离散数学模拟试题三

合集下载

离散数学考试模拟试题及详细参考答案共四套

离散数学考试模拟试题及详细参考答案共四套

离散数学考试模拟试题及详细参考答案共四套a 离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)d eb c图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→F)→C, B→(A∧S)B→Eb)x(P(x)→Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠,关系R满足:<,>∈R,当且仅当< x1, x2>∈R1且∈R2。

离散数学模拟题及答案

离散数学模拟题及答案

一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。

2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。

3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。

4.幂集P(P(∅)) =________________。

5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。

6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。

7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。

8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。

9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。

10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。

二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。

2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。

2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。

3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。

4.证明:R是传递的⇔R*R⊆R。

5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

离散数学模拟试卷和答案

离散数学模拟试卷和答案

北京语言大学网络教育学院《离散数学》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3[B] 8[C]9[D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。

[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的子集,则一定有( )。

[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X4、下列关系中是等价关系的是( )。

[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。

[A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A 到A 的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通图G具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一次回到该结点()。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是()。

《离散数学》试题带答案(三)

《离散数学》试题带答案(三)

《离散数学》试题带答案试卷十四试题与答案一、 填空 10% (每小题 2分)1、 设>-∧∨<,,,A 是由有限布尔格≤><,A 诱导的代数系统,S 是布尔格≤><,A ,中所有原子的集合,则>-∧∨<,,,A ~ 。

2、 集合S={α,β,γ,δ}上的二元运算*为那么,代数系统<S, *>中的幺元是 , α的逆元是 。

3、 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。

4、 设G 是n 阶完全图,则G 的边数m= 。

5、 如果有一台计算机,它有一条加法指令,可计算四数的和。

现有28个数需要计算和,它至少要执行 次这个加法指令。

二、 选择 20% (每小题 2分)1、 在有理数集Q 上定义的二元运算*,Q y x ∈∀,有xy y x y x -+=*,则Q 中满足( )。

A 、 所有元素都有逆元;B 、只有唯一逆元;C 、1,≠∈∀x Q x 时有逆元1-x ; D 、所有元素都无逆元。

2、 设S={0,1},*为普通乘法,则< S , * >是( )。

A 、 半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。

3、图 给出一个格L ,则L 是( )。

A 、分配格;B 、有补格;C 、布尔格;D 、 A,B,C 都不对。

3、 有向图D=<V , E>,则41v v 到长度为2的通路有( )条。

A 、0;B 、1;C 、2;D 、3 。

4、 在Peterson 图中,至少填加( )条边才能构成Euler图。

A 、1;B 、2;C 、4;D 、5 。

三、 判断 10% (每小题 2分)1、 在代数系统<A,*>中如果元素A a ∈的左逆元1-e a 存在,则它一定唯一且11--=e a a 。

国家开放大学电大《离散数学》形考任务3

国家开放大学电大《离散数学》形考任务3

形考任务三试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目选择题[题目]设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().[答案]P→Q[题目]设命题公式G:G:┐p→(Q∧R),则使公式G取真值为1的P,Q,R赋值分别是().[答案]1,0,0[题目]命题公式(P∨Q)→R的析取范式是().[答案](┐P∧┐Q)∨R[题目]命题公式(P∨Q)的合取范式是().[答案](P∨Q)[题目]命题公式┐(p→Q)的主析取范式是().[答案]P∧┐Q[题目]命题公式P→Q的主合取范式是().[答案]┐P∨Q[题目]下列等价公式成立的为().[答案]P→(┐Q→P)<=>┐P→(P→Q)[题目]下列等价公式成立的为().[答案]┐P∧P<=>┐Q∧Q[题目]下列公式成立的为().[答案]┐P∧(P∨Q)=>Q[题目]下列公式中()为永真式.[答案]┐A∧┐B↔┐(A∨B)[题目]下列公式()为重言式.[答案]Q→(P∨(P∧Q))↔Q→P[题目]命题公式(P∨Q)→Q为()[答案]可满足式[题目]设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().[答案][题目]设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().[答案][题目]设个体域为整数集,则公式的解释可为().[答案]对任一整数x存在整数y满足x+y=0[题目]表达式中的辖域是().[答案][题目]谓词公式(∀x)(A(x)→B(x)∨C(x,y))中的()。

