恒成立问题及根的分布
一元二次不等式(二)含参数不等式的解法与恒成立问题修改版
二次函数的区间恒成立问题
恒成立问题求参数范围常规思路: 方法一:利用函数性质(二次函数性质). 方法二:分离参数,转化为求函数最值.
a<f(x)恒成立
a<f(x)min a>f(x)恒成立 a>f(x)max
例1
课堂互动讲练 已知f(x)=x2-2ax+2,当x∈[-1,+∞)
时,f(x)≥a恒成立,求a的取值范围.
m 6或m 2 即 m 0 m 3 0
X=m/2
o
x1
x2
∴ 2≤ m<3.
(三)二次函数图象的应用
例3 分别求使方程x2-mx-m+3=0的两根满足下列条件的m值 的集合: (2)一个根大于0,另一个根小于0; 解: (2) ∵一个根大于0,另一个根小于0;
0 f (0) 0
m 6或m 2 即 m 3 0
x1 o
X=m/2
∴ m>3.
x2
(三)二次函数图象的应用 例3 分别求使方程x2-mx-m+3=0的两根满足下列条件的m 值的集合: (3)两根都小于0;
解: (3) ∵两根都小于0
X=m/2
x1
2 5 2 ∴不等式变为-3ax +-3ax+a<0,
即 2ax2+5ax-3a>0, 又∵a<0,∴2x2+5x-3<0.
1 ∴所求不等式的解集为x-3<x<2 .
方法二:由已知得 a<0
1 c - ×2= 知 a 3
2
1 1 ∴- , 是方程 ax2+bx+2=0 的两实根. 2 3 b 1 1 -2+3=-a 由根与系数的关系得 -1×1=2 2 3 a
二次函数问题
二次函数问题1.二次函数的最值问题定义域为R当a>0时有最小值y=2 44ac bac-(2)当a<0时有最大值y=2 44ac bac-实际上一般我们有关二次函数的最值问题并非如此简单。
常有以下几种,即定轴定区间,定轴动区间,动轴动区间;虽然变化多端,但是方法基本相同:解题时先要求出对称轴,再利用单调性,同时注意结合函数图形。
当含有参数时,要按对称轴相对于区间的位置进行讨论。
2.二次函数的根分布问题(1)一元二次方程实根分布的讨论的两种方法:利用函数的图象、性质;利用韦达定理、判别式。
(2)二次方程ax2+bx+c=0的根的情况:1.两根都大于m,则af(m)>0,m<2b a-,∆>=0. 2.一根大于m,另一根小于m,则af(m)<0 3.一根在(a,b),一根在(m,n)内,b<m;则af(a)>0, af(n)>0, af(b)<0, af(m)<04.两根都在(m,n)内,则af(m)>0 ,af(n)>0, m<2b a-<n,∆>=05.在区间(p,q)有且仅有一个根,则f(p)f(q)<0.3.恒成立问题1.(1)f(x)>a (a为常数)对于在区间A内任意的x恒成立等价于f(x)在区间A上的最小值大于a(2) f(x)<a(a为常数)对于在区间A内任意的x恒成立等价于f(x)在区间A上的最大值小于a2.二次函数f(x)=ax2+bx+c(1)在区间[m,n]上有f(x)<0恒成立则等价于f(m)<0,f(n)<0(2)在区间[m,n]上有f(x)>0恒成立则等价于f(x)在区间[m,n]上的最小值大于0.3.一次函数f(x)在区间[m,n]上有f(x)<0(或f(x)>0)恒成立等价于f(m)<0,f(n)<0(或f(m)>0,f(n)>0)二次函数的最值问题(1)y=x2-6x+5 x∈(-2,4](2)已知f(x)= x2-4x-4, x∈[t,t+1], t ∈R,求函数f(x)的最小值h(t)的解析式.(3)求f(x)=x2-2tx+1在区间[0,1]上的最大值g(t).小结:二次函数的最值分为:定轴定区间,定轴动区间,动轴动区间。
2015高三第一轮复习一次函数二次及函数与幂函数的最值恒成立及根的分布
[答案] -1
[小题能否全取]
1.(1)如图给出4个幂函数大致的图象,则图象与函数对应 正确的是 ( )
A.① y= x ,② y= x2,③ y= x ,④ y= x-1 B.① y= x3,② y= x2,③ y= x ,④ y= x-1 C.① y= x2,② y= x3,③ y= x ,④ y= x- 1 D.① y= x ,② y= x ,③ y= x2,④ y= x-1
1.幂函数y=xα的图象与性质由于α的值不同而比较 复杂,一般从两个方面考查:
(1)α的正负:α>0时,图象过原点和(1,1),在第一象
限的图象上升;α<0时,图象不过原点,在第一象限的 图象下降.
