九年级秋季班-第9讲:圆的基本性质-教师版

合集下载

九上第三章圆的基本性质全章教案

九上第三章圆的基本性质全章教案

解:因为圆周上的各点到圆心的距离都相等,车子行驶起来比较平稳.定点、定长学生在了解的基础上观察下图,引入点和圆的位置关系:请学生口答,然A A 1O 与2O 的半径分别是1O 与2O 是等圆,则O 的半径AB 是弦,C 是AB 上一OC ⊥OA ,。

求(1)A ∠的度数;()的长。

(四种以上方法)见作业本3.1圆(2)教学目标①学生经历不在同一直线上的三点确定一个圆的探索过程②了解不在同一直线上的三点确定一个圆,以及过不在同一直线上的三点作圆的方法,了解并辨认三角形的外接圆、三角形的外心等概念 ③会画过不在同一条直线上的三点作圆教学重点、工具③尺规教学难点教学过程车床工人告诉了我们什么?问题:车间工人能将一个如图所示的破损的圆盘复原,你知道用什么办法吗?(根据学生的预习情况进行衔接教学) ——指出标题——指出讨论1:“三个点的位置在什么地 方?”讨论2:“三个点为什么会不在同 一直线上?”讨论3:“画一个圆需要知道什么”探索:为什么一定要三个点?1:经过一个已知点A 能作多少个圆?结论:经过一个已知点A 能作无数个圆!2:经过两个已知点A,B 能作多少个圆?结论:经过两个已知点A,B 能作无数个圆!讨论1:把这些圆的圆心用光滑线连接是什么图形?讨论2:这条直线的位置能确定吗?怎样画这条直线? 3:经过三个已知点A 、B 、C 能作多少个圆? 讨论1:怎样找到这个圆的圆心? 讨论2:这个圆的圆心到点A 、B 、C 的距离相等吗? 为什么?即OA=OB=OC结论:不在同一直线上的三个点确定一个圆初步应用:1:现在你知道了怎样要将一个如图所示的破损的圆盘 复原了吗?方法:找圆弧所在圆的圆心连线段的垂直平分线,其 交点即为圆心。

2:已知△ABC,概念教学,外内接三角形.举例、1:⊙O 是△角形,点O 2:三角形的外心是△ABC 三条边的垂直平分线的交点.试一试1:画出过以下三角形的顶点的圆,并比较圆心的位置?2:练一练a :下列命题不正确的是 ( ) A.过一点有无数个圆. B.过两点有无数个圆.C.弦是圆的一部分.D.过同一直线上三点不能画圆. b :三角形的外心具有的性质是 ( ) A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形的外. D.外心在三角形内.知识小结1:不在同一直线上的三点确定一个圆。

九年级数学《圆的基本性质》课件

九年级数学《圆的基本性质》课件

圆的任意一条直径的 两个端点把圆分成两 条弧,每一条弧都叫 做半圆。
B

A
C
劣弧与优弧
小于半圆的弧(如图中的 AC )叫做劣弧;
大于半圆的弧(用
三个字母表示,如 图中的 ABC )叫做 优弧。
B

A
C
弓形 由弦及其所对的弧组成的图形
等圆 能够重合的两个圆 等弧 在同圆或等圆中,能够互相重合的弧
3已知点P到圆的最大距离为11,最小距离 为7,则此圆的半径为多少?(要求作图解答) 4如图,已知△ABC,AC=3,BC=4,∠C=90∘,以点C为圆心作
⊙C,半径为r. (1)当r取什么值时,点A. B在⊙C外。 (2)当r在什么范围时,点A在⊙C内, 点B在⊙C外。
1.圆的概念 2.与圆有关的概念
24.2.1圆的基本性质
情境创设
导新定向
1.了解圆及圆的相关概念。 2.理解并掌握平面内点与圆的位置关系。
学教新课
二、自学课本P12-14页。思考 1.如何理解圆的两种定义。 2.平面内的点与圆有怎样的位置关系?你能否用 相应的图形、数学语言加以描述。 3.结合图形理解圆及圆的相关概念。
疑探交流
尝试练习
1 已知矩形ABCD中,AB=5,BC=12,如果以A
为圆心,12为半径画圆A,则点D在圆A_上____,点 B在圆A__内___,点C在圆A__外___.
2 判断下列说法的正误:
(1)弦是直径;
(2)半圆是弧;
(3)过圆心的线段是直径;
(4)半圆是最长的弧; (5)直径是最长的弦
3 已知:AB、CD为圆O的直径,A
OP<r
P
Or
OP>r

九年级数学《圆的基本性质-反证法》课件

九年级数学《圆的基本性质-反证法》课件

什么是反证法?
一般地,假设原命题不成立,经过正确的推理, 最后得出矛盾,因此说明假设错误,从而证明了原命
题成立,这样的证明方法叫做反证法(归谬法).
反证法证明命题的一般步骤如下:
1.假设结论的反面成立; 反设
2.由这个假.设.出发,经过正确的推理, 归谬
导出矛盾;
推理过程中一定要用到才行
显而易见的矛盾(如和已知条件矛盾).
巩固练习
1、三角形的最小角不大于60度,最大角不小于60度. 2、A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B 都撒谎, 则C必定是在撒谎,为什么?
分析:
假设C没有撒谎, 则C真.
--
那么A假且B假;由A假, 知B真.
这与B假矛盾.
那么假设C没有撒谎不成立,
则C必定是在撒谎.
本节课学习了什么内容?
即过点P有两条直线与OP都垂直,这与 垂线性质矛盾。
所以,弦AB、CD不被P平分。
例2、用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
若 a = b,则a = b,与已知a > b矛盾,
若 a < b,则a < b, 与已知a > b矛盾, 故假设不成立,结论 a > b成立。
25.3 反证法
导入复习
请阅读课本25业道旁李苦的故事
当我们直接从正面去解决问题比较困难时,于是就 要改变思维方向,从结论入手,反面思考。这就是今天介 绍的证明方法——反证法。
学习目标:
1反证法的概念 2 、知道反证法证明问题的步骤。 3能利用反证法证明一些简单的问题。
自学课本23页和24页,完成下列思考题 (1)如何对命题的

第9讲圆的相关概念及基本性质九年级数学下册讲义(北师大版)原卷版

第9讲圆的相关概念及基本性质九年级数学下册讲义(北师大版)原卷版

第9讲圆的相关概念及基本性质目标导航知识精讲知识点01 圆的定义1)圆:描述性定义:在平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A所形成的轨迹。

记作:“O”,读作:“圆O”,其中端点O叫作圆心集合性定义:圆是平面内所有到定点的距离等于定长的点的集合,定点是圆心,定长是半径。

2)基本概念①半径:线段OA叫作圆的半径(OB、OC也是圆的半径)②弦:圆上任意两点间的线段(半径是特殊的弦)③直径:经过圆心的弦(如AB)④弧:圆上任意两点间的部分(如)⑤半圆:圆的任一直径的两个端点将圆分成两条弧,每条弧叫作半圆⑥等圆:两个圆能完全重合(即全等,即半径r相等)3)确定一个圆的两要素(圆心、半径)4)圆的任一半径长度都相等5)圆的任一直径长度都相等,且直径长度=2倍的半径长度6)等弧:能够完全重合的两段弧是等弧。

也可说在同圆或等圆中,等长弧对应的弧相等;7)C=2r S=注:①直径是弦,但弦不一定是直径,直径是圆中最长的弦;②半圆是弧,但弧不一定是半圆。

通常将大于半圆的弧称为优弧,小于半圆的弧称为劣弧;③等弧必须以“等圆或同圆”为前提,等弧是全等的(能完全重合),不仅指弧长相等,弧度也相等。

【知识拓展】(2021·山西晋中市·)如图,在中,点B、O、C和点A、O、D分别在同一条直线上,则图中有()条弦.A.2 B.3 C.4 D.5【即学即练1】(2021·山东九年级期中)下列说法:①弦是直径;②半圆是弧;③过圆心的线段是直径;④圆心相同半径相同的两个圆是同心圆,其中错误的有。

(填序号)【即学即练2】(2021·安徽定远县第一初级中学初三月考)下列说法中,正确的是( )A.两个半圆是等弧 B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧 D.同圆中优弧与劣弧的差必是优弧【即学即练3】(2021·江苏中考真题)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A.27倍B.14倍C.9倍D.3倍【即学即练4】(2021·广东)如图,在等腰Rt ABC中,32==,点P在以斜边AB为直径的半圆AC BC上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是________.知识点02 弧、弦、圆心角之间的关系1)圆心角:顶点在圆心的角叫作圆心角2)规定旋转一周为360°,即圆周角为360°3)①C=2r ②半圆弧长=C ③弧长=(n为圆心角)4)等圆(半径相同)或同圆中,圆心角相等,则对应弧长、弦长相等;5)前提条件:在同圆或等圆中,①圆心角相等;②对应的弦长相等;③对应的弧长相等。

