大学物理单元测验(磁学)
目前最全大学物理电磁学题库包含答案(共43页,千道题)
大学物理电磁学试题(1)一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上E处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。
(B)场强相等,电位移相等。
(C)场强相等,电位移不等。
(D)场强、电位移均不等。
[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。
大学物理规范作业A31(磁学单元测试)
0 I 3 (1 ) 3R R 2
0 I
4.如图,边长为a的正三角形导线中通有电流,则图中P 90 I 处的磁感应强度的大小为 方向 垂直纸面向里 。
2 aΒιβλιοθήκη 解:P点到每一边的距离为a 2 3
0 I B 3 (cos300 cos1500 ) 4a /(2 / 3 )
L
Bi dl 0 I i
B 0i
3. 尺寸如图所示的长导线中通有电流,图中圆心O处的 磁感应强度大小为 μ 0 I μ 0 I (1 3 ) ,方向 垂直纸面向里 。
3R
R
2
0 I 2 0 I Bb 2 (cos 0 cos ) 3 2R 4R / 2 6
0 I 0 II1 F1 I1 Bdl I1dl l 2a 2a AB
A B
对BC段方向垂直BC向右,大小为
0 II1 F2 l 2 (a b)
D C
0 II 1l 1 1 F合 F1 F2 ( ) 2 a a b
线圈各边受力共面, 它受的力矩为零。
0 Ir B 2R 2
阴影面积的磁通量: R Ir 0 IR 0 2 Rdr m B dS 2 0 2R S 2
r
2. 半径为R的无限长直圆筒上有一层均匀分布的面电 流,电流都绕着轴线流动并与轴线垂直,如图所示, 面电流密度(即通过垂直方向单位长度上的电流)为i, 则轴线上磁感强度的大小B= 0i 。 解: 由安培环路定律
R
0 I 当r R时: B 2 r
3.如图,在长直电流近旁放一矩形线圈与其共面,线圈各边分别 平行和垂直于长直导线。线圈长度为l,宽为b,近边距长直导线距 离为a,长直导线中通有电流I。当矩形线圈中通有电流I1时,它 受到的磁力的大小和方向各如何?它又受到多大的磁力矩?
大学物理(电磁学)试卷1
大学物理(电磁学)试卷1(考试时间 120分钟 考试形式闭卷)年级专业层次 姓名 学号注意:请将所有答案写在专用答题纸上,并注明题号。
答案写在试卷和草稿纸上一律无效。
一.选择题:(共30分 每小题3分)1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为:(A )r 012πελ. (B )r 0212πελλ+. (C ))(2202r R -πελ. (D ))(2101R r -πελ.2.如图所示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A < 0且为有限常量.(B ) A > 0且为有限常量. (C ) A =∞.(D ) A = 0.3.一带电体可作为点电荷处理的条件是(A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小.4.下列几个说法中哪一个是正确的?(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强方向可由q F E /=定出,其中q 为试探电荷的电量,q 可正、可负,F 为试探电荷所受的电场力.(D )以上说法都不正确.5.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则:(A )2121,d d P P L L B B l B l B =⋅=⋅⎰⎰ (B )2121,d d P P L L B B l B l B =⋅≠⋅⎰⎰(C )2121,d d P P L L B B l B l B ≠⋅=⋅⎰⎰ (D )2121,d d P P L L B B l B l B ≠⋅≠⋅⎰⎰6.电场强度为E 的均匀电场,E的方向与X 轴正向平行,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A )E R 2π.(B )E R 221π. (C )E R 22π. (D )07.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零.8.正方形的两对角上,各置点电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A )q Q 22-=. (B )q Q 2-=. (C )q Q 4-=. (D )q Q 2-=.9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A )向下偏. (B )向上偏. (C )向纸外偏. (D )向纸内偏.10.对位移电流,有下述四种说法,请指出哪一种说法正确.(A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律.(D )位移电流的磁效应不服从安培环路定理.二.填空题:(共30分 每小题3分)1.一平行板电容器,两板间充满各向同性均匀电介质,已知相对电容率为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D = ,电场强度的大小E = .2.一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为 ,极板上的电荷量大小为 .3.在相对介电常数4=r ε的各向同性均匀电介质中,与电能密度36J/cm 102⨯=e w 相应的电场强度的大小E= .(ε0=8.85×10-12C 2N -1m -2)4.平行板电容器,充电后与电源保持连接,然后使两极板间充满相对电容率为0ε的各向同性均匀电介质,这时两极板上的电量是原来的 倍,电场强度是原来的 倍;电场能量是原来的 倍.5.真空中,半径为R 1和R 2的两个导体球,相距很远,则两球的电容之比C 1:C 2= .当用细长导线将两球相连后,电容C = ,今给其带电,平衡后两球表面附近场强之比E l /E 2= .6.电量为C 1059-⨯-的试探电荷放在电场中某点时,受到N 10209-⨯向下的力,则该点的电场强度大小为 ,方向 .7.当带电量为q 的粒子在场强分布为E的静电场中从a 点到b 点作有限位移时,电场力对该粒子所作功的计算式为A = .8.图示为某静电场的等势面图,在图中画出该电场的电力线.垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 .10.面积为S 的平面,放在场强为E 的均匀电场中,已知E 与平面间的夹角为)21(πθ<,则通过该平面的电场强度通量的数值=Φe .三.计算题:(共40分 每小题10分)1、两个点电荷,电量分别为+q 和-3q ,相距为d ,试求:(l )在它们的连线上电场强度0=E的点与电荷量为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远?2、无限长直导线折成V 形,顶角为 θ,置于X —Y 平面内,且一个角边与X 轴重合,如图.当导线中通有电流I 时,求Y 轴上一点P (0,a )处的磁感应强度大小.3、电量Q 均匀分布在半径为a 、长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照)/1(00t t -=ωω的规律(0ω和0t 是已知常数)随时间线性地减小,求圆形线圈中感应电流的大小和流向.4、图中所示为水平面内的两条平行长直裸导线LM 与L ′M ′,其间距离为l 其左端与电动势为0ε的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .dq +q 3-大学物理(电磁学)试卷1答案一.选择题:(共30分,每小题3分) 1.(A )2.(D )3.(C )4.(C )5.(C ) 6.(D ) 7.(C ) 8.(A ) 9.(B ) 10.(A ) 二.填空题:(共30分)l . σ 2分)/(0r εεσ1分 2. C Fd /2 3分FdC 22分3. 3.36×1011V /m 4.r ε 1分 1 1分r ε1分 5. R 1/R 2l 分)(4210R R +πε 2分 R 2/R 12分 6. 4N/C2分 向上1分 7. ⎰⋅b al E qd3分8.9. B r 2π 3分 10.)21cos(θπ-ES 3分三.计算题:(共40分)l .解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线.(l )设0=E的点的坐标为x ′,则E0)'(43'42020=--=i d x qi x q E πεπε3分可得 0'2'222=-+d dx x 解出 d x )31(21'1+-=和 d x )13(21'2-= 2分其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则)(43400x d qx q U --=πεπε0])(4[40=--=x d x xd q πε3分得 4/04d x x d ==-2分2.解:如图所示,将V 形导线的两根半无限长导线分别标为1和2。
大学物理(磁学)试卷
大 学 物 理(磁 学) 试 卷一选择题(共24分) 1(本题3分,D )在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 2(本题3分,C )电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B ≠ 0. [ ]3(本题3分,B )磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]4(本题3分,C )如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为 (A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]BxOR(D )B x OR(C )BxOR(E )电流筒5(本题3分,C )如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]6(本题3分,D )如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v .(B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]7(本题3分,D ) 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动. (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高. [ ]8(本题3分,C )两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心. (A) 两线圈的轴线互相平行放置. (B) 两线圈并联.(C) 两线圈的轴线互相垂直放置. (D) 两线圈串联. [ ]二 填空题(共24分)9(本题3分) 一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I .若作一个半径为R = 5a 、高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a (如图).则B在圆柱侧面S 上的积分 =⎰⎰⋅SS Bd ________________.I O O (D )I O (C )O (B I10(本题3分)载有电流I 的导线由两根半无限长直导线和半径为R 的、以xyz 坐标系原点O 为中心的3/4圆弧组成,圆弧在yOz 平面内,两根半无限长直导线与x 轴平行,电流流向如图所示.O 点的磁感强度=B____________________________________.(用坐标轴正方向单位矢量k j i,,表示)11(本题4分)如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B_____________.(2) 磁感强度B沿图中环路L 的线积分=⎰⋅Ll Bd __________________________________.12(本题3分)如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为_________________.13(本题4分)判断在下述情况下,线圈中有无感应电流,若有,在图中标明感应电流的方向.(1) 两圆环形导体互相垂直地放置.