新人教版七上整式的加减:第7课时:整式的加减(4)

合集下载

第四章 整式的加减 -综合实践 考点梳理(课件)人教版(2024)数学七年级上册

第四章 整式的加减 -综合实践 考点梳理(课件)人教版(2024)数学七年级上册

1+2+3=6;第 4 个图形表示的三角形数为1+2+3+4=10;
…;第 n 个图形表示的三角形数为1+2+3+…+(n-2)+(n-
1)+n=
(+)


(+)
[答案]

[点拨] 通过观察给出的图形找出三角形数的变化情况
,总结规律得到第 n 个图形的圆点的个数,即三角形数.这
就是一个从特殊到一般的逻辑推理的过程.
数叫作三角形数,因为它的规律性可以用如图所示的图形表
示.根据图形,若把第一个图形表示的三角形数记为 a1=1
,第二个图形表示的三角形数记为 a2=3,……,则第 n个
图形表示的三角形数 an=______.(用含 n 的式子表达)
[解析]第 1 个图形表示的三角形数为 1;第 2个图形
表示的三角形数为 1+2=3;第 3 个图形表示的三角形数为
例 2
如图,用 5 个实心圆圈、5 个空心圆圈相间组成
一个圆环,然后把这样的圆环从左到右按下列规律组成圆环
串;相邻两圆环有一公共圆圈,公共圆圈从左到右以空心圆
圈和实心圆圈相间排列.
(1)把表格补充完整:
(2)设圆环串由 x 个圆环组成,请你写出组成圆环串所
需实心圆圈和空心圆圈的总个数(用含 x 的代数式表示);
(3)如果圆环串由这样的 18 个圆环组成,那么实心圆
圈和空心圆圈的总数有多少个? 有多少个空心圆圈?
[答案]解:(1)表格补充完整如下:
(2)因为每增加一个圆环,实心圆圈和空心圆圈的总个
数就多出 9 个,所以当圆环串由 x 个圆环组成,组成圆环

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

人教版(2024新版)七年级数学上册第四章课件:第四章 整式的加减 小结与复习

人教版(2024新版)七年级数学上册第四章课件:第四章 整式的加减 小结与复习
数为4;
32t3是单项式,系数为32,次数为3;
2x-y是多项式,有2x,-y两项,次数为1.
随堂练习
4. 先化简,再求值.
5x2+4-3x2-5x-2x2-5+6x,其中x =-3.
解:5x2+4-3x2-5x-2x2-5+6x
= (5-3-2)x2+(-5+6)x-1
= x-1.
当x = -3时,原式 =-3-1 =-4.
当n=5时,S=12;当n=7时,S=18;当n=11时,S=30.
|b-a|+|a+b|-|c|-|b-c|+|a+c|.
解:由题意,得b<c<0<a,且|c|<|a|<|b|,
所以b-a<0,a+b<0,b-c<0,a+c>0,
所以|b-a|+|a+b|-|c|-|b-c|+|a+c|
=-(b-a)-(a+b)+c+(b-c)+(a+c)
=-b+a-a-b+c+b-c+a+c
x是单项式,系数为1,次数为1;
随堂练习
3.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数
和次数,是多项式的指出项和次数:





a2b,
,x2+y2-1,

x ,3x2-y+3xy3+x4-1,32t3,2x-y.
解:3x2-y+3xy3 +x4-1是多项式,有3x2,-y,3xy3,x4,-1五项,次

第四章 整式的加减 数学活动课件(共19张PPT) 2024-2025学年人教版数学七年级上册

第四章 整式的加减 数学活动课件(共19张PPT) 2024-2025学年人教版数学七年级上册
你能猜想出月历中“+”形和“H”形的一般结论吗?请你说明结论成立的理由.
互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.

人教七年级数学上册-整式的加减(附习题)

人教七年级数学上册-整式的加减(附习题)
几个常数项也是同类项.
练习1 若单项式-3amb2与单项式1 a3bn 是 3
同类项,则m=__3__,n=_2___.
知识点2 合并同类项的概念和法则
把多项式中的同类项合并成一项,叫做合并 同类项.
合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的指数 不变.
例如 4x2 2x 7 3x 8x2 2 4x2 8x2 2x 3x 7 2 (交换律) (4x2 8x2 ) (2 x 3 x) (7 2)(结合律) (4 8)x2 (2 3) x (7 2)(分配律)
(2)若x=5,y=3,求他的卫生间的面积.
解:(1)卧室面积为xy,厨房面积为 xy, 客厅面积为 × xy=xy. ∴卫生间面积为3xy-xy- xy-xy= xy. (2)当x=5,y=3时,
卫生间的面积= ×5×3=5 m2
课堂小结 所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项.
=2x2-2x2-3xy-2xy+5xy+y2-2y+1
=y2-2y+1 当x= 22 ,y=-1时,原式= 4
7
4. 某人购置了一套一室一厅的住宅,总面积为
3xy m2,其中卧室是长为x m,宽为y m的长方形,
客厅的面积为厨房的 3 ,厨房的面积是卧室