华东师大版九年级数学圆的有关性质课件

华东师大版九年级数学圆的有关性质课件

中点的线段。
相交弦定理
03
在圆中,相交弦的长度乘积等于以两弦为直径的两个弦之间的
弧所夹的弦的长度乘积。
圆的应用
01
圆的对称性
圆具有中心对称性和旋转对称性,因此在建筑设计、图案设计等方面有
广泛应用。
02
圆的运动轨迹
在物理学中,圆可以用来描述物体的运动轨迹,例如行星绕太阳的轨道
等。
03
圆的几何性质在生活中的应用
华东师大版九年级数学圆的有关性 质课件
目 录
• 圆的定义与性质 • 圆的周长与面积 • 圆与直线的位置关系 • 圆的切线与割线定理 • 圆的定理与推论 • 圆的综合应用题
01 圆的定义与性质
圆的定义
1 2
圆上三点确定一个圆
在一个平面内,通过三个不共线的点可以确定一 个圆。
圆上两点之间的距离为半径
弦切角定理指出,弦 切角等于它所夹的弧 所对的圆心角的一半。
切线长定理
切线长定理是关于圆的切线上 一点的性质定理。
切线长定理指出,过圆外一点 作圆的两条切线,则该点与圆 心连线平分两条切线的夹角。
切线长定理的应用也非常广泛, 例如在几何作图、证明和计算 中都有应用。
06 圆的综合应用题
圆的运动问题
相交弦定理
若两弦相交于圆内一点,则该两弦与 另一条过该点的直径的交点所形成的 两条线段的积等于定值。
切割线定理
若一条直线自圆外一点向圆作切线, 则该切线长等于过该点作圆的切线的 两条线段长的积的平方根。
弦切角定理
弦切角定理是关于弦 切角与它所夹的弧所 对的圆心角的关系的 定理。
弦切角定理的应用非 常广泛,例如在几何 作图、证明和计算中 都有应用。