两环的中心重合,且彼此绝缘,当B 环中的电流发生变化时,在A 环中_______________________. (2) 无限长载流直导线处在导体圆环所在平面并通过环的中心,载流直导线与圆环互相绝缘,当圆环以直导线为轴匀速转动时,圆环中__________________.14(本题4分)半径为L 的均匀导体圆盘绕通过中心O 的垂直轴转动,角速度为ω,盘面与均匀磁场B垂直,如图. (1) 图上Oa 线段中动生电动势的方向为_________________. (2) 填写下列电势差的值(设ca 段长度为d ):U a -U O =__________________.U a -U b =__________________.U a -U c =__________________.15(本题分3)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=___________.II(1)a三 计算题(共47分)16(本题5分)一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.17(本题12分)两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?18(本题5分)如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.19(本题5分)通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).20(本题10分)如图所示,两条平行长直导线和一个矩形导线框共面.且导线框的一个边与长直导线平行,他到两长直导线的距离分别为r 1、r 2.已知两导线中电流都为t I I ωsin 0=,其中I 0和ω为常数,t 为时间.导线框长为a 宽为b ,求导线框中的感应电动势.21(本题10分)载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N .四 回答问题(共5分)22(本题5分)用简单例子说明:楞次定律是能量守恒的必然结果.换句话说,如果电磁感应的规律正好与楞次定律相反,则能量守恒定律便不成立. 参考答案一 选择题(共24分) DCBCCDDC二 填空题(共24分) 9(本题3分)0 3分BIIO xr 1r 2ab10(本题3分)i RI k j R I83)(400μμ-+π- 3分11(本题4分)0 2分 I 0μ- 2分12(本题3分)a I B 2 3分13(本题4分)无感应电流 2分无感应电流 2分14(本题4分)Oa 段电动势方向由a 指向O . 1分221L B ω-1分0 1分 )2(21d L Bd --ω 1分15(本题3分)1∶16 3分参考解:02/21μB w =nI B 0μ=)4(222102220021d lI n V B W π==μμμ)4/(21222202d l I n W π=μ16:1::222121==d d W W三 计算题(共47分)16(本题5分)解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B+++=∵ 1B 、4B均为0,故 32B B B += 1分)2(4102RI B μ= 方向 ⊗ 1分 242)s i n (s i n 401203RI aIB π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 1分2其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/s i n (s i n 1-=π-=β∴ RIRIB π+=2800μμ)141(20π+=RI μ 方向 ⊗ 2分17(本题12分)解:当只有一块无穷大平面存在时,利用安培环路定理,可知板外的磁感强度值为i B 021μ=4分现有两块无穷大平面,1i 与2i夹角为θ ,因11i B ⊥,22i B ⊥,故1B 和2B 夹角也为θ 或π-θ .(1) 在两面之间1B 和2B夹角为( π-θ )故2/12122210)c o s 2(21θμi i i i B i -+=2分(2) 在两面之外1B 和2B的夹角为θ ,故2/12122210)c o s 2(21θμi i i i B o ++=2分(3) 当i i i ==21,0=θ时,有=-=θμc o s 12210i B i 0 2分 i i B o 00c o s 1221μθμ=+=2分18(本题5分)解:应用安培环路定理和磁场叠加原理可得磁场分布为,)3(2200x a I xI B -π+π=μμ )252(a x a ≤≤ 4分 B的方向垂直x 轴及图面向里. 1分19(本题5分)解:长直导线AC 和BD 受力大小相等,方向相反且在同一直线上,故合力为零.现计算半圆部分受力,取电流元l Id , B l I F ⨯=d d 即 θd d IRB F = 2分 由于对称性0d =∑xF∴ RIB IRB FF F yy 2d sin d 0====⎰⎰πθθ 3分方向沿y 轴正向20(本题10分)解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为)11(2210r r x x B +-+π=μ 2分 选顺时针方向为线框回路正方向,则)d d (21111210⎰⎰⎰+++-+π==br r br r r r x x xx Ia BdS μΦ 3分1F)l n (222110r b r r b r Ia+⋅+π=μ 2分 ∴ εtIr r b r b r a td d ]))((ln[2d d 21210++π-=-=μΦ t r r b r b r a I ωωμc o s ]))((ln[2212100++π-= 3分21(本题10分) 解:动生电动势 ⎰⋅⨯=MNd )v (l B MeNε为计算简单,可引入一条辅助线MN ,构成闭合回路MeNM , 闭合回路总电动势0=+=NM MeN εεε总MN NM MeN εεε=-=2分 x xIl B ba ba MNd 2vd )v (0MN⎰⎰⋅+-π-=⨯=μεba b a I -+π-=ln 20vμ负号表示MN ε的方向与x 轴相反. 3分b a b a I M e N -+π-=ln 2v0με 方向N →M 2分ba b a I U U MN N M -+π=-=-ln 2v0με 3分四 回答问题(共5分)22(本题5分)答:例如在磁棒靠近线圈时,线圈中产生感应电流,按楞次定律,线圈电流方向应如图所示,这样线圈阻碍磁棒靠近,使磁棒的动能转化为线圈的磁场能和线圈中因有电流而生的热. 2分如果与楞次定律相反,线圈中感应电流的磁场将吸引磁棒,使磁棒加速,动能增加.这增加的动能、磁场能和线圈中生的热都系无中生有,显然违反能量守恒定律. 3分恒定磁场复习重点(一)要点一.磁感强度B 的定义(略). 二.毕奥—沙伐尔定律1.电流元I d l 激发磁场的磁感强度 d B =[μ0 /( 4π)]I d l ×r /r 32.运动点电荷q 激发磁场的磁感强度 B =[μ0 /( 4π)]q v ×r /r 3 三.磁场的高斯定理1.磁感线(略);2.磁通量 Φm =⎰⋅Sd S B3.高斯定理0d =⋅⎰SS B 稳恒磁场是无源场.四.安培环路定理 真空中⎰∑=⋅li I 0 d μl BNSN v稳恒磁场是非保守场,是涡旋场或有旋场.五.磁矩m : 1.定义 m =IS e n 2. 载流线圈在均匀磁场中受力矩 M=m ×B 六.洛伦兹力1.表达式 F m = q v ×B2.带电粒子在均匀磁场中运动:回旋半径 R =mv sin α / (qB ); 回旋频率 f = qB / (2πm ) 七.安培力 表达式 d F m = I d l ×B ; 八.几种特殊电流的磁场:1.长直电流激发磁场 有限长 B=μ0I (cos θ1-cos θ2)/(4πr )无限长 B=μ0I/(2πr ) 方向都沿切向且与电流成右手螺旋;2. 圆电流在轴线上激发磁场 B=μ0IR 2/[2(x 2+R 2)3/2] , 中心B=μ0I/(2R ) 张角α的园弧电流中心的磁感强度B=[μ0I/(2R )]⋅[α/(2π)], 方向都沿轴向且与电流成右手螺旋;3.无限长密绕载流螺线管激发的磁场 管内 B=μ0nI 管外 B=04.密绕载流螺绕环环内磁场 B=μ0NI //(2π r )5.无限大均匀平面电流激发磁场 B=μ0 j/26.无限长均匀圆柱面电流激发磁场:柱面内 B=0, 柱面外 B=μ0I /(2πr )7.无限长均匀圆柱体电流激发磁场:柱内 B=μ0Ir/(2πR 2) 柱外 B=μ0I /(2πr )(二)试题一、选择题(每题3分)1.电流I 由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度I ,圆环的半径R ,且a 、b 和圆心O 在一条直线上,设直电流1、2及圆环电流分别在O 点产生的磁感强度1B 、2B及3B ,则O 点的磁感强度大小 (答案:C )(B)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E )B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0..2. 边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(答案:C ) (A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 .20/B I l π= (C)10/B I l π=. B 2=0 .(D)10/B I l π=.20/B I l π= .3.如图,无限长载流导线与三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(答案:A ) (A) 向着长直导线平移 (B) 离开长直导线平移 (C) 转动 (D) 不动4. 如图两根载流导线相互正交放置,如图所示,1I 沿y的负方向.若载流1I 的导线不能动,载流2I 的导线可以自由运动,的导线开始运动的趋势是(答案:B )(A) 沿x 方向平动 (B) 绕x 轴转动(C) 绕y 轴转动 (D) 无法判断5. 如图均匀磁场的磁感强度B垂直于半径为r(2)线,作一半球面S ,则通过S 面的磁通量的大小为(答案B) (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. 6. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(答案C) (A) 绕I 2旋转 (B) 向左运动(C) 向右运动 (D) 向上运动 (E) 不动. 二、填空题1.沿着图示的两条不共面而彼此垂直的无限长的直导线,通过电流强度13I A =和24I A =的电流. 在距离两导线皆为20d cm =处的A 点处,磁感强度的大小B = . (答案:025/2μπ,3分)2.真空中载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ= .若通过S 面上某面元dS的元磁通d Φ,而线圈中电流增加为2I 时,通过同一面元的元磁通d 'Φ,则/d d 'ΦΦ= . (答案:0,1/2,3分)3.(本题3分)半径为 0.5 cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I = 3 A 的电流.作一个半径r = 5 cm 、长l = 5 cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感强度B沿曲面的积分=⋅⎰⎰S Bd ___________.(答案:0)4.在安培环路定理∑⎰⋅=i LI l B 0d μ 中,∑i I 是指____________;B是指__________,它是由____________决定的.[答案:环路L 所包围的所有稳恒电流的代数和 (1分);环路L 上的磁感强度(1分); 环路L 内外全部电流所产生磁场的叠加 (1分)]5. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流为I ,且在横截面上均匀分布,但二者电流的流向正相反,则(本题3分)(1)在1r R <处磁感强度大小为 ;(答案: 201/(2)rI R μπ (2)在3r R >处磁感强度大小为 .(0)6.(本题3分)一密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2,当在螺线管中通入10A 的电流时,它的横截面上的磁通量为 .(真空中磁导率μ0=4π×10-7 T .m/A )(答案: BS =4π×10-6韦伯)7.(本题3分)如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为_______,方向________.