BE=AD−DE=2.8−1.5=1.3,∴BE的长为1.3.小提示:本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.。
专题12.1 全等三角形的证明及计算大题(专项拔高卷)学生版-2024-2025学年八年级数学上册真
2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题12.1 全等三角形的证明及计算大题(专项拔高30题)试题说明:精选最新2022-2023年名校真题30题,主要考察全等三角形的证明方法,强化学生解题模型的掌握以及计算能力!难度由易到难,循序渐进,逐步探索,精准拿分!1.(2022秋•宝安区期末)如图,在△ABC中,过点B作BD⊥CA交CA的延长线于点D,过点C作CE⊥BA交BA的延长线于点E,延长BD,CE相交于点F,BF=AC=.(1)求证:△BEF≌△CEA;(2)若CE=2,求BD的长.2.(2023春•漳州期末)某同学制作了一个简易的T形分角仪来二等分任意一个角.如图,该T形分角仪是由相互垂直的两根细棍EF,GD组成,D是EF的中点.寻找角的平分线时,需要调整位置,使得所分角的顶点O在GD上,同时保证T形分角仪的E,F两点正好落在所分角的两条边OA,OB上,此时OD就会平分∠AOB.为说明制作原理,请结合如图图形,用数学符号语言补全“已知”、“求证”,并写出证明过程.已知:如图,点E,F分别在∠AOB的边上,DG经过点O,,.求证:.3.(2022秋•龙岩期末)阅读下题及证明过程.已知:如图,AB=AC,∠ABP=∠ACP,求证:∠BAP=∠CAP.证明:∵AB=AC,∠ABP=∠ACP,PA=PA,∴△PAB≌△PAC第一步,∴∠BAP=∠CAP第二步.上面的证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.4.(2022秋•葫芦岛期末)在等腰△ABC中,AB=AC,D为AB上一点,E为CD的中点.(1)如图1,连接AE,作EH⊥AC,若AD=2BD,S△BDC=6,EH=2,求AB的长.(2)如图2,F为AC上一点,连接BF,BE.若∠BAC=∠ABE=∠CBF,求证:BD+CF=AB.5.(2022秋•千山区期末)如图,△ABC中,∠ACB=90°,BD平分∠ABC,AE⊥AB交BD延长线于点E,过点E作EF⊥AC,垂足为F.(1)求证:AE=AD;(2)写出与线段CD相等的线段,并证明.6.(2023春•大埔县期末)如图,在△ABC中,GD=DC,过点G作FG∥BC交BD的延长线于点F,交AB于点E.(1)△DFG与△DBC全等吗?说明理由;(2)当∠C=90°,DE⊥BD,CD=2时,求点D到AB边的距离.7.(2023春•贵州期末)如图,在△ABC中,AB=AC=6,∠B=40°.点D在边BC上运动(D不与B、C重合),连结AD作∠ADE=40°,DE交边AC于点E.(1)当DC等于多少时,△ABD≌△DCE,请说明理由.(2)在点D的运动过程中,当△ADE是等腰三角形时,求∠BAD的度数.8.(2023春•渭南期末)如图,点E、F在BD上,且AB=CD,BF=DE,AE=CF,试说明:点O是AC的中点.请你在横线上补充其推理过程或理由.解:因为BF=DE所以BF﹣EF=DE﹣EF,即,因为AB=CD,AE=CF,所以(理由:SSS).所以∠B=∠D(理由:).因为∠AOB=∠COD(理由:),所以△ABO≌△CDO(理由:).所以(理由:全等三角形对应边相等).所以点O是AC的中点.9.(2023春•埇桥区期末)把两个同样大小的含30°角的三角尺按照如图1所示方式叠合放置,得到如图2的Rt△ABC和Rt△ABD,设M是AD与BC的交点,则这时MC的长度就等于点M到AB的距离,你知道这是为什么吗?请说明理由.10.(2023春•巴州区期中)如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD在直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=40°,求∠AOB的度数;(2)若OA平分∠BOE,求∠DOF的度数.11.(2023•芙蓉区校级三模)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.12.(2023春•梅江区期末)如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).13.(2022秋•青神县期末)如图,△ABC和△DEF都是等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E 在AB上,点F在射线AC上,连结AD,若AD=AB.求证:(1)∠AED=∠AFD.(2)AF=AE+BC.14.(2023•碑林区校级模拟)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于E.AD与BE交于F,若BF=AC,求证:△ADC≌△BDF.15.(2023春•六盘水期中)为了解学生对所学知识的应用能力,某校老师在八年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图1,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可;乙:如图2,先确定直线AB,过点B作直线BE⊥AB,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.