九年级北师大版圆的知识点

九年级北师大版圆的知识点

九年级北师大版圆的知识点九年级北师大版数学教材中,圆是一个重要的知识点。

圆的特性和应用,对于学生的数学能力和几何思维的培养都有很大的帮助。

本文将介绍九年级北师大版数学教材中围绕圆的知识点,包括圆的定义、圆的性质、圆周率以及圆的应用等内容。

在九年级的数学课本中,首先会介绍圆的基本概念和定义。

圆是由一个平面上的所有离一个固定点(圆心)相等距离的点组成的。

圆心是圆的核心,而这个相等的距离则被称为半径。

半径的长度决定了一个圆的大小。

半径相等的两个圆被称为同心圆。

除了圆的基本定义,九年级的课本还介绍了圆的一些重要性质。

其中一条非常关键的性质是圆的直径等于半径的两倍。

也就是说,通过圆心的直线,且两端点都位于圆上的线段称为直径。

直径是圆的最长线段,能够把圆分成两个相等的半圆。

圆还具备很多其他的性质。

例如,任意两条相交圆弦所对的圆心角相等;两个相交圆弧所对的圆心角相等;圆上的弧所对的圆心角等于弧对应的圆周角的一半等等。

这些性质为后续的几何问题解决提供了很多的便利。

在圆的知识点中,圆周率也是一个关键的概念。

圆周率是圆的周长与直径的比值,通常用希腊字母π表示。

圆周率是一个无理数,其近似值为3.14159。

因为无法精确表示,所以在计算中通常取近似值。

除了对圆的定义和性质的学习,九年级的数学课本还会介绍一些圆的应用。

例如,圆的面积计算是一项实际应用广泛的技能。

圆的面积等于半径的平方乘以圆周率,公式为S=πr²。

通过掌握这个公式,可以计算圆的面积,进而应用于实际生活中的问题。

另外,九年级数学课本还会介绍圆与其他几何图形的关系。

例如,圆与角的关系,圆与直线的关系等等。

这些关系的理解和应用,可以使学生进一步培养几何思维能力,提高解决几何问题的能力和灵活性。

在学习圆的知识点时,举一些实际的例子和案例也是非常重要的。

例如,学生可以通过测量不同碗的半径和直径,计算其容量,了解圆在日常生活中的应用。

此外,学生还可以通过绘制和计算圆的面积,理解面积的概念,并将其应用到解决问题中。

人教版九年级数学圆的教案

人教版九年级数学圆的教案

人教版九年级数学圆的教案人教版九年级数学圆的教案1一、教学目标知识技能:1.了解圆和圆的相关概念,知道圆实轴对称图形,理解并掌握垂直于弦的直径有哪些性质.2.了解弧、弦、圆心角、圆周角的定义,明确它们之间的联系.数学思考:1.在引入圆的定义过程中,明确与圆相关的定义,体会数学概念间的联系.2.在探究弧、弦、圆心角、圆周角之间的联系的过程中,培养学生的观察、总结及概括能力.问题解决:1.在明确垂直于弦的直径的性质后,能根据这个性质解决一些简单的实际问题.2.能根据弧、弦、圆心角、圆周角的相关性质解决一些简单的实际问题.情感态度:在引入圆的定义及运用相关性质解决实际问题的过程中,感悟数学源于生活又服务于生活.在探索过程中,形成实事求是的态度和勇于创新的精神.二、重难点分析教学重点:垂径定理及其推论;圆周角定理及其推论.垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法.所以垂径定理及其推论、圆周角定理及其推论是本小节的重点.对于垂径定理,可以结合圆的轴对称性和等腰三角形的轴对称性,引导学生去发现“思考”栏目图中相等的线段和弧,再利用叠合法推证出垂径定理.对于垂径定理的推论,可以按条件画出图形,让学生观察、思考,得出结论.要注意让学生区分它们的题设和结论,强调“弦不是直径”的条件.圆周角定理的证明,分三种情况进行讨论.第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端点的直径为辅助线.这种由特殊到一般的思想方法,应当让学生掌握.教学难点:垂径定理及其推论;圆周角定理的证明.垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对于分类证明的必要性不易理解,所以这两部分内容是本节的难点.圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识.三、学习者学习特征分析圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识.四、教学过程(一)创设情境,引入新课圆是一种和谐、美丽的图形,圆形物体在生活中随处可见.在小学我们已经认识了圆这种基本的几何图形,并能计算圆的周长和面积.早在战国时期,《墨经》一书中就有关于“圆”的记载,原文为“圆,一中同长也”.这是给圆下的定义,意思是说圆上各点到圆心的距离都等于半径.现实生活中,路上行驶的各种车辆都是圆形的轮子,为什么车轮做成圆形的?为什么不做成椭圆形和四边形的呢?这一节我们就一起来学习圆的有关知识,并且来解决上述的疑问.(二)合作交流,探索新知1.观察图形,引入概念(1)圆是生活中常见的图形,许多物体都给我们以圆的形象.(多媒体图片引入)(2)观察画圆的过程,你能由此说出圆的形成过程吗?(3)圆的概念:让学生根据上面所找出的特点,描述什么样的图形是圆.(学生可以在讨论、交流的基础上自由发言;绝大部分学生能够比较准确的描述出圆的.定义,部分学生没有说准确,在其他学生带动下也能够说出)在学生充分交流的基础上得到圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.(多媒体动画引入)(4)圆的表示方法以点O为圆心的圆,记作“⊙O”,读作“圆O”.(5)从画圆的过程可以看出:①圆上各点到定点(圆心O)的距离都等于定长(半径r);②到定点的距离等于定长的点都在同一个圆上.因此,圆心为O、半径为r的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.(把一个几何图形看成是满足某种条件的点的集合的思想,在几何中十分重要,因为这实际上就是关于轨迹的概念.圆,实际上是“到定点的距离等于定长的点”的轨迹.事实上,①保证了图形上点的纯粹性,即不杂;②保证了图形的完备性,即没有漏掉满足这种条件的点.①②同时符合,保证了图形上的点“不杂不漏”.)(6)由车轮为什么是圆形,让学生感受圆在生活中的重要性.问题1,车轮为什么做成圆形?问题2,如果做成正方形会有什么结果?(通过车轮实例,首先让学生感受圆是生活中大量存在的图形.教学时给学生展示正方形车轮在行走时存在的问题,使学生感受圆形的车轮运转起来最平稳.)把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.2.与圆有关的概念(1)连接圆上任意两点的线段(如线段AC)叫做弦.(2)经过圆心的弦(如图中的)叫做直径.(3)圆上任意两点间的部分叫做圆弧,简称弧.小于半圆的弧(如图中的ABC,)叫做优弧.(4)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(5)能够重合的两个圆叫做等圆.(容易看出半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.) 叫做劣弧;大于半圆的弧(用三个字母表示,如图中的(6)在同圆或等圆中,能够互相重合的弧叫做等弧.(对于和圆有关的这些概念,应让学生借助图形进行理解,并弄清楚它们之间的联系和区别.例如,直径是弦,但弦不一定是直径.半圆是弧,但弧不一定是半圆;半圆即不是劣弧,也不是优弧.)3.垂直于弦的直径(1)创设情景引入新课问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m.你能求出赵州桥主桥拱的半径吗?)(2)圆的对称性的探究①活动:用纸剪一个圆,沿着圆的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(学生可能会找到1条,2条,3条?教师不要过早地去评判,应该把机会留给学生,让他们在互相交流中,认识到圆的对称轴有无数多条,要鼓励学生表达自己的想法)②得到结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.(3)垂径定理及其逆定理①垂径定理的探究如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)圆是轴对称图形吗?如果是,它的对称轴是什么?? (2)你能发现图中有哪些相等的线段和弧吗?为什么?(旨在通过这样复合图形的轴对称性探索垂径定理,教学时应鼓励学生探索方式的多样性.引导学生理解,证明垂径定理的基本思路是:先构造等腰三角形,由垂直于弦得出平分弦;然后将直径看做圆的对称轴,利用轴对称图形对应元素相等的性质得出平分弧的结论)(多媒体动画引入)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.②垂径定理的逆定理的探究(仿照前面的证明过程,鼓励学生独立探究,然后通过同学间的交流得出结论)垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③解决求赵州桥拱半径的问题4.弧,弦,圆心角(1)通过实验探索圆的另一个特性如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?(多媒体图片引入)(教科书展示了一种证明方法——叠合法,教学时要鼓励学生用多种方法探索图形的性质,学生的想法未必完善,但只要有合理的成分就应给予肯定和鼓励.)结论:在同圆或等圆中,相等的圆心角所的弧相等,所对的弦也相等.(2)对(1)中结论的逆命题的探究在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_____,所对的弦_____;在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角______,所对的弧_____.(教学时仍要鼓励学生用多种方法进行探索)(3)应用新知,体验成功例. 如图,在⊙O中,= ,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.5.圆周角(1)创设情境引入概念如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙,丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?概念:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(意在引出同弧所对的圆心角与圆周角,同弧所对的圆周角之间的大小关系.教学时要引导学生分析圆周角有两个特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.)(2)圆的相关性质①动手实践活动一:分别量一下所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律?活动二:再分别量出图中所对的圆周角和圆心角的度数,比较一下,你有什么发现?(利用一些计算机软件,可以很方便的度量圆周角,圆心角,有条件的话可以试一试)得到结论:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.②为了进一步研究上面发现的结论,在⊙O任取一个圆周角∠BAC,将圆对折,使折痕经过圆心O和∠BAC的顶点A.由于A的位置的取法可能不同,这时折痕可能会:在圆周角的一条边上;在圆周角的内部;在圆周角的外部.(学生解决这一问题是有一定难度的,应给学生留有时间和空间,让他们进行思考.引导学生观察后两种情况,让学生思考:这两种情况能否转化为第一种情况?如何转化?当解决一个问题有困难时,我们可以首先考虑其特殊情形,然后再设法解决一般问题.这是解决问题时常用的策略.)由此得到圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步我们还可以得到下面的推论:半径(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.由圆周角定理可知:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.(3)圆内接多边形的定义及其相关性质① 定义:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②利用圆周角定理,我们的得到关于圆内接四边形的一个性质:圆内接四边形的对角互补.(三)应用新知,体验成功利用资源库中的“典型例题”进行教学.(四)课堂小结,体验收获(PPT显示)这堂课你学会了哪些知识?有何体会?(学生小结)1.圆的有关概念;2.垂径定理及其逆定理;3.弧,弦,圆心角的相关性质;4.圆周角的概念及相关性质;(五)拓展延伸,布置作业利用资源库中或手头的相关材料进行布置.五、学习评价:(一)选择题1.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,?错误的是( )(A)CE=DE. (B). (C)∠BAC=∠BAD . (D)AC>AD.1题图 2题图3题图2.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,?则下列结论中不正确的是()(A)AB⊥CD . (B)∠AOB=4∠ACD. (C)3.如图,⊙O中,如果=2,那么( ) . (D)PO=PD.(A)AB=AC. (B)AB=AC. (C)AB<2ac. ab="">2AC.4.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC 等于( )(A)140°. (B)110°.(C)120°.(D)130°.4题图 5题图 6题图5.如图,∠1、∠2、∠3、∠4的大小关系是( )(A)∠4<∠1<∠2<∠3 . (B)∠4<∠1=∠3<∠2.(C)∠4<∠1<∠3∠2 . (D)∠4<∠1<∠3=∠2.6.如图,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于()人教版九年级数学圆的教案2一. 本周教学内容:圆三圆和圆的位置关系[学习目标]1. 掌握圆和圆的各种位置关系的概念及判定方法;2. 理解并掌握两圆相切的性质定理;3. 掌握相交两圆的性质定理,并完成相关的计算和证明;4. 理解圆的内、外公切线概念,会计算内、外公切线长及两公切线夹角;并能根据公切线的条数确定两圆的位置关系;5. 通过两圆位置关系的学习,进一步理解事物之间是相互联系和运动变化的观点,学会在变化中寻找规律,培养综合运用知识的能力。

九年级数学上第章圆圆的有关性质圆课件 【人教版】PPT实用课件

九年级数学上第章圆圆的有关性质圆课件 【人教版】PPT实用课件

思考:
①“直径是弦,弦是直径”这种说法正确吗? 直径是圆中最长的弦吗?
②“半圆是弧,弧是半圆”这种说法正确吗? ③面积相等的两个圆是等圆吗?周长相等的两 个圆呢?
【针对训练】
D
D
0<d≤4
探究点二 运用“圆的半径相等”解决问题
C
【针对训练】
A
总结梳理 内化目标
达标检测 反思目标
A
等边三角形

9.使用了举例论证,以人们对待周六 观点这 个电视 栏目的 态度为 例,具 体有力 的论证 了关于 评论的 影响力:评论是 否有效 取决于 其具体 内容, 评论也 绝不是 简单的 对与错 的问题 。为下 文引出 中心论 点作铺 垫。

10.培根是英国文艺复兴时期最重要 的散文 家、哲 学家之 一。从 他的散 文中我 们可以 感受到 文艺复 兴时期 的思想 者如何 在旧的 社会结 构和思 想体系 日趋瓦 解之际 ,致力 于探讨 并树立 新的信 念、规 范和道 德。
r
A E
1.圆上各点到定点(圆心O)的距 离都等于定长(半径r)
2.到定点(圆心O)的距离都等于定
D
长(半径r)的点都在同一个圆上。
圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。
我国古人ห้องสมุดไป่ตู้早对圆就有这样的认识了,战国时的 《墨经》就有“圆,一中同长也”的记载.它的 意思是圆上各点到圆心的距离都等于半径.
心,线段OA叫做半径.
圆的确定
O●
要确定一个圆,必须确定圆的_圆__心_和__半__径 圆心确定圆的位置,半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
A ·r O

九年级数学上册 24.1 圆的概念与基本性质课件 (新版)新人教版

九年级数学上册 24.1 圆的概念与基本性质课件 (新版)新人教版
c.平分弦所对的一条弧的直径垂直平分弦,并且平分弦 所对的另一条弧. 推 圆的两条平行弦所夹的弧相等. 论 2
推 过圆心、平分弦、垂直于弦、平分弦所对的劣弧、平分 论 弦所对的优弧,若一条直线具备这五项中的任意两项, 3 则必具备另外三项.
• 1、熟练地运用垂径定理及其推论、勾股定理,并 用方程的思想来解决问题.
(1)是轴对称图形.直径CD所在的 直线是它的对称轴
(2) 线段: AE=BE
A
弧 :AD=BD,AC=BC
C
·O
E B
D
C
已知:直径CDAB于E,
结论:AE=BE,AD=BD,AC=BC
·O
即:直径CD平分弦AB, 并且平分AB及ACD
E
A
B
D
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
2、对于一个圆中的弦长a、圆心到弦的距离d、圆 半径r、弓形高h,这四个量中,只要已知其中任意 两个量,就可以求出另外两个量,如图有:
⑴d + h = r ⑵ r2 d2 (a)2
2
在a,d,r,h中,已知其中任意两 个量,可以求出其它两个量.
活动三
练习
例1.如图,在⊙O中,弦AB的长为8cm,圆心 O到AB的距离为3cm,求⊙O的半径.
(2)圆的内部可以看作是由到定点的距离小于定长的所有的点 组成的图形. (3)圆的外部可以看作是由到定点的距离大于定长的所有的点 组成的图形.
2、圆的有关概念 1)弦:连接圆上任意两点间的线段叫做弦.经过圆心的
弦叫做直径,直径是特殊的弦.(弦是线段,只有长度)
2)弧:圆上任意两点间的部分叫做弧.小于半圆的弧叫 劣弧,大于半圆的弧叫优弧.(弧既有弧度又有长度。)

人教版九年级数学上册 《圆》圆的有关性质PPT教学课件

人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
解:每个小圆的面积为 π12a·n12=π4na22,而大圆的面积为 π12a2=14πa2,即每个小 圆的面积是大圆的面积的n12.
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质

第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.