[答案:BIR 2 (2分) 沿y 轴正向 (1分) ]8.(本题4分)A 、B 、C 为三根平行共面的长直导线,导线间距d =10cm ,它们通过的电流分别为I A =I B =5A ,I C =10A ,其中I C 与I A 、I B 的方向相反,每根导线每厘米所受的力的大小A dF dl = (答案:0)B dF dl= (答案:15×10-7 N/ cm 2)1BCdF dl= (答案:-15×10-7 N/ cm 2)(μ0=4π×10-7 N/A 2)9.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相等,直径之比d 1/d 2=1/4,当它们通以相同电流时,两螺线管储存的磁能之比W 1/W 2= . (答案:1/16) 三、计算题1.(本题5分)平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系. 解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R I B μ=(1分) 同理, 2024R I B μ=(1分)∵ 21R R > ∴ 21B B <故磁感强度00021212446I I I B B B R R R μμμ=-=-=1分∴ 213R R = 2分2.(本题5分)如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连. 导线1在xOy 平面内,导线2、3在Oyz 平面内.试指出电流元123,,Idl Idl Idl 在O 点产生的dB的方向,并写出此载流导线在O 点的总磁感强度(包括大小和方向).解:电流元1Idl 在O 点产生1d B的方向为↓(-z 方向) 电流元2Id l 在O 点产生2dB的方向为⊗(-x 方向)电流元3Id l 在O 点产生3dB的方向为⊗(-x 方向) 3分00(1)44I I B i k R R μμπππ=-+-2分 3.(本题5分)将通有电流 5.0I A =的无限长导线折成如图形状,已知半圆环的半径为0.10R m =.求圆心O 点的磁感强度解:O 处总磁感强度.ab bc cd B B B B =++,方向垂直向里 1分 而 012(cos cos )4ab IB aμθθπ=- 1210,,2a R θθπ===0/(4)ab B I R μπ∴= 1分又 0/(4)bc B I R μ= 1分 因O 在cd 延长线上 0cd B = 因此 500 2.11044IIB T R Rμμπ=+=⨯ 2分4.(本题10分)横截面为矩形的环形螺线管,高度为b ,芯圆环内外半径分别为R 1和 R 2芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求处 (1)芯子中的B 值和芯子截面的磁通量 (2)在r ≤R 1,r ≥R 2处的B 值O解:(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有⎰⋅ll B d =2πrB=μ0∑I i =μ0NI B=μ0NI/(2πr )取面积微元b d r 平行与环中心轴, 有d Φm =|B ⋅dS | =[μ0NI/(2πr )]b d r=μ0NIb d r /(2πr )Φm =110021ln22R R N Ib N Ib R dr rR m m p p=ò(2) 根据对称性分析和安培环路定律,可得在r ≤R 1,r ≥R 2处的B 值为零。
《大学物理》磁学习题及答案
AI I一、选择题1.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . (B) 2 πr 2B (C) -πr 2B sin α (D) -πr 2B cos α 2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度(A)(B) (C) (D) 以上均不对3.如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点。
若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内 (B) 方向垂直环形分路所在平面且指向纸外 (C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零4.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O(C)B Q > B O > B P (D) B O > B Q > B P5.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图)。
若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用、和表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但,B 3 = 0(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0(D) B ≠ 0,因为虽然,但≠ 06.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图)。
大学普通物理磁学练习题
大学普通物理磁学练习题1、一电子(e=1.6某10-19c)以2某107m/的速度射入磁感强度为1T的均匀磁场中,速度方向与磁场方向垂直,则这电子所受到的络仑兹力为F=,方向为2、回路中的自感电动势将回路中的变化。
3、产生动生电动势的非静电力为_____________力。
4、从引起通量变化的原因,可将感应电动势分两类,一类为_________,另一类为__________。
5、有一根金属导线长0.6m,质量为0.01kg,用两根柔软的细线悬在磁感强度为0.4T的匀强磁场中,金属导线中电流为,方向时正好抵消悬线中的张力。
某某某某某某某某某某B某某6、在均匀磁场中有一电子枪,6、6、它可发射出速率分别为V和2V 的两个电子,这两个电子的速度方向相同且均与B垂直,则下列说法正确的是:(1)两电子的轨道半径相同,速度大的电子先回到出发点;(2)两电子的轨道半径相同,两电子同时回到出发点;(3)两电子的轨道半径不同,速度大的电子先回到出发点;(4)两电子的轨道半径不同,两电子同时回到出发点。
答()7、设图中两导线的电流为I1、I2,则下列公式正确的是:(1)∮L1B.dl=μ0I1(2)∮L2B.dl=-μ0I2(3)∮L3B.dl=μ0(I1-I2)(4)∮L3B.dl=μ0(I2-I1)答()L3L1L2某I1.I28、当实验电荷q0以速度v通过空间一点时受力为0,下面说法正确的是:(1)该点处的磁感强度一定为0;(2)该点处的磁感强度一定不为0;(3)该点处的磁感强度不一定为0;(4)以上说法均不正确。
答()9、下列叙述哪个是不正确的是:(1)磁场线出发于正电荷,终止于负电荷;(2)磁场线是无头无尾的闭合曲线;(3)某点附近的磁场线密度代表了该点磁感应强度的大小;(4)任何两根磁场线都不能相交。
答()10、如图所示,圆心处的磁感强度B0为(1)0I2R0I2R(2)0I2R0I2R(3)0I2R(4)0I2RIRI答()11、如图所示,圆心处的磁感强度B0为(1)0I2R0I2R(2)0I8R0I2R(3)0I2R(4)0I2R答()12、一空芯自感线圈的自感系数:LROII0Nl2S,当线圈中的电流发生变化时,该线圈的自感系数(1)不变;(2)变大;(3)变小。
大学物理习题磁学,振动、波动、光学近代
a III 电流的磁场(270/104A N -⨯=πμ)姓名:一、 选择题: 学号: 1、在磁感应强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为α,则通过半球面S 的磁通量为:(A )B r 2π (B )B r 22π (C )απsin 2B r - (D )απcos 2B r -。
2、一个电流元l id,位于直角坐标系原点,电流沿Z 轴方向,空间点),,(z y x P 的磁感应强度沿x 轴的分量是:(A )0、 (B )232220)(4z y x iydl++-πμ、(C )232220)(4z y x ixdl++-πμ、(D ))(42220z y x iydl++-πμ。
3、四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为I 。
这四条导线被纸面截的断面如图所示,它们组成了边长为a 2的正方形的四个角顶。
每条导线中电流的流向也如图所示,则在图中正方形中心点O 的磁感应强度的大小为:(A )I aB πμ02=(B )I a B πμ220= (C )0=B (D )I aB πμ0=4、如上图所示,四条平行的无限长直导线,垂直通过边长为a =20cm 的正方形顶点,每条导线中的电流都是I=20A ,这四条导线在正方形中心O 点产生的磁感应强度为: (A )0=B 。
(B )T B 4104.0-⨯=。
(C )T B 4108.0-⨯= (D )T B 4106.1-⨯=5、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感应强度大小等于:q(A )R I πμ20 (B )RI40μ (C )0 (D ))11(20πμ-R I(E )11(40πμ+R I 6、电流由长直导线1沿切向经a 点流入一个电阻均匀分布的圆环,再由点沿切向从圆环流出,经长直导线2返回电源(如图)。
已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b和圆心O 在同一直线上。
《大学物理》磁学习题及答案
AI I一、选择题1.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . (B) 2 πr 2B (C) -πr 2B sin α (D) -πr 2B cos α 2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度(A)(B) (C) (D) 以上均不对3.如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点。
若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内 (B) 方向垂直环形分路所在平面且指向纸外 (C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零4.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O(C)B Q > B O > B P (D) B O > B Q > B P5.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图)。
若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用、和表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但,B 3 = 0(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0(D) B ≠ 0,因为虽然,但≠ 06.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图)。
大学物理磁学习题bj
di 2d
0w
2
0 di dB 2 w
正电部分产生的磁感应强度为
2 dB 1 2 0wd
r 0
wd
0w
2
o
d
B
令
d
r
负电部分产生的磁感应强度为 B
B B
R 2r
R
0w
2
r
d
0w
2
O O′
w
a
O″
19. 在一无限长的半圆筒形的金属薄片中,沿轴向流有电流,在垂 直电流方向单位长度的电流为i = ksin,其中k为常量, 如图所 示.求半圆筒轴线上的磁感强度.
x z y i x
Z
2
16. 一圆线圈的半径为 R ,载有电流 I ,置于均匀外磁场中 ( 如图 示).在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导 线上的张力.
18. 如图,半径为a,带正电荷且线密度是l (常量)的半圆以角速度w 绕轴O′O″匀速旋转.求:
(1) O点的; (2) 旋转的带电半圆的磁矩.
2 R IB
将一个通过电流为I的闭合回路置于均匀磁场中,回路所围面积的 法线方向与磁场方向的夹角为a .若均匀磁场通过此回路的磁通 量为F ,则回路所受力矩 IF tana 的大小为____________________________________________ .