[答案]x是约束变元,y都是自由变元[题目]设个体域D={a,b,c},那么谓词公式消去量词后的等值式为().[答案][题目]设个体域D是整数集合,则命题的真值是().[答案]T[题目]前提条件P→┐Q2P的有效结论是().[答案]┐Q判断题[题目]设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()[答案]对[题目]设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.()[答案]对[题目]设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.()[答案]错[题目]设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.()[答案]错[题目]命题公式P→(Q∨P)的真值是T.()[答案]对[题目]命题公式┐P∧P的真值是T.()[答案]错[题目]命题公式┐P∧(P∨Q)=>Q成立.()[答案]对[题目]命题公式┐P∧(P→┐Q)∨P为永真式.()[答案]对[题目]命题公式┐(P→Q)的主析取范式是P∨┐Q.()[答案]错[题目]含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()[答案]对[题目]设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为(∃x)(P(x)→Q(x)).()[答案]错[题目]设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).()[答案]错[题目]设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()[答案]对[题目]设个体域D={1,2,3,4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.()[答案]错[题目]谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()[答案]对[题目]谓词命题公式(∀x)((A(x)∧B(x))∨C(y))中的自由变元为x.()[答案]错[题目]谓词命题公式(∀x)(P(x)→Q(x)∨R(x,y))中的约束变元为x.()[答案]对[题目]设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()[答案]错[题目]设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()[答案]对[题目]下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)[答案]错。

全版离散数学 练习题及答案.ppt

全版离散数学 练习题及答案.ppt

课件
例3 对任意两个集合A, B,试证 A (A B) A B
证明 对于任意的x
x A (A B)
x {x x A x ( A B)} x {x x A (x A B)} x {x x A (x A x B)} x {x x A (x A x B)} x {x x A x B}
课件
例10 求图的最小生成树
A 1B34 Nhomakorabea5
2 E
6
1A 2
B
E
4
6
C7 D
C
D
课件
例11
• 无向树T有7片树叶, 3个3度顶点,其余的 都是4度顶点,则T有几个4度顶点?
• 解:设T有x个4度顶点 顶点度数之和: 7+3*3+4x 由树的性质可得总边数: 7+3+x-1 由握手原理可得: 7+3*3+4x=2(7+3+x-1)
求g f
g f { 1,b , 2,b , 3,b }
课件
例12 求复合函数
X {1,2,3}, Y {p, q}, Z {a,b} f { 1, p , 2, p , 3, q } g { p,b , q,b }
求g f
g f { 1,b , 2,b , 3,b }
课件
例: 求幺元、零元、逆元
x A B 因为 x 是任意的,所以有
x ((x A (A B)) (x A B)) 的真值为T,
因此 A ( A B)课件 A B
例4 判断关系的性质
R1 { a, a , a,b , b,b , c,c }
a
1 1 0
M R 1 0 1 0
0 0 1

计算机科学与技术考试:2021离散数学与组合数学真题模拟及答案(3)

计算机科学与技术考试:2021离散数学与组合数学真题模拟及答案(3)

计算机科学与技术考试:2021离散数学与组合数学真题模拟及答案(3)共29道题1、在有理数集合Q上定义的二元运算*:x*y=x+y-xy,则Q中满足()。

(单选题)A. 所有元素都有逆元B. 只有唯一逆元C. ∀x∈Q,x≠1都有逆元x-1D. 所以元素都无逆元试题答案:C2、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?()(单选题)A. 自然数B. 实数C. 复数D. A,B,C均成立试题答案:A3、设f是由群<G;×>到群<G`;*>的同态映射,则Ker(f)是()。

(单选题)A. G`的子群B. G的子群C. 包含G`D. 包含G试题答案:B4、S1={1,2,...,8,9},S2={2,4,6,8},S3={1,3,5,7,9},S4={3,4,5},S5={3,5},在条件X⊆S1且X⊄S3下,X与()集合可能相等。

(单选题)A. X=S2或S3B. X=S4或S5C. X=S1,S2或S4D. X与S1,…,S5中任何集合都不相等试题答案:C5、设A={1,2,3,4},在P(A)上规定二元关系如下:R={(s,t):s,t∈P(A)且|s|=|t|},则P(A)/R=()。

(单选题)A. AB. P(A)C. {{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}}D. {{∅},{{2}},{{2,3}},{{2,3,4}},{A}}试题答案:D6、永真式的否定是()。

(单选题)A. 永真式B. 永假式C. 可满足式子D. A,B,C均有可能试题答案:B7、设A={1,2,3},则A的二元关系有()个。

(单选题)A. 23B. 32C. 23×3D. 32×2试题答案:C8、在有理数集合Q上定义的二元运算*:x*y=x+y-xy,则Q中满足()。

(单选题)A. 所有元素都有逆元B. 只有唯一逆元C. ∀x∈Q,x≠1都有逆元x-1D. 所以元素都无逆元试题答案:C9、设A={1,2,3,4},在P(A)上规定二元关系如下:R={(s,t):s,t∈P(A)且|s|=|t|},则P(A)/R=()。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