人教版九年级数学上册 《圆》圆的有关性质PPT

人教版九年级数学上册 《圆》圆的有关性质PPT

(1)请写出以点B为端点的劣弧及优弧;
(
(
(
(
B
D
劣弧: BF,BD, BC, BE.
(
(
(
(
优弧: BFE, BFC, BCD, BCF.
O
F
E
(2)请写出以点B为端点的弦及直径;
弦BD, AB, BE.其中弦AB又是直径.
A
(3)请任选一条弦,写出这条弦所对的弧.
(
答案不唯一,如:弦DF,它所对的弧是
(1)弦是直径;
(2)过圆心的线段是直径;
(3)半圆是弧;
(4)过圆心的直线是直径;
(5)直径是最长的弦;
(6)半圆是最长的弧;
(7)长度相等的弧是等弧.
(8)同心圆也是等圆.
第十六页,共二十一页。
4. 一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?
如果不公平,你认为他们应排成什么样的队形才公平?
2. 到定点的距离等于定长的点都在

B
定长r
.同一个圆上
·
(2)圆的集合定义
圆心为O、半径为r的圆可以看成是到定点O的距离等于定长
C
r O
r
D
r的所有点的集合.
第六页,共二十一页。
A
r
r
r
E
(3)确定一个圆的要素
一是圆心,圆心确定其位置;二是半径,半径确定其大小.
等圆
同心圆
半径相同,圆心不同
圆心相同,半径不同
r
另一个端点A所形成的图形叫做圆.点O为圆心的圆,记
·O
作“⊙O”,读作“圆O”.
固定的端点O叫做圆心,线段OA叫做半径,一般用r表

人教版九年级数学上册 (圆)圆的有关性质课件

人教版九年级数学上册 (圆)圆的有关性质课件
1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。 2.掌握圆周角定理及推论,并会运用这些知识进行简单的计算和证明; 3.学习中经理操作、观察、猜想、分析、交流、论证等数学活动,体验圆周角的、定理的探索。
重点难点
重点:理解并掌握圆周角定理及推论。 难点:圆周角定理的证明。
情景引用
点C,且有DC=OE,若∠C=20°,则∠EOB的度数是 60°.
• 6.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD. • 求证:OC=OD. • 证明:∵OA、OB为⊙O的半径, • ∴OA=OB. • ∴∠A=∠B. • 又∵AC=BD, • ∴△ACO≌△BDO. • ∴OC=OD.
在纸上画出一个圆,并截取任意一条圆弧画出其所对的圆心角和圆周角, 测量它们的度数,你能得出什么结论?
C
经过测量, 同弧所对的圆周角度数等于 所对圆心角的一半。
O
A
B
圆心角和圆周角之间存在的关系
下面我们分以下三种情况验证上述猜想:
圆心角和圆周角之间存在的关系
1
2 3
证明二:
OA=OC=>∠1=∠2
• 2.下列说法中,不正确的是(D )
• A.过圆心的弦是圆的直径
• B.等弧的长度一定相等
• C.周长相等的两个圆是等圆
• D.长度相等的两条弧是等弧
• 3.一个圆的最大弦长是10cm,则此圆的半径是 5 cm. • 4.在同一平面内与已知点A的距离等于5cm的所有点所组成的图形是 圆 .
• 5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线相交于
在以点O为圆心的圆上。
证明:
∵四边形ABCD为矩形,
∴OA=OC=

人教版【九年级】圆的性质知识点

人教版【九年级】圆的性质知识点

人教版【九年级】圆的性质知识点2020-12-12【关键字】情况、方法、条件、问题、难点、尽快、掌握、了解、位置、关键、精神、需要、重点、水平、速度、关系、形成、解决、方向、中心一、课前复习1、旋转2、中心对称3、中心对称图形4、求关于原点对称的点的坐标二、新课导入初中阶段我们有几种几何是必须掌握的:三角形,四边形,圆。

关于前两个已经在前期的学习中接触过了,那么本章我们将重点学习圆的相关性质以及相关的知识点,本章也是中考内容中的重点部分,所以需要打起精神,认真将知识点掌握并灵活应用起来。

三、新课讲授圆的有关性质知识点1圆的定义以及表示方法(重点;理解)1、描述性定义在一个平面内,线段OA绕它固定一个端点O旋转一周,另一个端点A所形成的图形叫做圆,其中固定的端点O 叫做圆心,线段OA叫做半径。

2、集合性定义圆可以看作是到定点的距离等于定长的点的集合;3、圆的表示方法以点O为圆心的圆,记作“⊙O”,读作“圆O”命题1圆的定义的理解例1:下列条件中,能确定圆的是()A. 以已知点O为圆心B. 以1cm长为半径C. 经过已知点A,且半径为2cmD. 以点O为圆心,1cm为半径针对练习:1、与已知点A的距离为3cm的点所组成的平面图形是______.命题点2判断四点共圆的问题例2:矩形的四个顶点能否在同一个圆上?如果不在,说明理由;如果在,指出这个圆的圆心和半径.已知,四边形ABCD是矩形,判断A、B、C、D这四个点能否在同一个圆上?如果不在,说明理由;如果在,指出这个圆的圆心和半径。

证明:连接AC,BD∵四边形ABCD是矩形对角线AC与BD交于点O∴ AO=CO=12×ACBO=DO=12×BD∵四边形ABCD是矩形∴ AC=BD (矩形的对角线相等)∵ AO=CO=12×ACBO=DO=12×BD AC=BD∴ AO=BO=CO=DO∵ AO=BO=CO=DO∴ A、B、C、D这四个点在以点O为圆心,OA为半径的同一个圆上针对练习:1、如图,四边形ABCD的一组对角∠ABC、∠ADC都是直角。

九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版

圆上两点与圆心连线夹角相等
02
圆上两点与圆心连线形成的夹角相等,这个夹角叫做圆心角。
圆心角与对应的弧的关系
03
在同一个圆或等圆中,相等的圆心角所对的弧也相等。
圆心、半径和直径
01
02
03
圆心的定义
圆心是圆的中心点,也是 圆上三点确定的唯一确定 的点。
半径的定义
从圆心到圆上任意一点的 线段叫做半径,半径的长 度等于圆的半径。
性运动。
04
总结词:均匀性
05
详细描述:圆周上的点以相同
的速度旋转,形成均匀的旋转
运动。
06
圆的物理应用
总结词:机械原理
详细描述:圆在机械运转中 起到关键作用,如轴承、传
动装置等。
总结词:动力传
详细描述:圆周运动可以转 化为其他形式的运动,如直 线运动、振动等。
总结词:能量转化
详细描述:圆周运动可以转 化和传递能量,如发电机、 电动机等。
圆的周长和面积
圆的周长
1 2
圆的周长的定义
圆的周长是指圆边界上所有点沿同一方向的距离 总和。
圆的周长的计算公式
$C = 2pi r$,其中$C$表示圆的周长,$r$表示 圆的半径,$pi$是一个常数,约等于3.14159。
3
圆的周长的应用
在几何学、物理学、工程学等领域中,圆的周长 公式被广泛应用于计算圆的周长、圆的直径、圆 弧长度等。
ห้องสมุดไป่ตู้
圆与其他图形的面积关系
与正方形的面积关系
当圆内接于一个正方形时,圆的面积与正方形的面积之比为 $pi : 4$。
与三角形的面积关系
当圆内接于一个三角形时,圆的面积与三角形的面积之比为 $pi : 2$。

第三章圆的基本性质大单元教学设计浙教版九年级数学上册

第三章圆的基本性质大单元教学设计浙教版九年级数学上册

8.探索弧长计算公式及扇形的面积计算公式,并能利用公式解决问题。
内容分析
本章的主要内容有:圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接 圆等有关概念.圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关
的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学
学生的数学运用能
力.
1. 经历探 索扇 形面积 1.扇形的概念和扇 推导扇形面积计算
计算公式的过程,培养 形面积的计算公式. 公式的过程.掌握扇
学生的探索能力.
2.弧长与扇形面积 形面积计算公式,会
2. 了解扇 形面 积公式 的关系.
用公式解决问题.
后,能用公式解决问
题,训练学生的数学运
用能力.
图形旋转后的图形的 并且还知道要确定 旋转中心的距离相
作法.
一个三角形旋转后 等,对应点与旋转中
的位置。
心的连线所成的角
垂径定理 2 圆心角 2
彼此相等的性质.
1.通过实验观察,让学 1.了解圆是轴对称 使学生掌握垂径定
生理解圆的轴对称性; 图形,过圆心的任意 理、记住垂径定理的
2.掌握垂径定理,理解 一条直线(或直径所 题设和结论.
其探索和证明过程; 在的直线)都是它的 对垂径定理的探索
运 用垂径 定理 解决有 对称轴.
和证明,在解决问题
关的计算和证明问题. 2.通过猜想,证明, 时想到用垂径定理.
形成垂径定理.
研 究垂径 定理 的逆定 研究垂径定理及其 证明垂径定理,会运
理.
逆定理.
用垂径定理及其逆
2.运用垂径定理的逆 2.解决有关弦的问 定理解决问题.
定理解决问题.