甲、乙两个同学的方案是否可行?请说明理由.16.(2022秋•通川区期末)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时;①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是.(用含α的代数式表示)17.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为cm.(3)猜想AE与BD的位置关系,并说明理由.18.(2023•黄石模拟)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.19.(2022秋•莱州市期末)在△ABC中,AB=AC,D是边BC上一点,点E在AD的右侧,线段AE=AD,且∠DAE=∠BAC=α.(1)如图1,若α=60°,连接CE,DE.则∠ADE的度数为;BD与CE的数量关系是.(2)如图2,若α=90°,连接EC、BE.试判断△BCE的形状,并说明理由.20.(2023春•扶风县期末)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:.21.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.22.(2023•武陵区一模)在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM=∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.23.(2022秋•西宁期末)如图,在四边形ABCD中,AD∥BC,E为CD中点,连接AE并延长交BC的延长线于点F.(1)求证:CF=AD;(2)连接BE,若BE⊥AF,AD=2,AB=6,求BC的长.24.(2023春•贵港期末)如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A (4,4),过C点作∠ECF分别交线段AB、OB于E、F两点(1)若OF+BE=AB,求证:CF=CE.(2)如图(2),且∠ECF=45°,S△ECF=6,求S△BEF的值.25.(2023春•鄠邑区期末)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.26.(2023•岳阳县一模)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=°,∠AED=°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.27.(2023•肥城市校级模拟)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.28.(2023春•惠民县期末)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,α=90°,证明BE=CF.②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.29.(2023春•沈北新区期末)如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1)思考AE与BE的位置关系并加以说明;(2)说明AB=AD+BC;(3)若BE=6,AE=6.5,求四边形ABCD的面积?30.(2022秋•兴隆县期末)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.。
八年级数学上册第十二章全等三角形考点题型与解题方法(带答案)
八年级数学上册第十二章全等三角形考点题型与解题方法单选题1、如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.7B.3.5C.3D.2答案:C分析:利用全等三角形的性质求解即可.解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.小提示:本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.2、如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.则下列结论中:①AD是△ABC的高;②AD是△ABC的中线;③ED=FD;④AB=AE+BF.其中正确的个数有()A.4个B.3个C.2个D.1个答案:A分析:过点D作DG⊥AB于点G,由角平分线的定义及平行线的性质可得∠ADB=90°,然后可证△ADC≌△ADB,△DEC≌△DFB,进而问题可求解.解:∵AD平分∠BAC,BC平分∠ABF,∴∠CAD=∠BAD=12∠CAB,∠ABC=∠FBC=12∠ABF,∵BF∥AC,∴∠CAB+∠ABF=180°,∴∠DAB+∠ABD=90°,即∠ADB=90°,∴AD⊥BC,即AD是△ABC的高,故①正确;∵∠ADB=∠ADC=90°,AD=AD,∴△ADC≌△ADB(ASA),∴DB=DC,即AD是△ABC的中线,故②正确;∵BF∥AC,∴∠CED=∠F,∵∠CDE=∠BDF,∴△DEC≌△DFB(AAS),∴ED=FD,故③正确;过点D作DG⊥AB于点G,如图所示:∵AD平分∠BAC,BC平分∠ABF,∠AED=∠F=90°,∴DE=DG=DF,∵AD=AD,∴△AED≌△AGD(HL),∴AE=AG,同理可知BF=BG,∵AB=AG+BG,∴AB=AE+BF,故④正确;综上所述:正确的个数有4个;故选A.