2 3
2
,还有一个卫生间.
(1)用x、y表示他的卫生间的面积.
解:7x2-3x2-2x-2x2+5+6x =(7-3-2) x2+(-2+6)x+5 =2x2+4x+5
当x = -2时,原式=2×(-2)2+4×(-2)+5=5

4.2整式的加法与减法 (课件)人教版(2024)数学七年级上册

4.2整式的加法与减法 (课件)人教版(2024)数学七年级上册

的指数不变.
2. 合并同类项的过程是分配律的逆用.
3.升(降)幂排列看的是某一个字母指数的大小,而不是项的次数.
4. 合并同类项的结果一般需要按照某一字母进行升(降)幂排列.
感悟新知
知2-练
例 3 [母题 教材P96例1 ]合并下列各式的同类项: 解题秘方:合并同类项:将同类项的系数相加,字 母和字母的指数不变.
感悟新知
知3-练
(2)甲种读本比乙种读本多花多少钱? 解 : 由 10m - 8(100 - m)=10m - 800 + 8m=18m - 800 , 可知甲种读本比乙种读本多花的费用为(18m-800)元.
感悟新知
知3-练
8-1.[期中·鄂州梁子湖区] 某商店有一种商品,每件成本 为a 元,原先按成本增加b 元定价出售,售出30 件 后,由于库存积压减价,按售价的90% 出售,又 销售70 件.
(2)某人购置了一套一室一厅的住宅,其中卧室是长为x m,
宽为y m的长方形,客厅的面积为卧室的74,厨房的面积
是卧室的12,还有一卫生间,其面积为卧室的34,他的住 宅总面积为_4_x_y_m__2.
感悟新知
知识点 3 去括号
知3-讲
1. 去括号就是用括号外的数乘括号内的每一项,再把所得 的积相加. 特别地,当括号前没有数字时,看作是“1” 或“-1”与括号相乘.
第四章 整式的加减
4.2 整式的加法与减法
感悟新知
知识点 1 同类项
知1-讲
1. 定义:所含字母相同,并且相同字母的指数也相同的项
••••
••••••••••
叫作同• 类• 项• ,所有的常数项都是同类项.
感悟新知
知1-讲
2. 判断同类项的方法

《整式的加法与减法》PPT课件 人教版七年级数学上册【2024年秋】

《整式的加法与减法》PPT课件 人教版七年级数学上册【2024年秋】

探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
1.上面的代数式①②要进行加减运算需要先如何做? 需要先去括号
探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
2.上面的代数式①②应如何去括号进行化简? 可以利用分配律,将括号前的乘数与括号内的各项相乘, 去掉括号,再合并同类项
72a+120a=
(72+120)a=192a
.
探究新知
根据以上探究过程完成下列题目: (1)72a-120a =( 72-120 )a= -48a . (2)3m2+2m2 =( 3+2 )m2= 5m2 . (3)3xy2-4xy2 =( 3-4 )xy2= -xy2 . 思考:上述运算有什么共同特点,你能从中得出 什么规律?
回顾复习
思考:合并同类项和去括号是进行整式加减运算 的基础,同学们还记的合并同类项法则与去括号 法则吗?
回顾复习
合并同类项法则:合并同类项后,所得项的系数是合 并前各同类项的系数的和,字母连同它的指数不变。
去括号法则:一般地,一个数与一个多项式相乘,需 要去括号,去括号就是用括号外的数乘括号内的每一 项,再把所得的积相加。
探究新知
92b 72b 0.15 92b 72b 10.8 164b 10.8 92b 72b 0.15 92b 72b 10.8 20b 10.8
思考:请同学们根据以上探究过程总结一下去括号法则
探究新知
去括号法则:一般地,一个数与一个多项式相乘, 需要去括号,去括号就是用括号外的数乘括号内的 每一项,再把所得的积相加。 特别地,+(x-3)与-(x-3)可以看作1与-1分别相乘, 得:+(x-3)=x-3,-(x-3)=-x+3

整式的加减(四)PPT课件(七年级数学上册人教版)