人教版九年级数学上册教案_24.1圆的基本性质

人教版九年级数学上册教案_24.1圆的基本性质
(4)弦的性质:直径是圆中最长的弦,且平分弦;
(5)弧的性质:等弧对等弦,等弦对等弧;
3.圆与三角形的关系:圆的半径、直径与三角形的三边关系;
4.圆的周长与面积公式及其应用。
二、核心素养目标
1.培养学生的空间观念与几何直观:通过学习圆的基本性质,使学生能够理解圆的几何特征,建立清晰的圆的概念,提高对平面图形的认识和理解;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上所有与一个固定点(圆心)距离相等的点的集合。圆是几何图形中最特殊的图形之一,它在日常生活和科学技术中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,比如圆轮的平稳滚动,以及它如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对圆的基本性质有了初步的认识,但确实存在一些理解和掌握上的难点。在导入新课的时候,通过日常生活中的圆形物体为例,成功引起了学生们的兴趣,这是一个不错的开始。
课堂上,当我解释圆的对称性和圆周角定理时,我发现部分学生看起来有些困惑。我意识到,仅仅通过理论讲解可能还不够,下次我可以尝试使用更多的教具或实物来直观展示,比如通过折叠圆纸片来让学生更直观地感受圆的轴对称和中心对称。
在新课讲授的过程中,我尽量用简单明了的语言解释概念,并通过案例分析让学生们看到圆在实际中的应用。但在讲解重点难点时,我觉得还可以做得更好。可能需要设计一些更有针对性的问题,引导学生逐步思考,帮助他们更好地理解和消化这些知识点。

九上 第三章 圆的基本性质(知识点总结)

九上 第三章 圆的基本性质(知识点总结)

第三章 圆的基本性质(知识点总结)1、在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的封闭曲线叫做圆。

固定的端点O 叫做圆心,线段OA 叫做半径,以点O 为圆心的圆,记作☉O ,读作“圆O 。

2、以3cm 为半径画圆,能画多少个?以点O 为圆心画圆,能画多少个?由此,你发现半径和圆心分别有什么作用?-----半径确定圆的大小;圆心确定圆的位置圆是“圆周”还是“圆面”? 圆是到定点(圆心)的距离等于定长(半径)的点的集合。

3、与圆有关的概念(1)弦和直径;(2)弧和半圆;(3)等圆;(4)同心圆4、点与圆的位置关系。

(1)点在圆外<=>点到圆心的距离大于半径(2)点在圆上<=>点到圆心的距离等于半径(3)点在圆内<=>点到圆心的距离小于半径5、过已知点作圆(1)经过一个点,能作出多少个圆?(2)经过两个点,如何作圆,能作多少个?(3) 经过三个点,如何作圆,能作多少个?6、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。

三角形的外心到各顶点距离相等。

“接”是指三角形各顶点在圆上,“外”是指三角形外,“内”是指圆内。

一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。

锐角三角形外心在圆内;直角三角形外心在圆上;钝角三角形外心在圆外。

7、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

垂径定理的推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)平分弧的直径,垂直平分弧所对的弦。

(3)圆的两条平行弦所夹的弧相等所以a 、经过圆心b 、垂直于弦c 、平分弦d 、平分弧,a 四者中有一对量相等,其它所对的量也相等8、在同圆中,已知两平行弦长,要求两弦间的距离,要考虑两种情况:两弦分布在圆心同侧;两弦分布在圆心两侧,根据2221)(l r d -=得,当两弦在圆心同侧21d d d +=;在圆心异侧则21d d d -=。

初中数学 圆的基本概念和性质(教师版)九年级数学上册同步精品讲义(人教版)

初中数学 圆的基本概念和性质(教师版)九年级数学上册同步精品讲义(人教版)