小提示:本题主要考查全等三角形的性质与判定、平行线的性质及角平分线的性质,熟练掌握全等三角形的性质与判定、平行线的性质及角平分线的性质是解题的关键.3、墨墨想在纸上作∠A1O1B1等于已知的∠AOB,步骤有:①画射线O1M;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以点A1为圆心,以CD为半径画弧,与已画的弧交于点B1,作射线O1B1;④以点O1为圆心,以OC为半径画弧,交O1M于点A1.在上述的步骤中,作∠A1O1B1的正确顺序应为()A.①④②③B.②③④①C.①②④③D.①③④②答案:C分析:根据作一个角等于已知角的方法,选择合适的顺序即可.解:根据作一个角等于已知角的步骤可知,正确的顺序是①②④③故选C.小提示:此题考查了尺规作图-作一个角等于已知角,熟练掌握其作法步骤过程是解题的关键.4、如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°答案:C分析:由已知可得△ABC≌△ADE,故有∠BAC=∠DAE,由∠EAB=120°及∠CAD=10°可求得∠AFB的度数,进而得∠GFD的度数,在△FGD中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF的度数.在△ABC和△ADE中{AB=AD ∠B=∠D BC=DE∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE=12×(120°−10°)=55°∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°在△FGD中,∠EGF=∠D+∠GFD=115°故选:C小提示:本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC的度数.5、如图,四边形ABCD中,AC、BD为对角线,且AC=AB,∠ACD=∠ABD,AE⊥BD于点E,若BD=6,CD=4.则DE的长度为()A.2B.1C.1.4D.1.6答案:B分析:过点A作AF⊥CD交CD的延长线于点F,根据AAS证明△AFC≌△AEB,得到AF=AE,CF=BE,再根据HL 证明Rt△AFD≌Rt△AED,得到DF=DE,最后根据线段的和差即可求解.解:过点A作AF⊥CD交CD的延长线于点F,∴∠AFC=90°,∵AE⊥BD,∴∠AFC=∠AED=∠AEB=90°,在△AFC和△AEB中,{∠AFC=AEB∠ACF=∠ABEAC=AB,∴△AFC≌△AEB(AAS),∴AF=AE,CF=BE,在Rt△AFD和Rt△AED中,{AF=AEAD=AD,∴Rt△AFD≌Rt△AED(HL),∴DF=DE,∵CF=CD+DF,BE=BD-DE,CF=BE,∴CD+DF=BD-DE,∴2DE=BD-CD,∵BD=6,CD=4,∴2DE=2,∴DE=1,故选:B.小提示:此题考查了全等三角形的判定与性质,根据AAS证明△AFC≌△AEB及根据HL证明Rt△AFD≌Rt△AED是解题的关键.6、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.7、如图,已知AB=AD,AE=AC=BC,∠1=∠2,∠C=40°,则∠ADE的度数为()A.40°B.65°C.70°D.75°答案:C分析:首先根据已知条件证明△ABC≅△ADE,再利用等腰三角形求角度即可.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC与△ADE中,∵{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≅△ADE(SAS),∴∠C=∠E=40°,AE=BC=DE,∴∠ADE=∠EAD=12(180°−∠E)=12(180°−40°)=70°,故选:C.小提示:本题主要考查三角形全等的证明,利用已知条件进行证明是解题的关键.8、小明不慎将一块三角形的玻璃摔碎成如图的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块答案:B分析:根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.9、如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去答案:C分析:根据三角形的定义,不在同一平面的三条线段,首尾相连组成的图形是三角形,即可求出答案.解:A选项的①上下两边可以无限延伸,无法确定③的大小,不符合题意;B选项的②上下两边可以无限延伸,能确定①的大小,无法确定③的大小,不符合题意;C选项的③上下两边可以延伸,能确定①、②的大小,符合题意,故选C;D选项不符合题意,只需带③即可配一块完全相同的玻璃.故选:C.小提示:本题主要考查三角形的定义,理解和识记三角形的定义,即可求出答案.10、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.填空题11、如图所示,△ABC与△ADE全等,则∠B的对应角是_________,AC的对应边是_________.答案:∠E AD首先确定三角形的对应顶点,再将对应顶点放在对应位置写出两个三角形的全等关系,即△ABC≌△AED,然后按照对应关系即可写出对应边和对应角,∠B的对应角为∠E,AC的对应边为AD.