整式的加减(四)PPT课件(七年级数学上册人教版)
国家中小学课程资源
整式的加减(四)
授课教师:XX 日期:XX年XX月XX日
复习回顾
去括号规律:
(1) 如果括号外的因数是正数,去括号后原括号内各项的符号 与原来的符号相同;
a (b c) a b c
(2)如果括号外的因数是负数,去括号后原括号内各项的符号 与原来的符号相反.
a (b c) a b c
解法2:小红和小明买笔记本共花费 (3x 4x)元,小红和小明买圆珠笔 共花费 (2 y 3y) 元
小红和小明一共花费(单位:元) (3x 4x) (2 y 3y) 7x 5y
(3x 2 y) (4x 3y) 或者 (3x 4x) (2 y 3y)
初中数学
典例精析
例2:笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本和圆珠笔,小红 和小明一共花费多少钱?
初中数学
-( a+b) =-a-b
(6)a b的相反数是 b-a
-(a-b )=-a+b
初中数学
获取新知 例1.计算:(1)(2x 3y) (5x 4 y) (2)(8a 7b) (4a 5b)
解:(1)(2x 3y) (5x 4 y) 2x 3y 5x 4y 7x y
-------两个整式的和
解:小红和小明一共花费(单位:元)
(3x 2 y) (4x 3y)
解:小明比小红多花的费用 (单位:元)
比如:求小明比小红多花多少钱? (4x 3y) (3x 2 y)
4x 3y 3x 2 y
x 5y ×
4x 3y 3x 2 y x y
初中数学
典例精析
例3: 做大小两个长方体纸盒,尺寸如下(单位:cm)

2024年新人教版七年级数学上册《第4章整式的加减 小结与复习》教学课件

2024年新人教版七年级数学上册《第4章整式的加减 小结与复习》教学课件

当 x = 1,y = 2 时,M = 1×2 + 2×2 - 2×1 - 2 = 2. (2) M = xy + 2y - 2x - 2 = (y - 2)x +2y -2.
因为多项式 M 与字母 x 无关,所以 y - 2 = 0,y = 2.
考点5:与整式的加减有关的探索性问题
例5 如图,用相同的小正方形按照某种规律进行摆放. 根据图中小正方形的排列规律,猜想第 10 个图中小正 方形的个数为 131 .
例1 在 ,x + 1,-2, ,0.72xy, ,
式的个数有 ( C ) √ √
√√
A. 2个 B. 3个 C. 4个 D. 5个
分析: 是除法形式,不是单项式,
是多项式.
中单项
练一练
1. (马尾期末) 下列说法正确的是 ( A ) A. -3ab²的系数是 -3 B. 4a3b 的次数是 3 4 C. 2a + b - 1 的各项分别为 2a,b,-1 D. 多项式 x2 - 1 是二次三项式
2 + 3×1 3 + 4×2 4 + 5×3 5 + 6×4 11 + 12×10

第 1 个图 第 2 个图 第 3 个图 第 4 个图
2×3 - 1 3×4 - 1 4×5 - 1 5×6 - 1 11×12 - 1
练一练
6. (埇桥期末) 如图,把同样大小的黑色棋子摆放在正 多边形的边上,按照这样的规律摆下去,则第 20 个图 需要黑色棋子的个数为440. 22×20
D. (-c) - (b - a) = -c - b + a = a - b - c,
练一练 3. (台江期末) 计算:

新人教版初中数学七年级上册第二章第二节《整式的加减课件》

新人教版初中数学七年级上册第二章第二节《整式的加减课件》

中等难度练习题2
化简:$(3x^{2}y - xy) (2x^{2}y - xy)$。
中等难度练习题3
合并同类项:$- 4x^{2}y + 5xy - 6x^{2}y + 7xy + 2x^{2}y$。
高难度练习题
高难度练习题1
已知$a = - frac{1}{2}$,$b = frac{1}{3}$,求多项式$5a^{3}b a^{2}b + 3a^{3}b + a^{2}b$的值。
高难度练习题2
高难度练习题3
合并同类项:$- 7x^{3}y + 6xy 9x^{3}y + 4xy + 5x^{3}y$。
化简:$(5x^{3}y - 4xy) - (4x^{3}y xy)$。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
整式的加减易错点与注 意事项
易错点总结
例题3:已知整式$5x^{3} 4x^{2} + x - 3$,求当$x = frac{1}{5}$时,整式的值。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
整式的加减练习题与答 案基础练习题01 Nhomakorabea02
03
基础练习题1
已知$a = 3$,$b = -2$ ,求多项式$3a^{2}b a^{2}b$的值。
例题2:已知$x = -1$,求整式 $(x + 2)^{2} - (x - 1)(x + 1)$的 值。
总结词:中等难度题型在考察整 式加减基本概念的同时,增加了 对整式变形和复杂计算的考察。