均匀带电刚性细杆 AB ,线电荷密度为 l ,绕垂直于直线的轴 O 以 w 角速度匀速转动(O点在细杆AB延长线上).求: (1) O点的磁感强度; (2) 系统的磁矩; (3) 若a >> b,求B0及pm. (1) 对r~r+dr段,电荷 dq = l dr, 旋转形成圆电流.则 dqw lw
大学物理电磁学测试题
(4)选择题大学物理电磁学测试题舱室 姓名一.选择1. 一元电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。
2. 下列各种场中的保守力场为:【 】(A) 静电场; (B) 稳恒磁场; (C) 涡旋电场; (D) 变化磁场。
3. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】B 22)D (B 21)C (B 2)B (B 2)A ( 4. 如图所示导线框a ,b ,c ,d 置于均匀磁场中(B 的方向竖直向上), 线框可绕AB 轴转动。
导线通电时,转过α角后,达到稳定平衡,如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即α不变), 可以采用哪一种办法? (导线是均匀的) 【 】(A) 将磁场B 减为原来的1/2或线框中电流强度减为原来的1/2;(B) 将导线的bc 部分长度减小为原来的1/2; (C) 将导线ab 和cd 部分长度减小为原来的1/2;(D) 将磁场B 减少1/4, 线框中电流强度减少1/4。
5. 如图所示,L L 12,回路的圆周半径相同, 无限长直电流I I 12,, 在L L 12,内的位置一样,但在 (b) 图中L 2外又有一无限长直电流I 3, P P 12与为两圆上的对应点,在以下结论中正确的结论是【 】(A)2112P P L L B B ,l d B l d B =⋅=⋅⎰⎰且(B)2121P P L L B B ,l d B l d B =⋅≠⋅⎰⎰且(C) 2121P P L L B B ,l d B l d B ≠⋅=⋅⎰⎰且(D)⎰⎰≠⋅≠⋅1212L P P L B B ,l d B l d B 且(3)填空题二.填空1.两根平行金属棒相距L ,金属杆a ,b 可在其上自由滑动,如图所示在两棒的同一端接一电动势为E ,内阻R 的电源,忽略金属棒及ab杆的电阻,整个装置放在均匀磁场B 中,则a ,b 杆滑动的极限速度 。
(完整版)大学物理电磁学试卷
(C) 3C / 2 ;
(D) 2C 。
[]
d
d /3
介质板
选择题3
选择题4
4、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,把一块
与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示。介质板的插入及其所
处位置的不同,对电容器储存电能的影响为:
(A)储能减少,但与介质板位置无关;
的延长线交于三角形中心点 O,三角框每边长为 l,则 O 处的磁感应强度为
。
命题纸使用说明:1、字迹必须端正,以黑色碳素墨水书写在框线内,文字与图均不得剪贴,以保证“扫描”质量; 2、命题纸只作考试(测验)命题所用,不得移作他用。
3
1 I
BA B
a
O
b c
2 I 填空题5
O A 填空题6
0 C x 填空题7
d
b
l
I
四、证明题(共 5 分) 1、(本题 5 分)在一任意形状的空腔导体内放一任意形状的带电体,总电量为 q ,如图所示。
试证明,在静电平衡时,空腔内表面上的感应电量总等于 q 。
q
命题纸使用说明:1、字迹必须端正,以黑色碳素墨水书写在框线内,文字与图均不得剪贴,以保证“扫描”质量; 2、命题纸只作考试(测验)命题所用,不得移作他用。
(C)一个线圈平面平行于圆心连线,另一个线圈平面垂直于两圆心连线;
(D)两线圈中电流方向相反。
[]
2
第2页 (共4页)
8、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r1 和 r2 。管内充满均匀介质,
其磁导率分别为 1 和 2 。设 r1 : r2 1: 2 , 1 : 2 2 :1,当将两只螺线管串联在电路中通电稳定后,
大学物理考试(磁学)
大学物理单元测试(磁学)一.选择题:1. 如图,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动地两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd :(A ) 不动; (B ) 转动; (C ) 向左移动; (D ) 向右移动.2. 如图一固定地载流大平板,在其附近,有一载流小线框能自由转动或平动.线框平面与大平板垂直,大平板地电流与线框中电流方向如图所示,则通电线框地运动情况从大平板向外看是:(A ) 靠近大平板AB (B ) 顺时针转动;(C ) 逆时针转动; (D ) 离开大平板向外运动.3. 用细导线均匀密绕成长为l 、半径为a (l >>a )、总匝数为N 地螺线管,管内充满相对磁导率为r μ地均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点地:(A ) 磁感应强度大小为NI B r μμ0=; (B ) 磁感应强度大小为l NI B r μ=; (C)磁场强度大小为l NI H o μ=;(D ) 磁场强度大小为lNI H=. 4. 顺磁物质地磁导率: (A ) 比真空地磁导率小; (B ) 比真空地磁导率略大; (C ) 远小于真空地磁导率; (D ) 远大于真空地磁导率.5. 在如图所示地电路中,自感线圈中电阻为10Ω,自感系数为0.4H ,电阻R 为90Ω,电源电动势为40V ,电源内阻可忽略,将电键接通,待电路中电流稳定后,把电键断开,断开后经过0.01秒,这时流入电阻R 地电流为: (A ) 4A ; (B ) 0.44A ; (C ) 0A ; (D ) 0.33A.6. 如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场地边缘上,半圆形闭合导线完全在磁场外时开始计时,图(A)-(D )地t -ε函数图象中哪一条属于半圆形导线回路中产生地感应电动势:(A) (B)(C) (D)7. 如图,一导体棒ab 在均匀磁场中沿金属导轨向右作匀加速运动,磁场方向垂直导轨所在平面.若导轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳定后在电容器地M 极板上:(A ) 带有一定量地正电荷; (B ) 带有一定量地负电荷; (C ) 带有越来越多地正电荷; (D ) 带有越来越多地负电荷.8.如图所示,通有电流I 地金属薄片,置于垂直于薄片地均匀磁场B 中,则a , b 两点地电势相比较,则有(A )a b U U >. (B) a b U U =. (C) a b U U <. (D) 无法确定.9.如图(a )和(b )中各有一半径相同地圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在图(b )中L 2回路外还有电流I 3,P 1、P 2为两回路上地对应点,则 (A )12L L B dl B dl ⋅=⋅⎰⎰; 12P P BB =; (B) 12L L B dl B dl ⋅≠⋅⎰⎰; 12P P BB =;(C) 12L L B dl B dl ⋅=⋅⎰⎰; 12P P BB ≠; (D )12L L B dl B dl ⋅≠⋅⎰⎰; 12P P BB ≠.二.填空题:1. 一广播电台地平均辐射功率为20Kw ,假定辐射地能量均匀分布在以电台为球心地球面上,那么,距离电台为10Km 处电磁波地平均辐射强度为__________________________2. 长直电缆由一个圆柱体导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ地均匀磁介质,介质中离中心轴距离为r 地某点处地磁场强度地大小H=_______________________.磁感应强度地大小B=____________________.3. 若电子在垂直于磁场地平面内运动,均匀磁场作用于电子上地力为F ,轨道地曲率半径为R ,则磁感应强度地大小应为_________________________________.4.一个带电粒子以某一速度射入均匀磁场中,当粒子速度方向与磁场方向间有一角度α(πα<<0且2πα≠)时,该粒子地运动轨道是____________________________.5. 如图所示,一半径为r 地很小地金属圆环,在初始时刻与一半径为a (a<<r )地大金属圆环共面且同心,在大圆环中通以恒定地电流I ,方向如图.如果小圆环以匀角速度ω绕其任一方向地直径转动,并设小圆环地电阻为R ,则任一时刻t 通过小圆环地磁通量φ=_____________________,小圆环中地感应电流i =___________________________.6. 如图所示,一段长度为l 地直导线MN ,水平放置在截电流为I 地竖直长导线旁与竖直导线共面,并由图示位置自由下落,则t 秒末导线两端地电势差U M -U N =______________________________.7. 图示为一充电后地平行板电容器,A 板带正电,B 板带负电,当将开关K 合上时,AB 板之间地电场方向为____________________,位移电流地方向为__________________.(按图上所标X 轴正方向来回答)8. 一质点带有电荷19100.8-⨯=q C ,以速度15100.3-⋅⨯=s m v 在半径为m R 51000.6-⨯=地圆周上,作匀速圆周运动.该带电质点在轨道中心所产生地磁感应强度B=_____________________,该带电质点轨道运动地磁矩m P =________________.9. 圆形平行板电容器,从q=0开始充电,试画出充电过程中,极板间某点P 处电场强度地方向和磁场强度地方向.三.计算题:1. 一半径为R 地长直螺线管单位长度上密绕有n 匝线圈,在管外有一包围着螺线管,面积为S 地圆线圈,其平面垂直于螺线管轴线,螺线管中电流i 随时间作周期为T 地变化,如图,求圆线圈中地感生电动势i ε.画出i ε- t 曲线,注明时间坐标.2. 图示为两条穿过y 轴且垂直于x -y 平面地平行长直导线地俯视图,两条导线皆通有电流I ,但方向相反,它们到x 轴地距离皆为a.(1) 推导出x 轴上P 点处地磁感应强度)(x B地表达式; (2) 求P 点在x 轴上何处时,该点地B 取得最大值.3. 在一半径R=1.0cm 地无限长半圆筒形金属薄片中,沿长度方向有电流I=5.0A 通过,且横截面上电流分布均匀,试求圆柱轴线上任一点地磁感应强度.(270104A N -⨯=πμ)4. 在半径为R 地长直螺线管中通有变化地电流,如果管内磁场以dBdt地变化率增加,求螺线管内外感应电场地场强.5. 均匀带电细直线AB ,电荷线密度为λ,绕垂直于直线地轴O 以ω角速度匀速转动(线形状不变,O 点在AB 延长线上).求:(1) O 点地磁感应强度o B;(2) 磁矩m P;(3) 若a>>b ,求o B 及m P.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.TIrRG 。
大学物理(16.3.1)--磁学