第22课圆的基本概念和性质课程标准1.知识目标:理解圆的有关概念和圆的对称性;2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,•圆的对称性进行计算或证明;3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯.知识点01 圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆目标导航知识精讲的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).知识点02 与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.考法01 圆的定义【典例1】已知:如图,矩形ABCD的对角线AC与BD相交于点O,求证:点A、B、C、D在以点O为圆心的同一个圆上.【答案与解析】∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OC=OB=OD,∴点A、B、C、D在以点O为圆心、OA为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.【即学即练1】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【答案】C.【典例2】爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质是初中数学九年级下学期第一章第一节的内容.需要掌握点与圆的位置关系,理解圆心角、弧、弦、弦心距的概念和掌握它们之间的关系,重点是这四者关系的灵活运用,以及垂径定理及其推论的应用.1、圆的概念圆:平面上到一个定点的距离等于定长的所有点所成的图形.圆心:以上概念中的“定点”;以点O为圆心的圆称为“圆O”,记作O.半径:联结圆心和圆上任意一点的线段;以上概念中的“定长”是圆的半径长.2、点与圆的位置关系设一个圆的半径长为R,点P到圆心的距离为d,则有以下结论:当点P在圆外时,d > R;当点P在圆上时,d = R;当点P在圆内时,0d R≤<.反之亦然.3、相关定理:不在同一直线上的三个点确定一个圆.三角形的三个顶点确定一个圆.经过一个三角形各顶点的圆叫做这个三角形的外接圆,外接圆的圆心叫做这个三角形的外心;这个三角形叫做这个圆的内接三角形.如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形.圆的基本性质内容分析知识结构模块一:圆的确定知识精讲ABCD O【例1】 在平面直角坐标系内,A (3-,tan30-︒),B (2a a,0),A 的半径为4,试说明点B 与A 的位置关系.【难度】★ 【答案】点B 在A 外.【解析】由题意得33A ⎛⎫-- ⎪ ⎪⎝⎭,,()10B ,,所以()22373313AB ⎛⎫=--+-= ⎪ ⎪⎝⎭, 因为4AB >,所以点B 在A 外.【总结】本题考察了点与圆的位置关系,设一个圆的半径长为R ,点P 到圆心的距离为 d ,则有以下结论:当点P 在圆外时,d > R ;当点P 在圆上时,d = R ;当点P 在 圆内时,0d R ≤<.反之亦然.【例2】 过一个点可以画______个圆,过两个点可以画______个圆,过三个点可以画______个圆.【难度】★【答案】无数;无数;一或零.【解析】不共线的三点才可以确定一个圆.【总结】本题考察了圆的确定,不共线的三点可以确定一个圆.【例3】 已知,如图,在O 中,AB 、BC 为弦,OC 交AB 于点D .求证:(1)ODB OBD ∠>∠;(2)ODB OBC ∠>∠.【难度】★ 【答案】详见解析.【解析】(1)∵OA OB =,∴OAB OBA ∠=∠,∵ODB OAB AOD ∠=∠+∠,∴ODB OBA AOD ∠=∠+∠,∴ODB OBD ∠>∠.(2)∵OC OB =,∴OBC OCB ∠=∠,∵ODB OCB DBC ∠=∠+∠,∴ODB OBC DBC ∠=∠+∠,∴ODB OBC ∠>∠.【总结】本题考查了圆的性质,利用外角是解决问题的关键.例题解析【例4】 如图,O 的半径为15,O 到直线l 的距离OH = 9,A 、B 、C 为直线l 上的三个点,AH = 9,BH = 12,CH = 15,请分别说明点A 、B 、C 与O 的位置关系.【难度】★★【答案】A 在O 内;B 在O 上;C 在O 外. 【解析】连接OP ,∵15OP =,9OH =,∴2212PH OP OH =-=,∵9AH HP =<,∴A 在O 内; ∵12BH HP ==,∴B 在O 上; ∵12CH HP =<,∴C 在O 外.【总结】本题考查了点与圆的位置关系.【例5】 若A (a ,27-)在以点B (35-,27-)为圆心,37为半径的圆上,求a 的值.【难度】★★ 【答案】2或72-.【解析】∵A 点在B 上,∴37BA =,即()()2235272737a ++-+=,解得12a =,272a =-.【总结】本题考查了点与圆的位置关系,注意此题有两种解.【例6】 如图,作出AB 所在圆的圆心,并补全整个圆. 【难度】★★ 【答案】如图所示.【解析】在AB 上任意作两条弦,分别做两条弦的垂直平分线,两垂直平分线的交点即为圆心.【总结】本题考查了不共线三点定圆的作法.HOlP【例7】 如图,CD 是半圆的直径,O 是圆心,E 是半圆上一点,且45EOD ∠=︒,A 是DC 延长线上一点,AE 与半圆交于B ,若AB = OC ,求EAD ∠的度数.【难度】★★★ 【答案】15EAD ∠=︒.【解析】∵AB OC =,OC OB =,∴AB OB =,∴EAD BOA ∠=∠, ∴2OBE BOA EAD EAD ∠=∠+∠=∠,∵OB OE =,∴E OBE ∠=∠,∴2OEB EAD ∠=∠, ∵345EOD OEA EAD EAD ∠=∠+∠=∠=︒, ∴15EAD ∠=︒.【总结】本题考查了同一个圆中半径处处相等及三角形外角的应用.【例8】 已知,如图,AB 是O 的直径,半径OC AB ⊥,过OC 的中点D 作EF // AB .求证:12ABE CBE ∠=∠.【难度】★★★ 【答案】详见解析. 【解析】连接OE ,∵OC AB ⊥,EF //AB , ∴OC EF ⊥,OBE DEB ∠=∠,∵OB OE =,∴OBE OEB ∠=∠,∴OBE OEB DEB ∠=∠=∠,∵D 为OC 的中点,∴1122OD OC OE ==,∴30OED ∠=︒,∴1152ABE OED ∠=∠=︒,∴451530CBE CBO ABE ∠=∠-∠=︒-︒=︒,∴12ABE CBE ∠=∠.【总结】本题主要考查了等腰三角形的性质以及直角三角形性质的综合运用.AB CDEOABC D E F O【例9】已知:AB是O的直径,点P是OA上任意一点,点C是O上任意一点.≤≤.求证:PA PC PB【难度】★★★【答案】详见解析.==,【解析】当P与O重合时,可得PA PC PB当P与O不重合时,连接OC,则OA = OC = OB,=-=-<,∴PA OA OP OC OP PC=+=+>,PB OP OB OP OC PC≤≤.综上可知PA PC PB【总结】本题考查了圆中半径处处相等,并利用三角形的三边关系解决问题.A BCO1、 圆心角、弧、弦、弦心距的概念圆心角:以圆心为顶点的角叫做圆心角; 弧:圆上任意两点之间的部分叫做圆弧,简称弧;弦:连接圆上任意两点的线段叫做弦,过圆心的弦就是直径; 弦心距:圆心到弦的距离叫做弦心距. 2、 半圆、优弧、劣弧半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆. 优弧:大于半圆的弧叫做优弧. 劣弧:小于半圆的弧叫做劣弧.如图,以A 、C 为端点的劣弧记作AC ,读作“弧AC ”; 以A 、C 为端点的优弧记作ABC ,读作“弧ABC ”. 3、 等弧和等圆能够重合的两条弧称为等弧,或者说这两条弧相等.若AB 与''A B 是等弧,记作''AB A B .半径相等的两个圆一定能够重合,我们把半径相等的两个圆称为等圆. 4、 圆心角、弧、弦、弦心距之间关系的定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.5、 圆心角、弧、弦、弦心距之间关系的定理的推论在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.模块二:圆心角、弧、弦、弦心距之间的关系知识精讲ABCO【例10】 下列命题中真命题的个数是( )① 相等的圆心角所对的弧也相等;② 在同圆中,如果两条弦相等,那么所对的弧也相等; ③ A 、B 是O 上任意两点,则AO + BO 等于O 的直径长; ④ 三角形的外心到三角形三边的距离相等. A .1个B .2个C .3个D .4个【难度】★ 【答案】A .【解析】① 需说明是在同圆或等圆中,故①错误;② 一条弦对两条弧,所以需要说明是优弧还是劣弧,故②错误; ③ 易知AO 、BO 均为圆的半径,所以AO BO +为直径,故③正确; ④ 三角形的外心到三角形三个顶点的距离相等,故④错误.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【例11】 一条弦把圆分成1 : 3两部分,则弦所对的圆心角为______°. 【难度】★ 【答案】90.【解析】∵一条弦把圆分成1 : 3两部分,∴整个圆分为四等分,则劣弧的度数为360490︒÷=︒, ∴弦所对的圆心角为90︒.【总结】本题考查了同圆中圆心角、弧、弦、弦心距之间的关系.【例12】 如图,在O 中,AB AC =,70B ∠=︒,则BAC ∠=______. 【难度】★ 【答案】40︒.【解析】∵在O 中,AB AC =,∴C B ∠=∠,∵70B ∠=︒,∴18040BAC B C ∠=︒-∠-∠=︒.【总结】本题主要考查等腰三角形的性质以及三角形内角和定理的应用.例题解析ABCDO【例13】 如图,已知O 的半径是6,30BOD ∠=︒,BD BC =,CD =______.【难度】★★ 【答案】6.【解析】∵BD BC =,30BOD ∠=︒,∴30BOD BOC ∠=∠=︒,∴60COD ∠=︒,∵OC OD =,∴OCD ∆是等边三角形, ∴6CD =.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理的应用.【例14】 如图,1O 和2O 是等圆,P 是12O O 的中点,过点P 作直线AD 交1O 于点A 、B ,交2O 于点C 、D .求证:AB = CD .【难度】★★ 【答案】详见解析.【解析】作1O E AB ⊥于E ,2O F CD ⊥于F ,∵P 是12O O 的中点,∴1PEO ∆≌2PFO ∆,∴12O E O F =, ∵1O 和2O 是等圆,∴AB CD =.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理的应用.【例15】 已知,如图,AB 、CD 是O 的直径,弦AE // CD ,联结CE 、BC .求证:BC = CE . 【难度】★★ 【答案】详见解析.【解析】∵OA OE =,∴A OEA ∠=∠,∵AE //CD ,∴BOC A ∠=∠,EOC OEA ∠=∠, ∴BOC EOC ∠=∠,∴BC CE =.