人教版七年级数学教材上册《整式的加减》全章教案

人教版七年级数学教材上册《整式的加减》全章教案

第一学时 整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。

学习目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。

学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。

(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。

[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。

4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。

单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。

说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。

2、判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数 和次数。

①x +1; ②x 1; ③πr 2; ④-23a 2b 。

3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。

七年级数学上册第四章整式的加减章末核心要点分类整合课件新版新人教版

七年级数学上册第四章整式的加减章末核心要点分类整合课件新版新人教版

(1)小伍同学家到学校的路程是10 千米,如果选该品牌网约车大概需 要18 分钟,车费为__2_8_._8_元.
(2)周末小伍有事外出乘坐该品牌网约车,行车里程为a(a>10) 千米, 行车时间为b(b>10) 分钟, 小伍需要付的车费是多少元? 因为a>10,b>10, 所以小伍需要付的车费为10+2(a-3)+0.4(a-10)+0.6(b-10)= 10+2a-6+0.4a-4+0.6b-6=(2.4a+0.6b-6)(元).
方法点拨:本题无法直接求出a,b 的值,可将a+b 看作一个 整体,求出a+b 的值,然后把要求值的式子转化为含有已知整 体的形式,再代入求值.
专 题 5 数形结合思想
专题解读 >> 用数形结合思想解题时,注意把数和形结合 起来,根据具体情形,把图形性质的问题转化为数量关系的问题, 或者把数量关系的问题转化为图形性质的问题,使复杂问题简 单化.
答案:C
方法点拨: 1. 单项式的系数是单项式中的数字因数,包括前面的符号,只 有字母的单项式系数为1或-1;单项式的次数是单项式中所有 字母的指数和,与系数的指数无关. 2 . 几个单项式的和是多项式,组成多项式的每一个单项式都是 它的项,每一项都包括前面的符号,不含字母的项是常数项.
专 题 2 同类项
(1)A+2B; 解:A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2- 12x+6=5x2-14x+7;
(2)2A-B.
2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x- 3=2x-1.
3 某同学做一道数学题:“已知两个多项式A,B,B=4x2-5x-6,
类项的法则是将系数相加,字母及字母的指数不变.

第4章整式的加减+复习与小结课件2024-2025学年人教版数学七年级上册

第4章整式的加减+复习与小结课件2024-2025学年人教版数学七年级上册
(3)合并同类项后,所得项的系数是合并前各同 类项的系数的__和___,字母连同它的指数__不__变__.
知识点讲练 知识点3 合并同类项
1.与单项式 6a2b 是同类项的是( C )
A.5ab
B. 4ab22.已知 3x5 ym与2xn y2为同类项,则m+n的值等于 ___7__.
4x2 2y 1 2x2 2y 6 2x2 4y 7 (2)当x 1, y 2时,原式 2 8 7 17
课堂小结
表示数或字母的积的代数式叫做单项式. 几个单项式的和叫做多项式. 单项式与多项式统称整式. 整式加减的运算法则:几个整式相加减,如果有括号 就先去括号,然后再合并同类项.
4x2 5xy 3(x2 xy 1) 4x2 5xy 3x2 3xy 3 x2 8xy 3
当x 2,y 1时,原式 4 16 3 23
综合练习 5.化简
(1)a 4b 3a 5b 解: (a 3a) (4b 5b)
2a b
(2)4x2 3x 2 2x2 4x 5 (4x2 2x2 ) (3x 4x) (2 5) 2x2 x 3
A.5
B.1
C.4
D. 3
4.多项式 2x3 3x2 x 5 的常数项是___5__,二次项 是____3_x_2 __.
知识点讲练 知识点3 合并同类项 (1)所含_字__母__相同,并且相同字母的_指__数_也相同的 项叫做同类项. (2)把多项式中的_同__类__项__合并成一项,叫做合并同类项.
第4章 整式的加减
小结与复习
R·七年级上册
(1) 复习掌握单项式的系数和次数,多项式的项 和次数,整式的分类等概念。 (2) 会熟练地进行整式的加减运算。
理解单项式、多项式、整式等概念,学懂它们之 间的区别和联系; 正确运用法则,进行整式的加减运算.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着括号的添加,括号内各项的符号有什么变化规律? 第7课时:整式的加减(4)
教学内容:课本没有“添括号”内容,整式的加减过程中要用到。