网络学院《离散数学》模拟-答案

网络学院《离散数学》模拟-答案

网络学院离散数学模拟试题1 考试时间120 分钟考试方式:开卷专业年级姓名学号一、选择填空题(每个空格3分,共30分)1.设A,B是集合,且φA,则_____必定成立。

D-B=A.A=B B.B⊆A C.A∩B=φD.A⊆B 2.{φ,{φ}}-φ=_____;CA. φ B. {φ} C. {φ,{φ}} D. {{φ}}3.设集合A={{0}},则P(A) =_____。

DA. P(P({0}))B. P({0})∪φC. P({0})∪{{0}}D. {φ,{{0}}}4.设有集合A={1,2,3,4},则从A到{0,1}的不同的函数有____个。

EA.0 B.1 C.4 D.12 E. 16 F. 24 G. 32 5.设G=(a)为12阶循环群,则G没有____阶子群。

EA.1 B.2 C.3 D.4 E. 5 F. 66.凡_____都满足消去律。

DA. 代数系统B. 半群C. 独异点D. 群7.从无向完全图K中至少删除____条边后,所得的图将成为平面图。

B5A.0 B.1 C.2 D.38.若无向图G是有99个结点,9个连通分量,则G中的边数必_____。

C A. ≤90 B. =90 C. ≥90 D. =100 E. ≥1009.下列句子中为命题的是_____。

AA.今天不是星期六。

B.考场内禁用手机!C.今天是周末吗?D.今天真冷呀!10. 任意两个不同极大项的析取式必为______。

AA. 永真公式B. 可满足公式C. 永假公式D. 等值公式二、求出谓词公式(,)(,,)u v F u v w G u v w ∃∃→∀的前束范式。

(10分)解:(,)(,,)u v F u v w G u v w ∃∃→∀ ⇔1111(,)(,,)u u F u v w G u v w ∃∃→∀ ⇔111(,)(,,)u v F u v w G u v w ⌝∃∃∨∀ ⇔1111(,)(,,)u y F u v w G u v w ∀∀⌝∨∀⇔1111(,)(,,)u v wF u vG u v w ∀∀∀⌝∨()三、用形式证明的方法证明下列论证的有效性:“本班有些同学是有经验的C++程序员,任何C++程序员都知道对象的概念。

离散数学模拟试题、课后习题(附解析)超强集合

离散数学模拟试题、课后习题(附解析)超强集合

,即
r
2e 。而 ver 2 故 k
2 ver ve
k (v 2) 。 (8 分) k 2 k (v 2) ②彼得森图为 k 5, e 15, v 10 ,这样 e 不成立, k 2 2e 即得 k e
所以彼得森图非平面图。 (3 分)
二、 逻辑推演 16% 1、 证明: ①A ② A B ③ A B C D ④C D ⑤D ⑥D E ⑦D E F ⑧F ⑨A F 2、证明 ① xP( x) ② P (c ) ③ x( P ( x) Q( x)) ④ P (c ) Q ( c ) P(附加前提) US① P US③
五、计算 18%
1、设集合 A={a,b,c,d}上的关系 R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出 R 的传递闭包 t (R)。 (9 分)
4
离散数学模拟习题与解析 (1).doc
2、如下图所示的赋权图表示某七个城市 v1 , v 2 , , v7 及预先算出它们之间的一些直接通信线 路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。 (9分)
R { a, b , c, d | a, b S S , c, d S S , a d b c} 则 由
S S 上一个划分共有(
则公式 xyP( y, x) 真值为
2、 设S={a 1 ,a 2 ,…,a 8 },B i 是S的子集,则由B 31 所表达的子集是 。 3、 设 A={2 , 3 , 4 , 5 , 6} 上 的 二 元 关 系 R { x, y | x y x是质数} , 则 R=

离散数学单元训练模拟题

离散数学单元训练模拟题

离散数学单元训练模拟题编者:金鹏时间:2008-5-6目录离散数学模拟题一 (3)离散数学模拟题二 (8)离散数学模拟题三 (15)离散数学模拟题四 (20)离散数学模拟题五 (27)离散数学模拟题六 (32)离散数学模拟题七 (36)离散数学模拟题八 (42)离散数学模拟题九 (45)离散数学模拟题十 (49)离散数学模拟题十一 (52)离散数学模拟题十二 (59)离散数学模拟题十三 (62)离散数学模拟题十四 (67)离散数学模拟题十五 (74)离散数学模拟题十六 (78)离散数学模拟题十七 (90)离散数学模拟题一一、判断题(共 12 分,每小题 1 分)( ) 1、(ØpÚØq)®(p®Øq)不是重言式。