1、如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O点的磁感强度大小等于:2、有一半径为R的单匝圆线圈,通以电流I . 若将该导线弯成匝数N =2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的:(A) 4倍和1/2倍; (B) 4倍和1/8倍;(C) 2倍和1/4倍; (D) 2倍和 1/2倍3、一载有电流I的细导线分别均匀密绕在半径为R和r的长直圆管上形成两个螺线管(R=2r).两螺线管单位长度上的匝数相等.两螺线管中的磁感应强度大小应满足:(A)B R=Br (B)B R=2Br (C)B R=4Br (D)2B R=Br4、 氢原子处在基态(正常状态)时,它的电子看作是半径为a=0.53×10-8cm的轨道作匀速圆周运动,速率为2.2×108cm/s,那么在轨道中心磁感应强度的大小为()(A)8.5×10-6 T (B)8.5×10-4 T (C)13 T (D)13-2 T5、如图所示,六根无限长导线互相绝缘,通过电流均为,区域Ⅰ,Ⅱ,Ⅲ,Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大( )(A)Ⅰ区域 (B)Ⅱ区域(C)Ⅲ区域 (D)Ⅳ区域6、两根无限长平行直导线载有大小相等方向相反的电流I,并各以dI/ dt的变化率减小,一矩形线圈位于导线平面内(如图),则( )A、线圈中无感应电流B、线圈中感应电流为顺时针方向C、线圈中感应电流为逆时针方向D、线圈中感应电流方向不确定7、如图所示,导体棒AB均匀磁场B中绕通过C点的与棒垂直、与磁场平行的轴OO’转动(角速度ω与磁场B同方向),的长度为棒长的,则 ( )A、A点比B点电势高B、A点与B点电势相等C、A点比B点电势低D、无法确定8、如图所示,直角三角形金属框架abc放在均匀磁场中,磁场B平行于ab边,bc的长度为l.当金属框架绕ab边以匀角速度ω转动时,abc路中的感应电动势εi和a、c两点间的电势差Ua-Uc为( )9、真空中一根无限长直细导线上通电流I,则距导线距离为a的空间某点处的磁场能量密度为( )10、下列叙述哪种正确( )A、通过螺线管的电流越大,螺线管的自感系数越大B、通过螺线管的电流变化率越大,螺线管的自感系数越大C、螺线管中单位长度的匝数越多,螺线管的自感系数越大6、关于静电场和有旋电场,下列说法正确的是( )A、静电场和有旋电场都是由电荷激发的B、无论在静电场中,还是在有旋电场中,两点之间的电势差都是恒定的C、静电场是无旋场,有旋电场是有旋场。
大学物理(电磁学部分)试题库及答案解析
大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。
〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。
〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
大学物理(磁学)试卷
大 学 物 理(磁 学) 试 卷一选择题(共24分) 1(本题3分,D )在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 2(本题3分,C )电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B ≠ 0. [ ]3(本题3分,B )磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]4(本题3分,C )如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为 (A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]BxOR(D )B x OR(C )BxOR(E )电流筒5(本题3分,C )如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]6(本题3分,D )如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v .(B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]7(本题3分,D ) 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动. (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高. [ ]8(本题3分,C )两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心. (A) 两线圈的轴线互相平行放置. (B) 两线圈并联.(C) 两线圈的轴线互相垂直放置. (D) 两线圈串联. [ ]二 填空题(共24分)9(本题3分) 一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I .若作一个半径为R = 5a 、高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a (如图).则B在圆柱侧面S 上的积分 =⎰⎰⋅SS Bd ________________.I O O (D )I O (C )O (B I10(本题3分)载有电流I 的导线由两根半无限长直导线和半径为R 的、以xyz 坐标系原点O 为中心的3/4圆弧组成,圆弧在yOz 平面内,两根半无限长直导线与x 轴平行,电流流向如图所示.O 点的磁感强度=B____________________________________.(用坐标轴正方向单位矢量k j i,,表示)11(本题4分)如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B_____________.(2) 磁感强度B沿图中环路L 的线积分=⎰⋅Ll Bd __________________________________.12(本题3分)如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为_________________.13(本题4分)判断在下述情况下,线圈中有无感应电流,若有,在图中标明感应电流的方向.(1) 两圆环形导体互相垂直地放置.两环的中心重合,且彼此绝缘,当B 环中的电流发生变化时,在A 环中_______________________. (2) 无限长载流直导线处在导体圆环所在平面并通过环的中心,载流直导线与圆环互相绝缘,当圆环以直导线为轴匀速转动时,圆环中__________________.14(本题4分)半径为L 的均匀导体圆盘绕通过中心O 的垂直轴转动,角速度为ω,盘面与均匀磁场B垂直,如图. (1) 图上Oa 线段中动生电动势的方向为_________________. (2) 填写下列电势差的值(设ca 段长度为d ):U a -U O =__________________.U a -U b =__________________.U a -U c =__________________.15(本题分3)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=___________.II(1)a三 计算题(共47分)16(本题5分)一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.17(本题12分)两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?18(本题5分)如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.19(本题5分)通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).20(本题10分)如图所示,两条平行长直导线和一个矩形导线框共面.且导线框的一个边与长直导线平行,他到两长直导线的距离分别为r 1、r 2.已知两导线中电流都为t I I ωsin 0=,其中I 0和ω为常数,t 为时间.导线框长为a 宽为b ,求导线框中的感应电动势.21(本题10分)载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N .四 回答问题(共5分)22(本题5分)用简单例子说明:楞次定律是能量守恒的必然结果.换句话说,如果电磁感应的规律正好与楞次定律相反,则能量守恒定律便不成立. 参考答案一 选择题(共24分) DCBCCDDC二 填空题(共24分) 9(本题3分)0 3分BIIO xr 1r 2ab10(本题3分)i RI k j R I83)(400μμ-+π- 3分11(本题4分)0 2分 I 0μ- 2分12(本题3分)a I B 2 3分13(本题4分)无感应电流 2分无感应电流 2分14(本题4分)Oa 段电动势方向由a 指向O . 1分221L B ω-1分0 1分 )2(21d L Bd --ω 1分15(本题3分)1∶16 3分参考解:02/21μB w =nI B 0μ=)4(222102220021d lI n V B W π==μμμ)4/(21222202d l I n W π=μ16:1::222121==d d W W三 计算题(共47分)16(本题5分)解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B+++=∵ 1B 、4B均为0,故 32B B B += 1分)2(4102RI B μ= 方向 ⊗ 1分 242)s i n (s i n 401203RI aIB π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 1分2其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/s i n (s i n 1-=π-=β∴ RIRIB π+=2800μμ)141(20π+=RI μ 方向 ⊗ 2分17(本题12分)解:当只有一块无穷大平面存在时,利用安培环路定理,可知板外的磁感强度值为i B 021μ=4分现有两块无穷大平面,1i 与2i夹角为θ ,因11i B ⊥,22i B ⊥,故1B 和2B 夹角也为θ 或π-θ .(1) 在两面之间1B 和2B夹角为( π-θ )故2/12122210)c o s 2(21θμi i i i B i -+=2分(2) 在两面之外1B 和2B的夹角为θ ,故2/12122210)c o s 2(21θμi i i i B o ++=2分(3) 当i i i ==21,0=θ时,有=-=θμc o s 12210i B i 0 2分 i i B o 00c o s 1221μθμ=+=2分18(本题5分)解:应用安培环路定理和磁场叠加原理可得磁场分布为,)3(2200x a I xI B -π+π=μμ )252(a x a ≤≤ 4分 B的方向垂直x 轴及图面向里. 1分19(本题5分)解:长直导线AC 和BD 受力大小相等,方向相反且在同一直线上,故合力为零.现计算半圆部分受力,取电流元l Id , B l I F ⨯=d d 即 θd d IRB F = 2分 由于对称性0d =∑xF∴ RIB IRB FF F yy 2d sin d 0====⎰⎰πθθ 3分方向沿y 轴正向20(本题10分)解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为)11(2210r r x x B +-+π=μ 2分 选顺时针方向为线框回路正方向,则)d d (21111210⎰⎰⎰+++-+π==br r br r r r x x xx Ia BdS μΦ 3分1F)l n (222110r b r r b r Ia+⋅+π=μ 2分 ∴ εtIr r b r b r a td d ]))((ln[2d d 21210++π-=-=μΦ t r r b r b r a I ωωμc o s ]))((ln[2212100++π-= 3分21(本题10分) 解:动生电动势 ⎰⋅⨯=MNd )v (l B MeNε为计算简单,可引入一条辅助线MN ,构成闭合回路MeNM , 闭合回路总电动势0=+=NM MeN εεε总MN NM MeN εεε=-=2分 x xIl B ba ba MNd 2vd )v (0MN⎰⎰⋅+-π-=⨯=μεba b a I -+π-=ln 20vμ负号表示MN ε的方向与x 轴相反. 3分b a b a I M e N -+π-=ln 2v0με 方向N →M 2分ba b a I U U MN N M -+π=-=-ln 2v0με 3分四 回答问题(共5分)22(本题5分)答:例如在磁棒靠近线圈时,线圈中产生感应电流,按楞次定律,线圈电流方向应如图所示,这样线圈阻碍磁棒靠近,使磁棒的动能转化为线圈的磁场能和线圈中因有电流而生的热. 