文档设计者: 设计时间 : 文档类型:
文库精品文档,欢迎下载使用。

Word 精品文档,可以编辑修改,放心下载
教学目标和要求:
1.使学生初步掌握添括号法则。

2.会运用添括号法则进行多项式变项。

3.理解“去括号”与“添括号”的辩证关系。

教学重点和难点:
重点:添括号法则;法则的应用。

难点:添上“―”号和括号,括到括号里的各项全变号。

教学方法:
分层次教学,讲授、练习相结合。

教学过程:
一、复习引入:
练习:
(1)(2x―3y)+(5x+4y); (2)(8a ―7b)―(4a ―5b);
(3)a ―(2a +b)+2(a ―2b); (4)3(5x+4)―(3x―5);
(5)(8x―3y)―(4x+3y―z)+2z ; (6)―5x 2+(5x―8x 2)―(―12x 2+4x)+5
1; (7)2―(1+x)+(1+x+x 2―x 2); (8)3a 2+a 2―(2a 2―2a )+(3a ―a 2);
(9)2a ―3b+[4a ―(3a ―b)]; (10)3b―2c―[―4a +(c+3b)]+c 。

二、讲授新课:
1.添括号的法则:
①观察:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?
②通过观察与分析,可以得到添括号法则:
所添括号前面是“+”号,括到括号里的各项都不变符号;
所添括号前面是“-”号,括到括号里的各项都改变符号。

2.例题:
例1:做一做:在括号内填入适当的项:
(1)x2―x+1= x2―(__________);(2) 2x2―3x―1= 2x2+(__________);(3)(a-b)―(c―d)=a-(________________)。

(4)(a+b―c)(a―b+c)=[a+( )][a―( )]
例2:用简便方法计算:
(1)214a+47a+53a;(2)214a-39a-61a.
解:(1)214a+47a+53a=214a+(47a+53a)=214a+100a=314a。

(2) 214a-39a-61a=214a-(39a+61a)=214a-100a=114a。

例3:按要求,将多项式3a―2b+c添上括号:
(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“―”号的括号里
此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a―2b+c=+( )=―( )的形式,再让学生往里填空,特别注意,添“―”号和括号,括到括号里的各项全变号。

解:3a―2b+c=+(3a―2b+c)=―(―3a+2b―c)
紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的回答,
并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样
例4:按下列要求,将多项式x3―5x2―4x+9的后两项用( )括起来:
(1)括号前面带有“+”号;(2)括号前面带有“―”号
解:(1)x3―5x2―4x+9=x3―5x2+(―4x+9);
(2)x3―5x2―4x+9=x3―5x2―(4x―9)。

说明:
①解此题时,首先要让学生确认x3―5x2―4x+9的后两项是什么——是―4x、+9,要特别注意每一项都包括前面的符号。

②再次强调添的是什么——是( )及它前面的“+”或“―”。

例5:按要求将2x2+3x―6:
(1)写成一个单项式与一个二项式的和;(2)写成一个单项式与一个二项式的差。

此题(1)、(2)小题的答案都不止一种形式,因此要让学先讨论1分钟再举手发言。

通过此题可渗透一题多解的立意。

解:(1)2x2+3x―6 =2x2+(3x―6)=3x+(2x2―6) =―6+(2x2+3x);
(2)2x2+3x―6 =2x2―(―3x+6) =3x―(―2x2+6) = ―6―(―2x2―3x)。

三、课堂小结:
1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变。

2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据。

法则顺口溜:添括号,看符号:是“+”号,不变号;是“―”号,全变号。

板书设计:
添括号
1.添括号的法则:2.例:………例:…………
……………………………………………………
……………………………………………………
学生练习:…………………………………………………………
…………………………………………………………………………
…………………………………………………………………………
…………………………………………………………………………
教学后记:
①去括号和添括号是本章的难点,而添括号难于去括号,添“负号和括号”又难于添
“正号和括号”,因此,本章的最难点在于为了让学生学起来更觉自然,降低难度,在引
入部分,仍然采用了“以旧引新”的办法,通过等式的性质,仿照去括号法则,归纳、概
括出添括号法则。

②为了让学生充分地意识到,添的不仅仅是括号,还包括前面的正号或负号,因此,
在总结法则时,与课本略有不同:添上“+”号和括号,括到括号里的各项都不变号;添
上“-”号和括号,括到括号里的各项都改变符号。

以更利于学生将括号及括号前的符号
看成一个整体。

③在教学中,要使学生认识到,添括号和去括号是两个相反的过程,
因此可以用来互相检验,就如同加法与减法,乘法与除法的关系一样。

这样可使知识前
后呼应、浑然一体。

温馨提示
After writing the test paper, you must remember to check Oh, I wish you all can achieve good results!
可以编辑的试卷(可以删除)。

相关文档
最新文档