∠E AD12、如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE=_______.答案:23°##23度分析:根据题目所给条件,可以得到∠CDE的度数,再根据题目所给条件以及角平分线的判定定理,可以得到DA是∠CDE的角平分线,即可得到∠ADE,再根据△ADE是直角三角形,从而得到最后的答案.解:∵∠BDE=46°,∴∠CDE=180°−∠BDE=180°−46°=134°,∵DE⊥AB,∴∠DEA=90°,又∵AC=AE,∠DEA=90°,∠C=90°,∴DA是∠CDE的角平分线,∴∠ADE=12∠CDE=12×134°=67°,∴在Rt△ADE中,∠DAE=180°−∠DEA−∠ADE=180°−∠90°−67°=23°,所以答案是:23°.小提示:本题考查的是三角形的内角和定理,角平分线的判定定理与性质,解答本题的关键是熟练掌握角平分线的性质和判定定理.13、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=______.答案:6分析:由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可.解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.所以答案是:6.小提示:考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边.14、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以v cm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,△ABP与△PCQ全等.答案:2或83分析:可分两种情况:①ΔABP≅ΔPCQ得到BP=CQ,AB=PC,②ΔABP≅ΔQCP得到BA=CQ,PB= PC,然后分别计算出t的值,进而得到v的值.解:①当BP=CQ,AB=PC时,ΔABP≅ΔPCQ,∵AB=8cm,∴PC=8cm,∴BP=12−8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,ΔABP≅ΔQCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,,解得:v=83时,ΔABP与ΔPQC全等,综上所述,当v=2或83.所以答案是:2或83小提示:主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.15、如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=8,则点D到AB的距离是______.答案:4分析:过D点作DE⊥AB于E,DF⊥AC于F,如图,根据角平分线的性质得到SΔABD+SΔACD=SΔABC,再利用三角形面积公式得到12×8×DE+12×DE×16=48,然后求出DE即可.解:过D点作DE⊥AB于E,DF⊥AC于F,如图,∵AD是ΔABC的角平分线,∴DE=DF,∵SΔABD+SΔACD=SΔABC,∴12AB⋅DE+12AC⋅DF=48,即12×8×DE+12×DE×16=48,∴DE=4,即点D到AB的距离为4.所以答案是:4.小提示:本题考查了角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等,也考查了三角形面积.解答题16、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图②的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.(3)当直线MN 绕点C 旋转到图③的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.答案:(1)证明见解析(2)AD =BE +DE ,证明见解析(3)BE =AD +DE ,证明见解析分析:(1)先用AAS 证明△ADC ≌△CEB ,得AD =CE ,BE =CD ,进而得出DE =BE +CD ;(2)先证明△ACD ≌△CBE (AAS ),可得AD =CE ,CD =BE ,进而得出AD =CD +DE =BE +DE ;(3)证明过程同(2),进而可得BE =AD +DE .(1)证明:由题意知,∠BCA =90°,∠ADC =∠BEC =90°,∴∠ACD +∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS ),∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE+DE.证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ABD和△ACE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.证明:∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90º,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴BE=CD,AD=CE,∴BE=CE+DE=AD+DE,∴BE=AD+DE.