2分如果与楞次定律相反,线圈中感应电流的磁场将吸引磁棒,使磁棒加速,动能增加.这增加的动能、磁场能和线圈中生的热都系无中生有,显然违反能量守恒定律. 3分恒定磁场复习重点(一)要点一.磁感强度B 的定义(略). 二.毕奥—沙伐尔定律1.电流元I d l 激发磁场的磁感强度 d B =[μ0 /( 4π)]I d l ×r /r 32.运动点电荷q 激发磁场的磁感强度 B =[μ0 /( 4π)]q v ×r /r 3 三.磁场的高斯定理1.磁感线(略);2.磁通量 Φm =⎰⋅Sd S B3.高斯定理0d =⋅⎰SS B 稳恒磁场是无源场.四.安培环路定理 真空中⎰∑=⋅li I 0 d μl BNSN v稳恒磁场是非保守场,是涡旋场或有旋场.五.磁矩m : 1.定义 m =IS e n 2. 载流线圈在均匀磁场中受力矩 M=m ×B 六.洛伦兹力1.表达式 F m = q v ×B2.带电粒子在均匀磁场中运动:回旋半径 R =mv sin α / (qB ); 回旋频率 f = qB / (2πm ) 七.安培力 表达式 d F m = I d l ×B ; 八.几种特殊电流的磁场:1.长直电流激发磁场 有限长 B=μ0I (cos θ1-cos θ2)/(4πr )无限长 B=μ0I/(2πr ) 方向都沿切向且与电流成右手螺旋;2. 圆电流在轴线上激发磁场 B=μ0IR 2/[2(x 2+R 2)3/2] , 中心B=μ0I/(2R ) 张角α的园弧电流中心的磁感强度B=[μ0I/(2R )]⋅[α/(2π)], 方向都沿轴向且与电流成右手螺旋;3.无限长密绕载流螺线管激发的磁场 管内 B=μ0nI 管外 B=04.密绕载流螺绕环环内磁场 B=μ0NI //(2π r )5.无限大均匀平面电流激发磁场 B=μ0 j/26.无限长均匀圆柱面电流激发磁场:柱面内 B=0, 柱面外 B=μ0I /(2πr )7.无限长均匀圆柱体电流激发磁场:柱内 B=μ0Ir/(2πR 2) 柱外 B=μ0I /(2πr )(二)试题一、选择题(每题3分)1.电流I 由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度I ,圆环的半径R ,且a 、b 和圆心O 在一条直线上,设直电流1、2及圆环电流分别在O 点产生的磁感强度1B 、2B及3B ,则O 点的磁感强度大小 (答案:C )(B)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E )B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0..2. 边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(答案:C ) (A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 .20/B I l π= (C)10/B I l π=. B 2=0 .(D)10/B I l π=.20/B I l π= .3.如图,无限长载流导线与三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(答案:A ) (A) 向着长直导线平移 (B) 离开长直导线平移 (C) 转动 (D) 不动4. 如图两根载流导线相互正交放置,如图所示,1I 沿y的负方向.若载流1I 的导线不能动,载流2I 的导线可以自由运动,的导线开始运动的趋势是(答案:B )(A) 沿x 方向平动 (B) 绕x 轴转动(C) 绕y 轴转动 (D) 无法判断5. 如图均匀磁场的磁感强度B垂直于半径为r(2)线,作一半球面S ,则通过S 面的磁通量的大小为(答案B) (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. 6. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(答案C) (A) 绕I 2旋转 (B) 向左运动(C) 向右运动 (D) 向上运动 (E) 不动. 二、填空题1.沿着图示的两条不共面而彼此垂直的无限长的直导线,通过电流强度13I A =和24I A =的电流. 在距离两导线皆为20d cm =处的A 点处,磁感强度的大小B = . (答案:025/2μπ,3分)2.真空中载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ= .若通过S 面上某面元dS的元磁通d Φ,而线圈中电流增加为2I 时,通过同一面元的元磁通d 'Φ,则/d d 'ΦΦ= . (答案:0,1/2,3分)3.(本题3分)半径为 0.5 cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I = 3 A 的电流.作一个半径r = 5 cm 、长l = 5 cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感强度B沿曲面的积分=⋅⎰⎰S Bd ___________.(答案:0)4.在安培环路定理∑⎰⋅=i LI l B 0d μ 中,∑i I 是指____________;B是指__________,它是由____________决定的.[答案:环路L 所包围的所有稳恒电流的代数和 (1分);环路L 上的磁感强度(1分); 环路L 内外全部电流所产生磁场的叠加 (1分)]5. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流为I ,且在横截面上均匀分布,但二者电流的流向正相反,则(本题3分)(1)在1r R <处磁感强度大小为 ;(答案: 201/(2)rI R μπ (2)在3r R >处磁感强度大小为 .(0)6.(本题3分)一密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2,当在螺线管中通入10A 的电流时,它的横截面上的磁通量为 .(真空中磁导率μ0=4π×10-7 T .m/A )(答案: BS =4π×10-6韦伯)7.(本题3分)如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为_______,方向________.[答案:BIR 2 (2分) 沿y 轴正向 (1分) ]8.(本题4分)A 、B 、C 为三根平行共面的长直导线,导线间距d =10cm ,它们通过的电流分别为I A =I B =5A ,I C =10A ,其中I C 与I A 、I B 的方向相反,每根导线每厘米所受的力的大小A dF dl = (答案:0)B dF dl= (答案:15×10-7 N/ cm 2)1BCdF dl= (答案:-15×10-7 N/ cm 2)(μ0=4π×10-7 N/A 2)9.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相等,直径之比d 1/d 2=1/4,当它们通以相同电流时,两螺线管储存的磁能之比W 1/W 2= . (答案:1/16) 三、计算题1.(本题5分)平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系. 解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R I B μ=(1分) 同理, 2024R I B μ=(1分)∵ 21R R > ∴ 21B B <故磁感强度00021212446I I I B B B R R R μμμ=-=-=1分∴ 213R R = 2分2.(本题5分)如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连. 导线1在xOy 平面内,导线2、3在Oyz 平面内.试指出电流元123,,Idl Idl Idl 在O 点产生的dB的方向,并写出此载流导线在O 点的总磁感强度(包括大小和方向).解:电流元1Idl 在O 点产生1d B的方向为↓(-z 方向) 电流元2Id l 在O 点产生2dB的方向为⊗(-x 方向)电流元3Id l 在O 点产生3dB的方向为⊗(-x 方向) 3分00(1)44I I B i k R R μμπππ=-+-2分 3.(本题5分)将通有电流 5.0I A =的无限长导线折成如图形状,已知半圆环的半径为0.10R m =.求圆心O 点的磁感强度解:O 处总磁感强度.ab bc cd B B B B =++,方向垂直向里 1分 而 012(cos cos )4ab IB aμθθπ=- 1210,,2a R θθπ===0/(4)ab B I R μπ∴= 1分又 0/(4)bc B I R μ= 1分 因O 在cd 延长线上 0cd B = 因此 500 2.11044IIB T R Rμμπ=+=⨯ 2分4.(本题10分)横截面为矩形的环形螺线管,高度为b ,芯圆环内外半径分别为R 1和 R 2芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求处 (1)芯子中的B 值和芯子截面的磁通量 (2)在r ≤R 1,r ≥R 2处的B 值O解:(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有⎰⋅ll B d =2πrB=μ0∑I i =μ0NI B=μ0NI/(2πr )取面积微元b d r 平行与环中心轴, 有d Φm =|B ⋅dS | =[μ0NI/(2πr )]b d r=μ0NIb d r /(2πr )Φm =110021ln22R R N Ib N Ib R dr rR m m p p=ò(2) 根据对称性分析和安培环路定律,可得在r ≤R 1,r ≥R 2处的B 值为零。
物理磁学试题及答案
物理磁学试题及答案一、选择题(每题2分,共10分)1. 磁体的南极用符号表示为:A. NB. SC. OD. P答案:B2. 奥斯特实验证明了:A. 电流产生磁场B. 磁场产生电流C. 电流与磁场无关D. 磁场与电流无关答案:A3. 磁通量是指:A. 磁场中某点的磁感应强度B. 磁场中某点的磁力线数量C. 磁场中某点的磁力线密度D. 磁场中某点的磁力线方向答案:B4. 磁感应强度的单位是:A. 特斯拉B. 安培C. 伏特D. 欧姆答案:A5. 磁铁的磁性是由:A. 电子的自旋产生的B. 原子核的自旋产生的C. 电子的轨道运动产生的D. 原子核的轨道运动产生的答案:A二、填空题(每题2分,共10分)1. 当磁体的磁极相互靠近时,同名磁极______,异名磁极______。
答案:相互排斥;相互吸引2. 磁场中某点的磁感应强度的方向与该点的磁力线______。
答案:方向一致3. 电流通过导线时,导线周围会产生______。
答案:磁场4. 磁铁的磁性强弱通常用______来表示。
答案:磁感应强度5. 地球的磁场是由地球内部的______产生的。
答案:液态金属流动三、简答题(每题5分,共20分)1. 简述安培环路定理的内容及其应用。
答案:安培环路定理指出,穿过闭合环路的总磁通量等于环路内通过的总电流乘以真空中的磁导率。
该定理在计算磁场分布和设计电磁设备时具有重要应用。
2. 描述洛伦兹力的公式及其物理意义。
答案:洛伦兹力的公式为F=qvBsinθ,其中F是洛伦兹力,q是电荷量,v是电荷的运动速度,B是磁场强度,θ是速度方向与磁场方向的夹角。
洛伦兹力描述了带电粒子在磁场中运动时受到的力。
3. 什么是磁通量?磁通量的大小与哪些因素有关?答案:磁通量是穿过某一面积的磁力线的数量,其大小与磁场强度、面积以及磁场方向与面积法线的夹角有关。