( )2、在命题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。

( ) 3、命题函数是命题。

( ) 4、设 A,B,C 是 Q的子集,则有 A´(BÅC)¹(A´B)Å(A´C)。

( )5、设 A、B为集合,若 B≠Φ,则 A-B包含于 A。

( ) 6、若 R 为集合 A 上的非对称关系,则R 2 亦然。

( )7、存在一种建立在某个集合上的关系,它可以是对称的、反对称的、自反的、反 自反和可传递的。

( )8、设〈G,*〉是群,对于 G 中的任意元素 a,b 有:(a× b)-1=b-1× a-1。

( )9、在一个代数系统中,某个元素有多个左逆元,就不可能有右逆元。

( )10、设是非连通平面图 G的对偶图中的顶点数,边数和面数,则它们之间不满足欧 拉公式;( )11、设无向图 G 具有割点,则G 中一定不存在汉密尔顿回路;( )12、有向图G 是单侧连通;(G)二、求出下列命题公式的主析取范式和主合取范式。

(10 分)(P®(QÙR))Ù(ØP®(ØQÙR))三、逻辑推证(10 分)(1)Ø(P®Q)®Ø (RÚS),((Q®P)ÚØR) ,Ø(R®P)Þ P®Q四、用谓词推理理论来论证下述推证(10 分)任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑自行车(可 能这两种都喜欢)。

电大 离散数学 形成性考核册 作业(三)答案

电大 离散数学 形成性考核册 作业(三)答案

离散数学形成性考核作业〔三〕集合论与图论综合练习本课程形成性考核作业共4次,内容由中心电大确定、统一布置。

本次形考作业是第三次作业,大伙儿要认真及时地完成图论局部的形考作业,字迹工整,抄写题目,解答题有解答过程。

一、单项选择题1.假设集合A ={2,a ,{a },4},那么以下表述正确的选项是(B). A .{a ,{a }}∈A B .{a }⊆A C .{2}∈A D .∅∈A2.设B ={{2},3,4,2},那么以下命题中错误的选项是〔B 〕.A .{2}∈B B .{2,{2},3,4}⊂BC .{2}⊂BD .{2,{2}}⊂B3.假设集合A ={a ,b ,{1,2}},B ={1,2},那么〔B 〕. A .B ⊂A ,且B ∈A B .B ∈A ,但B ⊄A C .B ⊂A ,但B ∉A D .B ⊄A ,且B ∉A4.设集合A ={1,a },那么P (A )=(C). A .{{1},{a }}B .{∅,{1},{a }}C .{∅,{1},{a },{1,a }}D .{{1},{a },{1,a }}5.设集合A ={1,2,3,4,5,6}上的二元关系R ={<a ,b >⎢a ,b ∈A ,且a +b =8},那么R 具有的性质为〔B 〕. A .自反的B .对称的C .对称和传递的D .反自反和传递的6.设集合A ={1,2,3,4,5},B ={1,2,3},R 从A 到B 的二元关系,R ={<a ,b >⎢a ∈A ,b ∈B 且1=-b a } 那么R 具有的性质为〔〕.A .自反的B .对称的C .传递的D .反自反的[注重]:此题有误!自反性、反自反性、对称性、反对称性以及传递性指 某一个集合上的二元关系的性质。

7.设集合A ={1,2,3,4}上的二元关系R ={<1,1>,<2,2>,<2,3>,<4,4>},S ={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>}, 那么S 是R 的〔C 〕闭包.A .自反B .传递C .对称D .以上都不对8.非空集合A 上的二元关系R ,满足(A),那么称R 是等价关系. A .自反性,对称性和传递性B .反自反性,对称性和传递性 C .反自反性,反对称性和传递性 D .自反性,反对称性和传递性9.设集合A ={a ,b },那么A 上的二元关系R={<a ,a >,<b ,b >}是A 上的(C)关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系10.设集合A ={1,2,3,4,5}上的偏序关系的哈斯图如右图所示,假设A 的子集B ={3,4,5}, 那么元素3为B 的〔C 〕.A .下界B .最大下界C .最小上界D .以上答案都不对11.设函数f :R →R ,f (a )=2a +1;g :R →R ,g (a )=a 2.那么〔C 〕有反函数. A .g •f B .f •g C .f D .g12.设图G 的邻接矩阵为 那么G 的边数为(D). A .5B .6C .3D .413.以下数组中,能构成无向图的度数列的数组是(C). A .(1,1,2,3)B .(1,2,3,4,5)C .(2,2,2,2)D .(1,3,3) 14.设图G =<V ,E >,那么以下结论成立的是(C). A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈D .E v Vv =∑∈)deg(解;C 为握手定理。