小提示:本题考查了全等三角形的判定与性质.解题的关键在于找出证明三角形全等的条件.17、如图,已知点C是AB的中点,CD//BE,且CD=BE.(1)求证:△ACD≌△CBE.(2)若∠A=87°,∠D=32°,求∠B的度数.答案:(1)见解析;(2)61∘分析:(1)根据SAS证明△ACD≌△CBE;(2)根据三角形内角和定理求得∠ACD,再根据三角形全等的性质得到∠B=∠ACD.(1)∵C是AB的中点,∴AC=CB,∵CD//BE,∴∠ACD=∠CBE,在△ACD和△CBE中,{AC=CB∠ACD=∠CBECD=BE,∴ΔACD≅ΔCBE;(2)∵∠A=87°,∠D=32°,∴∠ACD=180°−∠A−∠D=180°−87°−32°=61°,又∵ΔACD≅ΔCBE,∴∠B=∠ACD=61°.小提示:考查了全等三角形的判定和性质,解题关键是根据SAS证明△ACD≌△CBE.18、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.答案:(1)2;(2)4分析:(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证△FGH≌△FNK,则有FK=FH,因为HM=GH+MN易证△FMK≌△FMH,故可求解.(1)由题意知S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC=12AC2=2,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:∵ FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴△FGH≌△FNK,∴FH=FK,又∵FM=FM,HM=KM=MN+GH=MN+NK,∴△FMK≌△FMH,∴MK=FN=2cm,∴S五边形FGHMN =S△FGH+S△HFM+S△MFN=2S△FMK=2×12MK⋅FN=4.小提示:本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.。
人教版八年级上册第十二章三角形全等的证明极易出错典型例题(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用模型或教具来演示三角形全等的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
人教版八年级上册第十二章三角形全等的证明极易出错典型例题(教案)
一、教学内容
人教版八年级上册第十二章三角形全等的证明极易出错典型例题:
1.掌握三角形全等的判定方法:SSS、SAS、ASA、AAS、HL。
2.应用上述判定方法,解决以下典型例题:
(1)已知两边及其夹角,证明三角形全等。
(2)已知两边及其中一边的对角,证明三角形全等。
(3)已知三边,证明三角形全等。
(4)已知两角及其夹边,证明三角形全等。
(5)已知两角及其中一角的对边,证明三角形全等。
3.分析易错点,总结避免错误的方法和技巧。
二、核心素养目标
1.培养学生的逻辑推理能力:通过三角形全等判定方法的运用,使学生能够熟练运用逻辑推理,分析并解决几何问题。
2.提高学生的空间想象力:让学生在解决全等三角形问题时,能够直观想象出三角形的空间结构,为正确判定全等关系奠定基础。
(三角形全等的判定方法。三角形全等是指两个三角形在大小和形状上完全相同。掌握全等的判定方法对于解决几何问题具有重要意义。
人教版八年级数学上册《第12章全等三角形证明》经典题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACA C DEF 21 DABADBC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG ∴EF =AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE , ∴△CEB ≌△CEF∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
(完整word版)八年级数学全等三角形难题集锦
1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。
人教版八年级数学上册 第12章 全等三角形证明50题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
数学八年级上册难题
数学八年级上册难题一、三角形全等证明难题题目1:已知:如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作ME∥AD 交BA延长线于E,交AC于F。
求证:BE = CF。
解析:1. 延长FM至N,使MN = FM,连接BN。
因为M是BC中点,所以BM = CM。
在△BMN和△CMF中,BM = CM,∠BMN = ∠CMF(对顶角相等),MN = MF。
根据SAS(边角边)定理,可得△BMN≌△CMF。
所以∠N = ∠CFM,BN = CF。
2. 因为AD平分∠BAC,所以∠BAD = ∠CAD。
又因为ME∥AD,所以∠BAD = ∠AEF,∠CAD = ∠AFE。
从而∠AEF = ∠AFE,所以AE = AF。
3. 因为∠CFM = ∠AFE,∠AEF = ∠N,所以∠N = ∠AEF。
所以BE = BN。
又因为BN = CF,所以BE = CF。