4. 什么是磁化?磁化过程有哪些特点?答案:磁化是指使原本没有磁性的物体获得磁性的过程。
大学物理电磁学考试试题及答案
大学电磁学习题1一.选择题(每题3分)1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,RQ U 04επ=. (B) E =0,rQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ]3.在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为(A) r 2B . . (B) 2r 2B .(C) -r 2B sin . (D) -r 2B cos . [ ]4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A)IB VDS . (B) DSIBV . (C) IBD VS . (D) BDIVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是(A) 绕x 轴转动. (B) 沿x 方向平动.(C) 绕y 轴转动. (D) 无法判断. [ ]6.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R Iπ20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ. [ ] 7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率r 为(真空磁导率0 =4×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ ]8.一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度绕通过其一端的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势的大小为: (A) )cos(2θωω+t B L . (B)t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 9.面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21表示,线圈2的电流所产生的通过线圈1的磁通用12表示,则21和12的大小关系为:(A) 21 =212. (B) 21 >12.(C) 21 =12. (D) 21 =2112. [ ] 10.如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H 的环流两者,必有: (A) >'⎰⋅1d L l H ⎰⋅'2d L l H .(B) ='⎰⋅1d L l H ⎰⋅'2d L l H .(C) <'⎰⋅1d L l H ⎰⋅'2d L l H . (D) 0d 1='⎰⋅L l H . [ ]二.填空题(每题3分)1.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为,则在正方形中心处的电场强度的大小E =_____________.2.描述静电场性质的两个基本物理量是___________ ___;它们的定义式是____________ ____和__________________________________________.3.一个半径为R 的薄金属球壳,带有电荷q ,壳内充满相对介电常量为r 的各向同性均匀电介质,壳外为真空.设无穷远处为电势零点,则球壳的电势U = ________________________________.4.一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为______________,极板上的电荷为______________.5.真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W 1与带电球体的电场能量W 2相比,W 1________ W 2 (填<、=、>).6.若把氢原子的基态电子轨道看作是圆轨道,已知电子轨道半径r =0.53×10-10 m ,绕核运动速度大小v =2.18×108m/s, 则氢原子基态电子在原子核处产生的磁感强度B 的大小为 ____________.(e =1.6 ×10-19 C ,0 =4×10-7 T ·m/A)7.如图所示.电荷q (>0)均匀地分布在一个半径为R 的薄球壳外表面上,若球壳以恒角速度0绕z 轴转动,则沿着z 轴从-∞到+∞磁感强度的线积分等于____________________.8.带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹.这就是云室的原理.今在云室中有磁感强度大小为B = 1 T 的均匀磁场,观测到一个质子的径迹是半径r = 20 cm 的圆弧.已知质子的电荷为q = 1.6×10-19 C ,静 止质量m = 1.67×10-27 kg ,则该质子的动能为_____________.9.真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=___________.10.平行板电容器的电容C 为20.0 F ,两板上的电压变化率为d U /d t =1.50×105 V ·s -1,则该平行板电容器中的位移电流为____________.三.计算题(共计40分)1. (本题10分)一“无限长”圆柱面,其电荷面密度为:= 0cos ,式中为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.2. (本题5分)厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为 .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.3. (本题10分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为r 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.4. (本题5分)一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B .5. (本题10分)无限长直导线,通以常定电流I .有一与之共面的直角三角形线圈ABC .已知AC 边长为b ,且与长直导线平行,BC 边长为a .若线圈以垂直于导线方向的速度v 向右平移,当B 点与长直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和感应电动势的方向.基础物理学I 模拟试题参考答案一、选择题(每题3分,共30分)1.[A]2.[B]3.[D]4.[E]5.[A]6.[D]7.[B]8.[E]9.[C] 10.[C]二、填空题(每题3分,共30分)1.0 3分 2. 电场强度和电势 1分 3. q / (40R ) 3分 0/q F E =, 1分l E q W U a a ⎰⋅==00d /(U 0=0) 1分 4.C Fd /2 2分 5. < 3分 6. 12.4 T 3分 F d C 2 1分7. π200q ωμ 3分 参考解:由安培环路定理 ⎰⋅⎰⋅+∞∞-=l B l B d d I 0μ=而 π=20ωq I , 故 ⎰⋅+∞∞-l B d =π200q ωμ 8. 3.08×10-13 J 3分参考解∶ r m B q 2v v = ==mq B r v 1.92×107 m/s 质子动能 ==221v m E K 3.08×10-13 J 9. 1∶16 3分参考解:02/21μB w =10. 3 A 3分三、计算题(共40分)1. (本题10分)解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为= 0cos R d ,它在O 点产生的场强为: φφεσελd s co 22d 000π=π=RE 3分 它沿x 、y 轴上的二个分量为:d E x =-d E cos =φφεσd s co 2200π- 1分 d E y =-d E sin =φφφεσd s co sin 200π 1分 积分: ⎰ππ-=20200d s co 2φφεσx E =002εσ 2分 0)d (s i n s i n 22000=π-=⎰πφφεσy E 2分 ∴ i i E E x 002εσ-== 1分 2. (本题5分)解:选坐标如图.由高斯定理,平板内、外的场强分布为:E = 0 (板内))2/(0εσ±=x E (板外) 2分1、2两点间电势差 ⎰=-2121d x E U U x)(20a b -=εσ 3分 3. (本题10分)解:设内外圆筒沿轴向单位长度上分别带有电荷+和, 根据高斯定理可求得两圆筒间任一点的电场强度为 r E r εελ02π=2分 则两圆筒的电势差为 1200ln 22d d 2121R R r r r E U r R R r R R εελεελπ=π==⎰⎰⋅ 解得 120ln 2R R U r εελπ=3分 于是可求得A点的电场强度为 A E )/l n (12R R R U = = 998 V/m 方向沿径向向外 2分A 点与外筒间的电势差: ⎰⎰=='22d )/l n (d 12RR R Rr r R R U r E U R R R R U 212ln )/ln(= = 12.5 V 3分 4. (本题5分)解:两折线在P 点产生的磁感强度分别为:)221(401+π=a IB μ 方向为 1分)221(402-π=a I B μ方向为⊙ 2分 )4/(2021a I B B B π=-=μ 方向为 各1分5. (本题10分)解:建立坐标系,长直导线为y 轴,BC 边为x 轴,原点在长直导线上,则斜边的方程为 a br a bx y /)/(-=式中r 是t 时刻B 点与长直导线的距离.三角形中磁通量⎰⎰++-π=π=Φr a r r a r x axbr a b I x x y I d )(2d 200μμ)ln (20r r a a br b I +-π=μ 6分 tr r a a r r a a Ib t d d )(ln 2d d 0+-+π=Φ-=μ☜ 3分 当r =d 时, v )(l n 20d a ad da a Ib+-+π=μ☜方向:ACBA (即顺时针)1分。
大学物理2磁学与电磁感应试题及答案(新)