离散数学模拟试题(05年6月)

离散数学模拟试题(05年6月)

离散数学模拟试题(一)一、选择题1、由集合运算的定义,下列各式中,正确的是( )。

(A) A ∪E = A; (B) A ∩∅ = A; (C) A ⊕ ∅ = A; (D) A ⊕ A = A.2、设G 如右图:那么G 不是( ). (A)平面图; (B)完全图;(C)欧拉图; (D)哈密顿图.3、设个体域为整数,下列公式中真值为1的是( )。

(A)∀x ∀y(x + y = 1); (B)∀x ∃y(x + y = 1); (C)∃x ∀y(x + y = 1); (D) ⌝ ∃x ∃y(x + y = 1)。

4、下列命题为假的是( )。

(A) {∅}∈ρ(∅); (B) ∅ ⊆ρ({∅});(C) {∅} ⊇ρ(∅); (D)ρ(∅) ∈ρ({∅})。

5、设集合A = {1,2,3,4},A 上的关系R = {(1,1),(2,3),(2,4),(3,4)},则R 具有( ). (A)自反性; (B)传递性; (C)对称性; (D)以上都不是.6、谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )(A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q7、谓词公式∃xA (x )∧⌝∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A),(B),(C)任何类型8、设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) )),()(()((y x A y J y x L x ∧∃→∀(C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀9、设命题公式⌝(P ∧(Q →⌝P )),记作G ,则使G 的真值指派为0的P ,Q 的取值是( ) (A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1) 10、与命题公式P →(Q →R )等值的公式是( )(A) (P ∨Q )→R (B)(P ∧Q )→R (C) (P →Q )→R (D) P →(Q ∨R ) 二、填空题1、命题: ∅ ⊆ {{a }} ⊆ {{a },3,4,1} 的真值 = ____ .2、 设A= {a,b}, B = {x | x 2-(a+b) x+ab = 0}, 则两个集合的关系为:A____B.3、设集合A ={a ,b ,c },B ={a ,b }, 那么 ρ(B )-ρ(A )=______ .4、无孤立点的有限有向图有欧拉路的充分必要条件为: _______________________________________________.5、公式))(),(()),()((x S z y R z y x Q x P x →∃∨→∀的自由变元是 , 约束变元是 .6、设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .7、设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为 8、设G 是n 个结点的简单图,若G 中每对结点的度数之和 ,则G 一定是哈密顿图. 9、设全集合E ={1,2,3,4,5},A ={1,2,3},B ={2,5},~A ⋃~B = .10、设集合A ={a ,b ,c },B ={a ,b },那么P (A )-P (B )= 三、计算题1、求公式 G = (P ∧Q)→R 的主析取范式和主合取范式。

离散数学模拟试题三

离散数学模拟试题三
某年级共有9门选修课程期末考试前必须提前将这课程考完每人每天只在下午考一门课若以课程表示结点huffman算法求出带权为235789的最优二叉树t并求wt
西安电子科技大学 期末考试试题
课程名称:__离散数学 学习中心:_________ 姓 名:_____________ 考试形式: 考试时间: 学 号: 闭 卷 90 分钟
0 1 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 o 0 0 0 0 1 0 0 0 o 1 0 0 0 0 0 1 0 o 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 = 0 0 0 0 0 0 1 0 = 0 0 0 0 0 0 1 0 = 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 = MR 0 0 1 0 = M R2 1 0
A、{1,2,3,4,6,12}; B、{1,2,3,4,6,8,12,14}; C、{1,2,3,…,12}; D、{1,2,3,4}。 三 计 算(每题 8 分 合计 40 分)
1.给定 3 个命题: P:北京比天津人口多;Q:2 大于 1;R:15 是素数。 求 复合命题: (Q → R ) ↔ ( P ∧ ¬R) 的真值。
4. 某年级共有 9 门选修课程, 期末考试前必须提前将这 9 门 课程考完,每人每天只在下午 考一门课, 若以课程表示结点,
第 4 页 (共 11 页)
有一人同时选两门课程,则这两点间有边(其图如右) ,问至少需几天?