二、等腰三角形性质与判定难题等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,求其底边上的高。
解析:1. 分两种情况讨论:当等腰三角形为锐角三角形时:因为一腰上的高与另一腰的夹角为30°,所以顶角为60°。
此等腰三角形为等边三角形,底边上的高公式。
当等腰三角形为钝角三角形时:一腰上的高与另一腰的夹角为30°,则顶角的外角为30°,顶角为150°。
底角为15°,设底边上的高为公式,腰长为公式。
根据三角函数关系,公式。
而公式。
所以公式。
三、整式乘法与因式分解难题题目3:已知公式、公式、公式是△ABC的三边,且满足公式,求证:△ABC是等边三角形。
1. 对公式进行变形处理。
等式两边同时乘以2,得到公式。
进一步变形为公式。
2. 因为一个数的平方是非负的,要使公式成立。
则公式,公式,公式。
即公式,公式,公式。
所以△ABC是等边三角形。
八年级上册数学《全等三角形难题集》
1倍长中线�线段�造全等 1、已知�如图�A D 是△A B C 的中线�B E 交A C 于E �交A D 于F �且 A E =E F �求证�A C =B F ABCDE F分析�要求证的两条线段A C 、B F 不在两个全等的三角形中�因此证A C =B F 困难�考虑能否通过辅助线把A C 、BF 转化到同一个三角形中�由A D 是中线�常采用中线倍长法�故延长A D 到G �使D G =A D �连B G �再通过全等三角形和等线段代换即可证出。
2、已知在△A B C 中�A D 是B C 边上的中线�E 是A D 上一点�且B E =A C �延长B E 交A C 于F �求证�A F =E F F EDABC提示�倍长A D 至G �连接B G �证明ΔB D G ≌ΔC D A三角形B E G 是等腰三角形3、已知�如图△A B C 中�A B =5�A C =3�则中线A D 的取值范围是_________. D CBA4、在△A B C 中,A C =5,中线A D =7�则A B 边的取值范围是( ) A 、1<A B <29 B 、4<A B <24 C 、5<A B <19 D 、9<A B <195、已知�A D 、A E 分别是△A B C 和△A B D 的中线�且BA =B D � 求证�A E =21ACABCDE6、如图�△A B C 中�B D =D C =A C �E 是D C 的中点�求证�AD 平分∠B AE . E D C BA7、已知C D =A B �∠B D A =∠B A D �A E 是△A B D 的中线�求证�∠C =∠B A EABCDE提示�倍长A E 至F �连结D F 证明ΔA B E ≌ΔF D E �S A S � 进而证明ΔA D F ≌ΔA D C �S A S �8、如图23�△A B C 中�D 是B C 的中点�过D 点的直线G F 交A C 于F �交A C 的平行线B G 于G 点� D E ⊥D F �交A B 于点E �连结E G 、E F .⑴求证�B G =C F ⑵请你判断B E +C F 与E F 的大小关系�并说明理由。
八年级数学上册三角形难题[1]
补充题:
1.如图1,△ABC的边BC直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
2、如图,△ABC是等腰直角三角形,∠ACB=90°,D是AC的中点,连接BD,作∠ADF=∠CDB,连接CF交BD于E,求证:BD⊥CF。
人教版八年级数学上册《全等三角形证明》专项练习题-附含答案
人教版八年级数学上册《全等三角形证明》专项练习题-附含答案 专题简介:本份资料包含《全等三角形》这一章的六种主流中档证明题 所选题目源自各名校期中、期末 试题中的典型考题 具体包含的题型有:重叠边技巧、重叠角技巧、等角的余角相等技巧、证两次全等的证明题、手拉手模型、角平分线的性质与判定的中档题。
适合于公立学校老师和培训机构的老师给学生作全等三角形证明题专项复习时使用或者学生考前刷题时使用。
题型1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等1.(2019·广东)如图 点A 、C 、F 、D 在同一直线上 AF=DC AB=DE BC=EF 求证:AB ∥DE .【详解】∵AF=DC ∴AF ﹣FC=DC ﹣CF 即AC=DF .在△ACB 和△DFE 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩∴△ACB ≌△DFE (SSS ) ∴∠A=∠D ∴AB ∥DE .2.(2021·重庆)已知点A 、E 、F 、C 在同一直线上 已知AD BC ∥ AD BC = AE CF = 试说明BE 与DF 的关系.【详解】解:数量关系BE DF = 位置关系BE DF ∥.理由:∵AD BC ∥ ∴∠A =∠C又AE CF = ∴AE +EF =CF +EF 即AF =CE 在ADF 和CBE △中 AD BC A C AF CE =⎧⎪∠=∠⎨⎪=⎩ ADF ∴≌()CBE SAS △∴BE =DF ∠BEF =∠DFE ∴BE DF ∥.3.(2021·湖北荆门)如图点E、F在BC上BE=CF AB=DC∠B=∠C.求证:∠A=∠D.【详解】解∵BE=CF∴BE+EF=CF+EF即BF=CE.在△ABF和△DCE中AB DCB C BF CE=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△DCE∴∠A=∠D.4.