磁学练习答案: 磁学练习(打*为选做题)一. 选择题:1. 在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 [ A ](A) -πr 2B cos α.(B) -πr 2B sin α. (C) 2 πr 2B . (D) πr 2B . 2. 通有电流I 的无限长直导线有如图三种形状,则C ,O ,A 各点磁感强度的大小B C ,B O ,B A 间的关系为:[ B ] (A) B O > B A > B C . (B) B O > B C > B A (C )B C > B O > B A .(D) B A > B C > B O . 3.无限长的载流导体电流密度均匀,电流沿导体长度方向流动,其在空间产生的磁场如图中曲线表示B -x 的关系(半径为导体R ,x 坐标轴垂直导体轴线,原点在中心轴线),此载流导体为[ B ] (A )无限长圆柱体 (B )空心长圆筒形导体 (C )无限长直导线 (D )无限长半圆柱体4. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅Ll Bd 等于[ A ](B)I 0μ.(C) 3/20I μ. (D) 6/0I μ . [ A ]5.2063一均匀磁场,磁场方向垂直纸面向里,有四个质量、电荷大小均相等的带电粒子,在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹如图,四个粒子中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ B ] 6.2464xRO把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将(A) 不动.(B) 顺时针方向转动(从上往下看).(C) 逆时针方向转动(从上往下看),然后下降.(D) 顺时针方向转动(从上往下看),然后下降.(E) 逆时针方向转动(从上往下看),然后上升.[ D ]7. 2518有甲乙两个带铁芯的线圈如图所示.接通甲线圈电源后,抽出甲中铁芯,则乙线圈中产生感生电流情况,则(A) 无感生电流产生.(B) 感生电流的方向a到b方向.(C) 感生电流的方向b到a方向.[ C ]8.2314如图所示,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A) 向左移动.(B) 向右移动.(C) 不动.(D) 转动.[ B ]9. 5138在一自感线圈中通过的电流I随时间t的变化规律如图(a)所示,若以I的正流向作为 的正方向,则代表线圈内自感电动势 随时间t变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ C ]10.2564甲乙bNtt ttt(b)(a)如图,两根导线沿半径方向引到铁环(半径为r )的上A 、B 两点,并在很远处与电源相连,则环中心的磁感强度为 (A)2032rI μ (B) 0(C)r I 80μ (D) 22rI πμ [ B ]11.2420在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. [ D ] 12.2148半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为 (A)t I Rrωωμcos 202π (B) t I R r ωωμcos 2020π-(C)t I Rrωωμsin 202π (D) t I Rrωωμsin 202π-[ B ]13.2690一根直导线长为L 在磁感强度为B 的均匀磁场中以速度 v运动切割磁力线.导线中对应于非静电力的场强(称作非静电场场强)KE为:(A) B V⨯ (B) V B ⨯(C) VBL (D) l d B V L⋅⨯⎰)( [ A ]14. 5468电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1在O 点产生的磁感强度为1B, 2和三角形框中的电流在框中心O 点产生的磁感强度分别用2B 和3B表示,则O 点的磁感强度大小(A)B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B = 0,因为B 1 = B 2 = B 3 = 0.(D) B ≠ 0,因为虽然021≠+B B ,但3B≠ 0. [ A ]15. 5121在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) =⎰⋅1d L l B⎰⋅2d L l B ,21P P B B ≠. [ D ]16. 2059一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的动量大小必然不同. (B) 两粒子的运动周期必然不同.(C) 粒子的电荷可以同号也可以异号.(D) 两粒子的电荷必然同号. [ C ]17 2092L 1 2I 3(a)(b)⊙两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) 0 . (B)RrI I 22210μ.(C) rR I I 22210πμ. (D)Rr I I 22210πμ. [ A ]18. 2315如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε =0, U a – U c =221l B ω. (B)ε =2l B ω,U a – U c =221l B ω. (C)ε =2l B ω,U a – U c =221l B ω-.(D) ε =0,U a – U c =221l B ω-. [ D ]二、填空题1.2004磁场中某点的磁感强度为B ,在该点放一个小的载流试验线圈(可以确定该点的磁感强度,其大小等 于放在该点处试验线圈所受的__最大磁力矩___和线圈的_磁矩___的比值. *2.2558在真空中,半径为R 的细导线环中的通有电流,离环上所有点的距离皆等于r (r ≥R )的一点处的磁感强度大小为B 0 ,则细导线环中通有的电流I =2302Rr B μ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理单元测试(磁学)
一.选择题:
1. 如图,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线。
外磁场垂直水平面向上。
当外力使ab 向右平移时,cd : (A ) 不动; (B ) 转动; (C ) 向左移动; (D ) 向右移动。
2. 如图一固定的载流大平板,在其附近,有一载流小线框能自由转动或平动。
线框平面与大平板垂直,大平板的电流与线框中电流方向如图所示,则通电线框的运动情况从大平板向外看是: (A ) 靠近大平板AB (B ) 顺时针转动;
(C ) 逆时针转动; (D ) 离开大平板向外运动。
3. 用细导线均匀密绕成长为l 、半径为a (l >>a )、总匝数为N 的螺线管,管内充满相对磁导率为r μ的均匀磁介质。
若线圈中载有稳恒电流I ,则管中任意一点的: (A ) 磁感应强度大小为NI B r μμ0=; (B ) 磁感应强度大小为l NI B r μ=;
(C
) 磁场强度大小为l NI H o μ=;
(D )
磁场强度大小为
l NI H =。
4. 顺磁物质的磁导率: (A ) 比真空的磁导率小; (B ) 比真空的磁导率略大; (C ) 远小于真空的磁导率; (D ) 远大于真空的磁导率。
5. 在如图所示的电路中,自感线圈中电阻为10Ω,自感系数为0.4H ,电阻
R 为90Ω,电源电动势为40V ,电源内阻可忽略,将电键接通,待电路中电流稳定后,把电键断开,断开后经过0.01秒,这时流入电阻R 的电流为: (A ) 4A ; (B ) 0.44A ; (C ) 0A ; (D ) 0.33A 。
6. 如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O
点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时,图(A )-(D )的t -ε函数图象中哪一条属于半圆形导线回路中产生的感应电动势:
(A) (B)
(C) (D)
7. 如图,一导体棒ab 在均匀磁场中沿金属导轨向右作匀加速运动,磁场方向垂直导轨所在平面。
若导轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳定后在电容器的M 极板上: (A ) 带有一定量的正电荷; (B ) 带有一定量的负电荷; (C ) 带有越来越多的正电荷; (D ) 带有越来越多的负电荷。
8.如图所示,通有电流I 的金属薄片,置于垂直于薄片的均匀磁场B 中,则a , b 两点的电势相比较,则有
(A )a b U U >。
(B) a b U U =。
(C) a b U U <。
(D) 无法确定。
9.如图(a )和(b )中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在图(b )中L 2回路外还有电流I 3,P 1、P 2为两回路上的对应点,则 (A )
1
2
L L B dl B dl ⋅=⋅⎰⎰; 12P
P
B B = ;
(B) 1
2
L L B dl B dl ⋅≠⋅⎰⎰; 12P
P
B B =;
(C) 1
2
L L B dl B dl ⋅=⋅⎰⎰; 12P
P
B B ≠;
(D )
1
2
L L B dl B dl ⋅≠⋅⎰⎰; 12P
P
B B ≠ 。
二.填空题:
1. 一广播电台的平均辐射功率为20Kw ,假定辐射的能量均匀分布在以电台为球心的球面上,那么,距离电台为10Km 处电磁波的平均辐射强度为__________________________
2. 长直电缆由一个圆柱体导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质,介质中离中心轴距离为r 的某点处的磁场强度的大小H=_______________________。
磁感应强度的大小B=____________________。
3. 若电子在垂直于磁场的平面内运动,均匀磁场作用于电子上的力为F ,轨道的曲率半径为R ,则磁感应强度的大小应为_________________________________。
4.
一个带电粒子以某一速度射入均匀磁场中,当粒子速度方向与磁场方向间有一角度α(πα<<0且2πα≠)时,该粒子的运动轨道是____________________________。
5. 如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a (a<<r )的大金属圆环共面且同心,在大圆环中通以恒定的电流I ,方向如图。
如果小圆环以匀角速度ω绕其任一方向的直径转动,并设小圆环的电阻为R ,则任一时刻t 通过小圆环的磁通量φ=_____________________,小圆环中的感应电流i =___________________________。
6. 如图所示,一段长度为l 的直导线MN ,水平放置在截电流为I 的竖直长导线旁与竖直导线共面,并由图示位置自由下落,则t 秒末导线两端的电势差U M -U N =______________________________。
7. 图示为一充电后的平行板电容器,A 板带正电,B 板带负电,当将开关K 合上时,AB 板之间的电场方向为____________________,位移电流的方向为__________________。
(按图上所标X 轴正方向来回答)
8.
一质点带有电荷19100.8-⨯=q C ,以速度1
5
100.3-⋅⨯=s m v 在半径为m R 5
1000.6-⨯=的圆周上,作匀速圆周运动。
该带电质点在轨道中心所产生的磁感应强度B=_____________________,该带电质点轨道运动的磁矩m P =________________。
9. 圆形平行板电容器,从q=0开始充电,试画出充电过程中,极板间某点P 处电场强度的方向和磁场强度的方向。
三.计算题:
1. 一半径为R 的长直螺线管单位长度上密绕有n 匝线圈,在管外有一包围着螺线管,面积为S 的圆线圈,其平面垂直于螺线管轴线,螺线管中电流i 随时间作周期为T 的变化,如图,求圆线圈中的感生电动势i ε。
画出i ε- t 曲线,注明时间坐标。
2. 图示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的俯视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a 。
(1) 推导出x 轴上P 点处的磁感应强度)(x B
的表达式; (2) 求P 点在x 轴上何处时,该点的B 取得最大值。
3. 在一半径R=1.0cm 的无限长半圆筒形金属薄片中,沿长度方向有电流I=5.0A 通过,且横截面上电流分布均匀,试求圆柱轴线上任一点的磁感应强度。
(27
0104A N -⨯=πμ)
4. 在半径为R 的长直螺线管中通有变化的电流,如果管内磁场以
dB
dt
的变化率增加,求螺线管内外感应电场的场强。
5. 均匀带电细直线AB ,电荷线密度为λ,绕垂直于直线的轴O 以ω角速度匀速转动(线形状不变,O 点在AB 延长线上)。
求:
(1) O 点的磁感应强度o B
;
(2) 磁矩m P
;
(3) 若a>>b ,求o B 及m P。