《离散数学》考试题库及答案(三)

《离散数学》考试题库及答案(三)

《离散数学》考试题库及答案一、 填空 10% (每小题 2分)1、 若P ,Q 为二命题,Q P ↔真值为1,当且仅当 。

2、 对公式),()),(),((y x xR z x zQ y x yP ∀∨∃∧∀中自由变元进行代入的 公式为 。

3、 ))(()(x xG x xF ∃⌝∧∀的前束范式为 。

4、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A (x )关于y 的自由的,则被称为全称量词消去规则,记为US 。

5、 与非门的逻辑网络为。

二、 选择 30% (每小题 3分)1、 下列各符号串,不是合式公式的有( )。

A 、R Q P ⌝∧∧)(; B 、)()((S R Q P ∧→→; C 、R Q P ∧∨∨; D 、S R Q P ∨∧∨⌝))((。

2、 下列语句是命题的有( )。

A 、2是素数;B 、x+5 > 6;C 、地球外的星球上也有人;D 、这朵花多好看呀!。

3、 下列公式是重言式的有( )。

A 、)(Q P ↔⌝;B 、Q Q P →∧)(;C 、P P Q ∧→⌝)(;D 、P Q P ↔→)( 4、 下列问题成立的有( )。

A 、 若CBC A ∨⇔∨,则B A ⇔; B 、若C B C A ∧⇔∧,则B A ⇔; C 、若B A ⌝⇔⌝,则B A ⇔;D 、若B A ⇔,则B A ⌝⇔⌝。

5、 命题逻辑演绎的CP 规则为( )。

A 、 在推演过程中可随便使用前提;B 、在推演过程中可随便使用前面演绎出的某些公式的逻辑结果;C 、如果要演绎出的公式为C B →形式,那么将B 作为前提,设法演绎出C ;D 、设)(A Φ是含公式A 的命题公式,A B ⇔,则可用B 替换)(A Φ中的A 。

6、 命题“有的人喜欢所有的花”的逻辑符号化为( )。

设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢yA 、))),()(()((y x H y F y x M x →∀→∀;B 、))),()(()((y x H y F y x M x →∀∧∀;C 、))),()(()((y x H y F y x M x →∀→∃;D 、))),()(()((y x H y F y x M x →∀∧∃。

离散数学题库

离散数学题库

院(系) 班级 学号(9位) 姓名 ———————————阅————卷————密————封————装————订————线——————————第 1 页/共 39 页常熟理工学院20 ~20 学年第 学期《离散数学》考试试卷(试卷库01卷)试题总分: 100 分 考试时限:120 分钟题号 一 二 三 四 五 总分 阅卷人 得分一、单项选择题(每题2分,共20分)1. 下列表达式正确的有( )(A ) Q Q P ⇒ → ⌝ ) ( (B )P Q P ⇒∨(C )P Q P Q P ⇔⌝∧∨∧)()( (D )T Q P P ⇔→→)(2. 设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,下列( )命题的真值为真。