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理的应用.FABCDPEA BCDEOOABC【例16】 如图,O 是ABC ∆的外接圆,AO 平分BAC ∠,AOB BOC ∠=∠,判断ABC∆的形状,并说明理由.【难度】★★ 【答案】等边三角形.【解析】∵AO 平分BAC ∠,∴BAO CAO ∠=∠,∵OA OC OB ==,∴ABO BAO CAO ACO ∠=∠=∠=∠, ∴AOB AOC ∠=∠,∵AOB BOC ∠=∠,∴AOB AOC BOC ∠=∠=∠, ∴AB BC CA ==,∴ABC ∆是等边三角形.【总结】本题考查同圆中相等的圆心角所对的弦相等.【例17】 已知,如图,AB 是O 直径,M 、N 分别是AO 、BO 的中点,CM AB ⊥,DN AB ⊥.求证:AC BD =.【难度】★★★ 【答案】详见解析.【解析】连接OC 、OD ,则OC OD =,∵M 、N 分别是AO 、BO 的中点,∴OM ON =, ∵CM AB ⊥,DN AB ⊥,∴OCM ∆≌ODN ∆, ∴COM DON ∠=∠,∴AC BD =.【总结】本题考查了同圆中相等的圆心角所对的弧相等.【例18】 如图,以点O 为圆心的圆弧上依次有四个点A 、B 、C 、D ,且AOB COD ∠=∠.求证:四边形ABCD 是等腰梯形.【难度】★★★ 【答案】详见解析. 【解析】连接AC 、BD ,∵AOB COD ∠=∠,∴AB CD =,∵12ACB AOB ∠=∠,12CAD COD ∠=∠,∴ACB CAD ∠=∠,∴AD ∥BC ,∴四边形ABCD 是等腰梯形.【总结】本题综合性较强,主要考查了同一条弦所对的圆周角和圆心角的关系,老师可以选择性的讲解.ABCDO NM OABCD1、 垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧. 2、 相关结论(1)如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧.(2)如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦. (3)如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧.(4)如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦.(5)如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并且平分这条弦.总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立.【例19】 O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长为______. 【难度】★ 【答案】8.【解析】∵O 的直径为10,∴5OB =,∵OM AB ⊥,∴OM 平分AB , ∴224BM OB OM =-=,∴28AB BM ==. 【总结】本题考查了垂径定理的运用.模块三:垂径定理知识精讲例题解析ABCDE F O【例20】 在半径为2的O 中,弦AB 的长为22,则弦AB 所对的圆心角AOB ∠=____°. 【难度】★ 【答案】90.【解析】作OD AB ⊥于D ,则2AD BD ==,∵2OB =,∴222OD OB BD =-=,∴45BOD ∠=︒,∴90AOB ∠=︒.【总结】本题考查了垂径定理的运用.【例21】 如图,O 是ABC ∆的外接圆,圆心O 在这个三角形的高CD 上,点E 和点F分别是边AC 和BC 的中点. 求证:四边形CEDF 是菱形.【难度】★★ 【答案】详见解析.【解析】∵CD AB ⊥,且CD 过圆心,∴AD BD =,∴CA CB =,∵点E 和点F 分别是边AC 和BC 的中点,∴12CE AC =,12DE AC =,12CF BC =,12DF BC =,∴CE DE DF CF ===,∴四边形CEDF 是菱形.【总结】本题考查了垂径定理的运用即菱形的判定.【例22】 如图,一根横截面为圆形的输水管道,阴影部分为有水部分,此时水面宽AB为0.6米,污水深CD 为0.1米,求圆形的下水管道的直径.【难度】★★ 【答案】1米.【解析】连接OB ,设圆半径为R ,则0.1OD R =-, 10.32BD AB ==,由222OD BD OB +=得()2220.10.3R R -+=,解得0.5R =, 所以下水管道的直径为1米.【总结】本题考查了垂径定理以及勾股定理的综合运用.A BD O【例23】 如图,在O 中,弦CD 、EF 的延长线相交于点P ,G 、H 分别是CD 、EF 的中点,GH 与PC 、PE 分别相交于Q 、R 两点,试判断PQR ∆的形状,并证明所得到的结论.【难度】★★ 【答案】等腰三角形. 【解析】连接OG 、OH ,∵G 、H 分别是CD 、EF 的中点, ∴OG CD ⊥,OH EF ⊥,∵OH OG =,∴H G ∠=∠,∴GQC HRE ∠=∠,∴PQR PRQ ∠=∠, ∴PQR ∆是等腰三角形.【总结】本题考查了垂径定理的运用.【例24】 如图,P 是O 的弦AB 的中点,PC OA ⊥,垂足为C ,求证:PA PB AC AO =. 【难度】★★ 【答案】详见解析.【解析】连接OP ,∵P 是O 的弦AB 的中点,∴OP AB ⊥,∵PC OA ⊥,∴ACP ∆∽APO ∆,∴PA AOAC PA =,∵PA PB =, ∴PA AOAC PB=,即PA PB AC AO =. 【总结】本题考查了垂径定与相似三角形的综合运用.CDEFG O PQROP ABCABCDH O【例25】 位于本市浦东临港新城的滴水湖是圆形人工湖.为测量该湖的半径,小智和小方沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长240米,A 到BC 的距离为5米,如图所示.请你帮他们求出滴水湖的半径.【难度】★★ 【答案】1442.5米.【解析】连接OA 交BC 于D 点,连接OC ,∵A 、B 之间的距离与A 、C 之间的距离相等, ∴OA BC ⊥,BD DC =,设半径为R ,则5OD R =-,120DC =,由222OD DC OC +=,∴()2225120R R -+=,解得:1442.5R =, 所以滴水湖的半径为1442.5米.【总结】本题考查了垂径定理的运用.【例26】 如图,弦CD 垂直于O 的直径AB ,垂足为H ,且22CD =,3BD =,则AB 的长为_______.【难度】★★ 【答案】3.【解析】由题意得2DH =,221BH DB DH =-=,设半径为R ,则1OH R =-,由222OD OH HD =+,∴()()22212R R =-+,解得32R =,∴23AB R ==.【总结】本题考查了垂径定理的运用.BCOD【例27】 已知O 的半径4r =,AB 、CD 为O 的两条弦,AB 、CD 的长分别是方程()24341630x x -++=的两根,其中AB > CD ,且AB // CD ,求AB 与CD 间的距离.【难度】★★★【答案】232+或232-.【解析】∵()24341630x x -++=,解得:143x =,24x =.∵AB >CD ,∴43AB =,4CD =,当AB 、CD 圆心同侧时,作OE AB ⊥于E ,并延长交CD 于F ,∵AB // CD ,∴OF ⊥CD ,∴222OE OB BE =-=,2223OF OD DF =-=, ∴232EF OF OE =-=-,当AB 、CD 圆心两侧时,同理可得232EF OF OE =+=+, ∴AB 与CD 间的距离是232+或232-.【总结】本题考查了垂径定理的运用,做题的关键是要分情况讨论.【例28】 已知,如图,1O 与2O 交于A 、B ,过A 的直线分别交1O 与2O 于M 、N ,C 是MN 的中点,P 是12O O 的中点. 求证:PA PC =.【难度】★★★ 【答案】详见解析.【解析】作1O E AM ⊥,2O F AN ⊥,作PH MN ⊥于H ,则12////O E PH O F ,且E 、F 分别为AM 、AN 的中点,∴12AE AF EF MN +==,∵C 是MN 的中点,∴12NC MN =,∴EF NC =,∴EC FN AF ==,∵P 是12O O 的中点,∴EH FH =, ∴HC HA =,∴PA PC =.【总结】本题考查了垂径定理的运用.ABCP N ME FH【例29】 如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,AE = EC ,2AB AE =,且23BD =,求四边形ABCD 的面积.【难度】★★★ 【答案】23.【解析】∵AE EC =,2AB AE =,∴222AB AE AE AC ==⋅,∴AB AE AC AB=,又EAB BAC ∠=∠,∴ABE ∆∽ACB ∆, ∴ABE ACB ∠=∠,∵ADB ACB ∠=∠,∴ABE ADB ∠=∠,∴AB AD =, 连接AO 交BD 于H ,连接BO ,∵AB AD =,∴AO BD ⊥,∴3BH DH ==, ∵2OB =,∴1OH =,∴1AH =,∴132ABD S BD AH ∆=⋅⋅=,∵E 为AC 中点,∴ABE CBE S S ∆∆=,ADE CDE S S ∆∆=,即ABD CBD S S ∆∆=, ∴223ABD ABCD S S ∆==四边形, ∴四边形ABCD 的面积是23.【总结】本题考查了垂径定理的运用及图形的分割,综合性较强,解题时注意认真观察.A BC DE OH【例30】 如图,在半径为2的扇形AOB 中,90AOB ∠=︒,点C 是弧AB 上的一个动点(不与点A 、B 重合),OD BC ⊥,OE AC ⊥,垂足分别为D 、E .(1)在DOE ∆中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由.(2)设BD = x ,DOE ∆的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.【难度】★★★【答案】(1)DE 长度不变,2DE =;(2)()2244024x x x y x -+-=<<.【解析】(1)连接AB ,∴2222AB OA OB =+=,∵OD BC ⊥,OE AC ⊥, ∴D 、E 分别为BC 、AC 中点,∴122DE AB ==.(2)作DF OE ⊥于F ,由(1)易得1452DOE AOB ∠=∠=︒,由题意得24OD x =-,∴28222ODx DF OF -===,2222EF DE EF x =-=, ∴28222x xOE OF EF -+=+=,∴()221440224x x x y DF OE x -+-=⋅⋅=<<.【总结】本题考查了垂径定理、勾股定理及中位线定理的综合运用,综合性较强.OABCDEFABCDEO【习题1】已知O 半径为5,若点P 不在O 上,则线段OP 的取值范围为_______________.【难度】★【答案】05OP ≤<或5OP >.【解析】∵点P 不在O 上,∴当点P 在O 内时,05OP ≤<;当点P 在O 外时, 5OP >,综上可知05OP ≤<或5OP >. 【总结】本题考查了点与圆的位置关系.