(2021·甘肃)如图AB∥CD BN∥MD点M、N在AC上且AM=CN求证:BN=DM.【详解】解:∵AB∥CD BN∥MD ∴∠A=∠C∠CMD=∠ANB ∵AM=CN∴AM+MN=MN+CN即AN=MC 在△ANB和△CMD中∠A=∠C AN=MC∠ANB=∠CMF ∴△ANB≌△CMD(ASA)∴BN=MD.5.(2021·新疆)如图点A、F、C、D在同一直线上点B和点E分别在直线AD的两侧且AB=DE∠A =∠D AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【详解】(1)证明:∵AF=DC∴AF+CF=DC+CF∴AC=DF∵在△ABC和△DEF中AB DEA DAC DF=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△DEF(SAS);(2)证明:由(1)知△ABC≌△DEF∴∠BCA=∠EFD∴BC∥EF.题型2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等6.(2022·福建·福州)如图AC=AE∠1=∠2 AB=AD.求证:△ABC≌△ADE.【详解】证明:∵∠1=∠2 12EAB EAB∴∠+∠=∠+∠即CAB EAD∠=∠在ABC和ADE中{AC AECAB EAD AB AD=∠=∠=() ABC ADE SAS∴≅.7.(2022·四川资阳)如图在△ABC和△ADE中AB=AD∠B=∠D∠1=∠2.求证:BC=DE.【详解】证明:∵∠1=∠2 ∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE在△ABC和△ADE中B DAB ADBAC DAE∠∠⎧⎪⎨⎪∠∠⎩===∴△ADE≌△ABC(ASA)∴BC=DE8.如图AB=AD∠C=∠E∠1=∠2 求证:△ABC≌△ADE.【解答】证明:∵∠1=∠2 ∴∠1+∠EAC=∠2+∠EAC即∠BAC=∠DAE在△ABC和△ADE中BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (AAS ). 9.(雅礼)如图 △ABC 和△ADE 都是等腰三角形 且∠BAC =90° ∠DAE =90° B C D 在同一条直线上.求证:BD =CE .【解答】证明:∵△ABC 和△ADE 都是等腰直角三角形 ∴AD =AE AB =AC 又∵∠EAC =90°+∠CAD ∠DAB =90°+∠CAD ∴∠DAB =∠EAC∵在△ADB 和△AEC 中 ∴△ADB ≌△AEC (SAS ) ∴BD =CE .10.(2020·四川达州)已知△ABN 和△ACM 位置如图所示 AB =AC AD =AE ∠1=∠2.(1)求证:BD =CE ;(2)求证:∠M=∠N .【详解】(1)证明:在△ABD 和△ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACE (SAS ) ∴BD =CE ; (2)证明:∵∠1=∠2 ∴∠1+∠DAE =∠2+∠DAE 即∠BAN =∠CAM 由(1)知:△ABD ≌△ACE∴∠B =∠C 在△ACM 和△ABN 中 C B AC AB CAM BAN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACM ≌△ABN (ASA ) ∴∠M =∠N . 题型3:等角的余角相等技巧:∠1+∠2=90 ∠2+∠3=90 ∴∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2 再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。
八年级全等三角形简单证明题及解答(5道)
汇报人:XX
目 录
• 题目一:基本的全等三角形证明 • 题目二:利用角平分线性质证明 • 题目三:通过边边边条件证明 • 题目四:结合中线性质进行证明 • 题目五:综合应用多种性质证明 • 总结与拓展
01
题目一:基本的全等三角形证明
题目描述
• 已知三角形$ABC$和三角形$DEF$,其中$AB = DE$,$AC = DF$,$\angle BAC = \angle EDF$。求证:$\triangle ABC \cong \triangle DEF$。
由第二步可知,△BDE∽△CFD。
详细解答
4. 第四步,根据相似三角形的性质,对应边成比例,所以BD/CF=DE/DF。
5. 第五步,因为BD=AD(已知),所以AD/CF=DE/DF。又因为AE/EC=DE/EF(已知), 所以AD/CF=AE/EC。
6. 第六步,交叉相乘得AD*EC=AE*CF,即AE/AD=EC/CF。又因为∠A=∠ACF(对顶角相 等),所以△ADE∽△ACF。
第三步,根据相似三 角形的性质,有 AB/AC = BD/DC。
综上,我们证明了 AB/AC = BD/DC。
03
题目三:通过边边边条件证明
题目描述
已知
△ABC和△DEF中,AB = DE,BC = EF,AC = DF。
求证
△ABC ≌ △DEF。
题目描述
【分析】
本题主要考察全等三角形的判定方法——边边边条件。根据已知条件,我们可以 直接应用边边边定理来证明两个三角形全等。
题目描述
01
【解答】
02
证明
03
04
∵ 在△ABC和△DEF中,AB = DE,BC = EF,AC = DF(已