(A )R Q P ∧→ (B )S P R ∧→ (C )R Q S ∧→ (D ))()(S Q R P ∧∨∧ 3. 集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y ∈A},则R 的性质为( )(A )自反的 (B )对称的 (C )传递的,对称的 (D )传递的4. 设>=< },2,1,0{1G ,>=<},*1,0{2G ,其中 表示模3加法,*表示模2乘法,在集合21G G ⨯上定义如下运算:,,,,21G G d c b a ⨯>∈<><∀有,,,,>*>=<<∙><d b c a d c b a 称>∙⨯<,21G G 为21G G ⨯的积代数,则21G G ⨯的积代数幺元是( )(A )<0,0>(B )<0,1>(C )<1,0>(D )<1,1>5. 下图中既不是Eular 图,也不是Hamilton 图的图是( )6. 设>=<E V G ,为无向图,23,7==E V ,则G 一定是( )(A )完全图 (B )树 (C )简单图 (D )多重图7. 设P :我将去镇上,Q :我有时间。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试形式: 考试时间: 学
四 20
闭 卷 90 分钟
号:
总分
一 填空题(每空 2 分,合计 20 分) 1 P 的真值 为 1,Q 的 真 值 为0 5 n-1 6 2
{Φ , {Φ}, {{ Φ}}, {Φ , {Φ}}}
3
{0, 1, 2, 3, 4 4,6}
(﹁P∨ S ∨ R) ∧ (﹁P∨ ﹁S∨R)
4. 某年级共有 9 门选修课程, 期末考试前必须提前将这 9 门 课程考完,每人每天只在下午 考一门课, 若以课程表示结点,
第 4 页 (共 11 页)
有一人同时选两门课程,则这两点间有边(其图如右) ,问至少需几天?
5. 用 Huffman 算法求出带权为 2,3,5,7,8,9 的最优二叉树 T,并求 W (T) 。 若传递 a , b, c, d , e, f 的频率分别为 2%, 3% , 5 %, 7% , 8% ,9%求传输它的最佳前缀码。
A、{1,2,3,4,6,12}; B、{1,2,3,4,6,8,12,14}; C、{1,2,3,…,12}; D、{1,2,3,4}。 三 计 算(每题 8 分 合计 40 分)
1.给定 3 个命题: P:北京比天津人口多;Q:2 大于 1;R:15 是素数。 求 复合命题: (Q → R ) ↔ ( P ∧ ¬R) 的真值。
第 3 页 (共 11 页)
2. 给定解释 I:D={2,3},L(x,y)为 L( 2 , 2 ) = L ( 3 , 3 ) = 1 , L ( 2 , 3 ) = L (3 , 2 )=0 ,求谓词合式公式 ∃ y∀ xL( x, y ) 的真值。
3. A={a,b,c,d},R={<a,b>,<b,c>,<b,d>,<c,b>}为 A 上的关系,利用矩阵乘法求 R 的传递闭包,并画出 t(R)的关系图。
第 2 页 (共 11 页)
D. ∀u∀y ( P (u , y ) ∨ Q ( y , z )) ∧ ∃uP (u , y ) 。 6.N 是自然数集,定义 f : N → N , 余数) ,则 f 是( ) 。 A、满射不是单射;B、单射不是满射;C、双射;D、不是单射也不是满射。 7.设 < A ,∨ ,∧ > 是由格<A, ≤ >诱导的代数系统,若对 ∀a, b, c ∈ A ,当
西安电子科技大学 期末考试试题
课程名称:__离散数学 学习中心:_________ 姓 名:_____________ 考试形式: 考试时间: 学 号: 闭 卷 90 分钟
一 填空题(每空 2 分,合计 20 分) 1.命题 P→Q 的真值为 0, 当且仅当 2.P (P( Φ )) = 。 。
3.设 A = {x | ( x ∈ N )且( x < 5)}, B = {x | x ∈ E + 且x < 7} (N: 自然数集, E+ 正偶数) 则 A ∪ B = 4.公式 ( P ∧ R ) ∨ ( S ∧ R ) ∨ ¬P 的主合取范式为 5.n 阶完全图结点 v 的度数 d(v) = 。 。 。
A、有界格; B、有补格;
9.在布尔代数 < A ,∨ , ∧ ,− > 中, b ∧ c = 0 当且仅当( A、 b ≤ c ; B、 c ≤ b ; C、 b ≤ c ; D、 c ≤ b 。
10. 设<A, ≤ >是偏序集, “ ≤ ”定义为: ∀a, b ∈ A, a ≤ b ⇔ a | b ,则当 A=( )时,<A, ≤ >是格。
P(A) ∧(| s |=| t |)} ,证明 R 是 P(A)上的等价关系并写出商集 P(A)/R。
第 6 页 (共 11 页)
西安电子科技大学网络教育 2010 学年上学期期末考试答题纸
课程名称:__离散数学 学习中心:_________ 姓 名:_____________
题号 题分 得分 一 20 二 20 三 40
四 证明题(每题 10 分 合计 20 分)
ˆ ∈ A ,使得 x ˆ * x = e ,则 1. 设<A,*>,是半群,e 是左幺元且 ∀x ∈ A , ∃x
第 5 页 (共 11 页)
<A , *>是群。
2. 设 A={1, 2, 3, 4}, 在 P (A) 上规定二元关系如下:R = {< s, t >| s, t ∈