【习题2】 如图,AB 是直径,BC CD DE ==,40BOC ∠=︒,则AOE ∠=_____.【难度】★ 【答案】60︒.【解析】∵BC CD DE ==,∴BOC COD DOE ∠=∠=∠, ∵40BOC ∠=︒,∴180360AOE BOC ∠=︒-∠=︒. 【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【习题3】如图,为方便三个村庄居民子女的上学问题,上级镇政府决定在A 、B 、C 三个村庄旁边造一所学校,要求它到各村庄的距离相等,请你在图中画出学校的位置.(保留作图痕迹)【难度】★ 【答案】如图所示.【解析】作线段AB 、AC 的中垂线的交点P 即为学校位置. 【总结】本题考查了不共线的三点可以确定一个圆.随堂检测A BC D EFOAB CD E O【习题4】如图,AB CD =,OE AB ⊥,OF CD ⊥,25OEF ∠=︒,求EOF ∠的度数.【难度】★★【答案】130︒.【解析】∵AB CD =,OE AB ⊥,OF CD ⊥,∴OE OF =,∴OEF OFE ∠=∠,∵25OEF ∠=︒, ∴1801802130EOF OEF OFE OEF ∠=︒-∠-∠=︒-∠=︒.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【习题5】如图,在ABC ∆中,90B ∠=︒,60A ∠=︒,以点B 为圆心,AB 为半径画圆,交AC 于点D ,交BC 于点E .求证:(1)2AD DE =;(2)D 是AC 的中点.【难度】★★ 【答案】详见解析.【解析】(1)连接BD ,∵BA BD =,60A ∠=︒,∴ABD ∆是等边三角形,∴60ABD ∠=︒,∵90B ∠=︒,∴30DBC ∠=︒,∴2ABD DBC ∠=∠, ∴2AD DE =;(2)由(1)得60ADB ∠=︒,DB DA =,∵ADB DBC C ∠=∠+∠,∴30C ∠=︒,∴DB DC =,∴DA DC =, ∴D 是AC 的中点.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【习题6】如图,AB 为O 直径,E 为BC 的中点,OE 交BC 于点D ,BD = 3,AB =10,则AC =______.【难度】★★ 【答案】8.【解析】∵AB 为O 直径,E 为BC 的中点,∴OD BC ⊥,BD CD =,∴224OD OB BD =-=, ∵OA OB =,∴28AC OD ==.【总结】本题考查了垂径定理及三角形中位线.AB CD ECDEFO【习题7】 如图,一条公路的转弯处是一段圆弧(即图中的CD ),点O 是CD 的圆心,其中CD = 600米,E 为CD 上一点,且OE CD ⊥,垂足为F ,EF = 90米,求这段弯路的半径.【难度】★★ 【答案】545米.【解析】∵点O 是CD 的圆心,OE CD ⊥,∴13002DF CD ==,设O 的半径为R ,则90OF R =-,由222OD OF FD =+得()22290300R R =-+,解得545R =, ∴这段弯路的半径为545米.【总结】本题考查了垂径定理的应用.【习题8】如图,在ABC ∆中,70A ∠=︒,O 截ABC ∆的三边所得的弦长都相等,求BOC ∠的度数.【难度】★★★ 【答案】125︒.【解析】作OE AB ⊥、OF BC ⊥、OG AC ⊥,∵O 截ABC ∆的三边所得的弦长都相等, ∴OE OF OG ==,∴OB 平分ABC ∠,OC 平分ACB ∠, ∵70A ∠=︒,∴110ABC ACB ∠+∠=︒,∴115522OBC OCB ABC ACB ∠+∠=∠+∠=︒,∴18055125BOC ∠=︒-︒=︒.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理、角平分线的逆定理及三角形的内角和.ABCOEFG【习题9】 已知,如图,ABC ∆是等边三角形,AB 是O 的直径,AE EF FB ==,CE 、CF 交AB 于点M 、N . 求证:AM = MN = NB .【难度】★★★ 【答案】详见解析. 【解析】连接OE 、OF ,∵AE EF FB ==,∴60AOE EOF FOB ∠=∠=∠=︒, ∵ABC ∆是等边三角形,∴CAO AOE ∠=∠,∴OE //AC ,∴OM OEMA AC=. ∵AC BC =,O 是AB 中点, ∴1302ACO ACB ∠=∠=,∴12OA AC =,∴12OE AC =.∴2AM OM =,∴23AM OA =,13OM OA =, 同理23BN OB =,13ON OB =,∵OA OB =,∴23OM ON OA +=,∴AM MN NB ==.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理及平分线分线段成比例.【习题10】 如图,AB 为O 的直径,CD 为弦,过点C 、D 分别作CN CD ⊥、DM CD ⊥,分别交AB 于点N 、M ,请问图中的AN 与BM 是否相等,说明理由.【难度】★★★【答案】AN 与BM 相等. 【解析】作OH CD ⊥交CD 于H ,则CH DH =,∵CN CD ⊥、DM CD ⊥, ∴CN ∥OH ∥DM ,∴ON OM =, ∵OA OB =,∴OA ON OB OM -=-, ∴AB BM =.【总结】本题考查了垂径定理及梯形的中位线.ABCDON M HABCE FN MO【作业1】在下列命题中,正确的个数是( ) ① 圆心角相等,则它们所对的弦必相等;② 经过线段的两个端点及线段所在直线外一点可以确定一个圆; ③ 直径平分弦,则必垂直于弦;④ 如果同圆中,两条弦互相平分,那么这两条弦都是直径. A .0个B .1个C .2个D .3个【难度】★ 【答案】B .【解析】① 需说明是在同圆或等圆中,故①错误;② 不共线的三点可以确定一个圆,故②正确; ③ 直径平分非直径的弦,则必垂直于弦,故③错误; ④ 如果同圆中,直径垂直于弦,则必然平分弦,故④错误.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理及垂径定理.【作业2】在ABC ∆中,90C ∠=︒,D 、E 分别是AB 、AC 的中点,AC = 7,BC = 4.若以点C 为圆心,BC 为半径作圆,判断点D 、E 与C 的位置关系.【难度】★【答案】点D 在C 外;点E 在C 内.【解析】∵AC = 7,BC = 4,90C ∠=︒,∴2265AB AC BC =+=,∵4C R =,1652DC AB R ==>,∴点D 在C 外; 1722EC AC R ==<,∴点E 在C 内. 【总结】本题考查了点与圆的位置关系.课后作业【作业3】已知直线a 和直线外两点A 、B ,经过A 、B 作一圆,使它的圆心在直线a上.【难度】★ 【答案】如图所示.【解析】作线段AB 的中垂线于直线a 的交点P 即为圆心. 【总结】本题考查了线段的垂直平分线的作法.【作业4】已知O 外一点A 和圆上的点最大距离为23厘米,最小距离为10厘米,则O 的半径为______厘米.【难度】★★【答案】132.【解析】点A 与圆心的连心线所在的直线与圆的交点即为点A 到圆上的最大距离和最小距离,所以半径()13231022R =-÷=厘米.【总结】本题考查了点与圆的位置关系.【作业5】 如图,在O 中,2AB BC =,试确定AB 与2BC 的大小关系.【难度】★★ 【答案】2AB BC <.【解析】取AB 中点E ,∵2AB BC =,∴AE EB BC ==,∵AE EB AB +>, ∴2AB BC <.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.AB COE【作业6】如图,矩形ABCD 与圆心在AB 上的O 交于点G 、B 、F 、E ,GB = 8厘米,AG = 1厘米,DE = 2厘米,则EF = ______厘米.【难度】★★ 【答案】6.【解析】连接OE ,作OH DC ⊥于H 点,∵GB = 8厘米,AG = 1厘米,DE = 2厘米, ∴4OE =厘米,3EH =厘米, ∴26EF EH ==厘米.【总结】本题考查了垂径定理的应用.【作业7】已知点A (1,0),B (4,0),P 是经过A 、B 两点的一个动圆,当P与y 轴相交,且在y 轴上两交点的距离为3时,求圆心P 的坐标.【难度】★★【答案】5522⎛⎫ ⎪⎝⎭,或5522⎛⎫- ⎪⎝⎭,.【解析】设()P x y ,∵P 是经过A 、B 两点的一个动圆,∴P 在线段AB 的中垂线上,∵A (1,0),B (4,0),∴52x =且P 在x 轴上两交点的距离为3,∵P 与y 轴相交,且在y 轴上两交点的距离为3, ∴P 在x 轴上与y 轴上截得的两条弦相等.∴x y =,∴52y =±,∴P 点坐标为5522⎛⎫ ⎪⎝⎭,或5522⎛⎫- ⎪⎝⎭,. 【总结】本题考查了垂径定理的应用.OABCD EF GHOP ABC【作业8】 已知,如图,在O 中,弦AB 的长是半径OA 的3倍,C 为AB 的中点,AB 、OC 相交于P .求证:四边形OACB 为菱形.【难度】★★★ 【答案】详见解析.【解析】∵C 为AB 的中点,∴OC AB ⊥,AP PB =,∵弦AB 的长是半径OA 的3倍,∴32AP AO =,∴30PAO ∠=︒, ∴1122PO OA OC ==,即OP PC =,∵AP BP =,OC AB ⊥,∴四边形OACB 为菱形.【总结】本题考查了垂径定理的应用及菱形的判定.【作业9】已知:过圆O 内一点P 作弦AB 、CD ,且AB = CD ,在BD 上取两点E 、F ,且BE DF =.求证:直线PO 是EF 的垂直平分线.【难度】★★★ 【答案】详见解析.【解析】作OM AB ⊥,ON CD ⊥,∵AB = CD ,∴OM ON =,BM DN =, ∴POM ∆≌PON ∆,∴PM PN =,∴PB PD =,∵OB OD =,PO PO =,∴OPB ∆≌OPD ∆, ∴POB POD ∠=∠,∵BE DF =,∴BOE DOF ∠=∠, ∴POE POF ∠=∠,∴EOH FOH ∠=∠,∵OE OF =, ∴直线PO 是EF 的垂直平分线.【总结】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理的综合应用.ABC D EFOPM NH【作业10】 如图,1O 与2O 交于A 、B ,M 为12O O 的中点,过点A 作EF AM ⊥分别交1O 与2O 于点E 、F .若1290O AO ∠=︒,1212AO AO O O m ==(2m ≥),求EF 的长.【难度】★★★ 【答案】4.【解析】作1O C AE ⊥于C 点,并延长与2O A 的延长线交于G 点,作2O D AF ⊥于D 点,∵EF AM ⊥,M 为12O O 的中点,∴AC AD =,∴2O AD ∆≌GAC ∆,∴2AG AO =,∵1290O AO ∠=︒,∴1O AC ∆∽1O GA ∆,∴11O A AG O G AC ⋅=⋅, ∴121O A AO O G AC ⋅=⋅,∵1212AO AO O O m ==,∴121O O O G AC =⋅,∵1290O AO ∠=︒,2AG AO =,∴121O O O G =, ∴1AC =,∴44EF AC ==.【总结】本题考查了垂径定理及相似三角形性质的综合应用.ABEFMGC D。

相关文档
最新文档