ˆ 使x ˆ * ( x * e) = ( x ˆ * x) * e = e * e = e = x ˆ*x ∀x ∈ A , x * e ∈ A, ∃x 由(1)即x * e = x, ∴ e为右幺元
9.拉格朗日定理说明若<H , *>是群<G,*>的子群, 则可建立 G 中的等价关系 R= |H|=m 则 m 和 n 关系为 二 选 择(每题 2 分,合计 20 分) 。若|G|=n, 。
1.设 A={1,2,3},则 A 上的二元关系有( )个。
第 1 页 (共 11 页)
A. 23 ;
B. 32 ;
f ( x ) = ( x ) mod 3 (即 x 除以 3 的
b ≤ a 时,有( )<A, ≤ >是模格。
A、 a ∧ (b ∨ c) = b ∨ ( a ∧ c ) ; C、 a ∨ (b ∧ c) = b ∧ ( a ∨ c ) ; 8. 在( )中,补元是唯一的。 C、分配格; D、有补分配格。 ) 。 B、 c ∧ ( a ∨ c ) = a ∨ (b ∧ c) ; D、 c ∨ ( a ∧ c ) = b ∧ ( a ∨ c) 。
第 8 页 (共 11 页)
∴ M t ( R) = M R ∨ M R2
0 0 ∨ M R3∨ M R 4 = 0 0
1 1 1 0
1 1 1 0
1 1 1 0
所以 t(R)={<a,b>,<a,c>,<a,d>,<b,b>,<b,c>,<b,d>,<c,b>,<c,c>,<c,d>}
第 9 页 (共 11 页)
W (T ) = 2 × 4 + 3 × 4 + 5 × 3 + 9 × 2 + 7 × 2 + 8 × 2 = 83
用 0000 传输 a、0001 传输 b、001 传输 c、01 传输 f、10 传输 d、11 传输 e 传输它们的最优前缀码为{0000,0001,001,01,10,11} 。 四 证明题(每题 10 分 合计 20 分) 1. (1) ∀a, b, c ∈ A , 若a * b = a * c 则 b = c
2. 解: ∃ y∀ xL( x, y) ⇔ ∃y ( L(2, y) ∧ L(3, y )) ⇔ ( L(2,2) ∧ L(3,2)) ∨ ( L(2,3) ∧ L(3,3))
⇔ (1 ∧ 0) ∨ (0 ∧ 1) = 0 ∨ 0 = 0
3. 解:
0 0 MR = 0 0
1 0 1 0
C. 2
3×3
; D. 3 2×2 。
2.设 R,S 是集合 A 上的关系,则下列说法正确的是( ) A.若 R,S 是自反的, 则 R o S 是自反的; B.若 R,S 是反自反的, 则 R o S 是反自反的; C.若 R,S 是对称的, 则 R o S 是对称的; D.若 R,S 是传递的, 则 R o S 是传递的。 3. 命题逻辑演绎的 CP 规则为( ) 。 A. 在推演过程中可随便使用前提; B. 在推演过程中可随便使用前面演绎出的某些公式的逻辑结果; C. 如要演绎出的公式为 B → C 形式,那么将 B 作为前提,设法演绎出 C; D. Φ ( A) 是含公式 A 的命题公式, B ⇔ A ,则可用 B 替换 Φ ( A) 中的 A。 4. 命题“有的人喜欢所有的花”的逻辑符号化为( ) 。设 D:全总个体 域,F(x) :x 是花,M(x) :x 是人,H(x,y):x 喜欢 y A、 ∀x ( M ( x) → ∀y ( F ( y ) → H ( x, y ))) B、 ∀x ( M ( x) ∧ ∀y ( F ( y ) → H ( x, y ))) C、 ∃x ( M ( x) → ∀y ( F ( y ) → H ( x, y ))) D、 ∃x ( M ( x) ∧ ∀y ( F ( y ) → H ( x, y ))) 。 5.公式 ∀x∀y ( P ( x, y ) ∨ Q ( y, z )) ∧ ∃xP ( x, y ) 换名( A. ∀x∀u ( P ( x, u ) ∨ Q(u, z )) ∧ ∃xP ( x, y ) B. ∀x∀y ( P ( x, u ) ∨ Q(u, z )) ∧ ∃xP ( x, u ) C. ∀x∀y ( P ( x, y ) ∨ Q( y, z )) ∧ ∃xP ( x, u ) ) 。
0 1 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 o 0 0 0 0 1 0 0 0 o 1 0 0 0 0 0 1 0 o 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 = 0 0 0 0 0 0 1 0 = 0 0 0 0 0 0 1 0 = 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 = MR 0 0 1 0 = M R2 1 0
关系图为 4.解:
χ (G ) 即为最少考试天数。
用 Welch-Powell 方法对 G 着色: v9 v3 v7 v1v 2 v 4 v5 v8 v6 第一种颜色的点 v9 v1v 4 v 6 ,剩余点 v3 v 7 v 2 v5 v8 第二种颜色的点 v3 v7 v5 ,剩余点 v 2 v8 第三种颜色的点 v 2 v8 所以 χ (G ) ≤3 任 v 2 v3 v9 构成一圈,所以 χ (G ) ≥3 故 χ (G ) =3 所以三天下午即可考完全部九门课程。 5.解:
相关文档
最新文档