(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;
0<α<1时,曲线上凸;α<0时,曲线下凸. 2.在比较幂值的大小时,必须结合幂值的特点,选
1 3
(
)
解析:当 0<x<1 时,x >x,当 ห้องสมุดไป่ตู้>1 时,x <x,知只有 B 符合.
1 3
1 3
答案:B
3.(教材习题改编)设α∈
1 -1,1, ,3 2
,则使函数y= ( )
xα的定义域为R且为奇函数的所有α值为
A.1,3 C.-1,3
B.-1,1 D.-1,1,3
[知识能否忆起] 一、常用幂函数的图象与性质 函数 特征 y=x y=x2 y=x3 性质
y=x
1 2
y=x-1
图象 定义域 R R R {x|x≥0} {x|x≠0}
函数
特征 性质
值域 奇偶性 单调性 公共点
y= x
微专题11 二次函数根的分布问题(解析版)
微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。
高中数学解题方法系列:函数中“恒成立问题”的类型及策略
高中数学解题方法系列:函数中“恒成立问题”的类型及策略一、恒成立问题地基本类型在数学问题研究中经常碰到在给定条件下某些结论.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立。
某函数地定义域为全体实数R 。
●某不等式地解为一切实数。
❍某表达式地值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数地性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生地综合解题能力,在培养思维地灵活性、创造性等方面起到了积极地作用.因此也成为历年高考地一个热点.恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数地奇偶性、周期性等性质;⑤直接根据函数地图象.二、恒成立问题解决地基本策略<一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min)]([)(x f m D x x f m≤⇔∈≤上恒成立在如何在区间D 上求函数f(x>地最大值或者最小值问题,我们可以通过习题地实际,采取合理有效地方法进行求解,通常可以考虑利用函数地单调性、函数地图像、二次函数地配方法、三角函数地有界性、均值定理、函数求导等等方法求函数f<x)地最值.这类问题在数学地学习涉及地知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现地试卷类型,希望同学们在日常学习中注意积累.(二>、赋值型——利用特殊值求解等式中地恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1>4+b 1(x+1>3+b 2(x+1>2+b 3(x+1>+b 4定义映射f:(a 1,a 2,a 3,a 4>→b 1+b 2+b 3+b 4,则f:(4,3,2,1>→(>A.10B.7C.-1D.0略解:取x=0,则a 4=1+b 1+b 2+b 3+b 4,又a 4=1,所以b 1+b 2+b 3+b 4=0,故选D例2.如果函数y=f(x>=sin2x+acos2x 地图象关于直线x=8π-对称,那么a=<).A .1B .-1C .2D .-2.略解:取x=0及x=4π-,则f(0>=f(4π->,即a=-1,故选B.此法体现了数学中从一般到特殊地转化思想.<三)分清基本类型,运用相关基本知识,把握基本地解题策略1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x>=ax+b(a≠0>,若y=f(x>在[m,n]内恒有f(x>>0,则根据函数地图象<直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]内恒有f(x><0,则有)(0)(<<n f m f 例2.对于满足|a|≤2地所有实数a,求使不等式x 2+ax+1>2a+x 恒成立地x 地取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 地一次函数大于0恒成立地问题.解:原不等式转化为(x-1>a+x 2-2x+1>0在|a|≤2时恒成立,设f(a>=(x-1>a+x 2-2x+1,则f(a>在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.即x∈(-∞,-1>∪(3,+∞>此类题本质上是利用了一次函数在区间[m,n]上地图象是一线段,故只需保证该线段两端点均在x 轴上方<或下方)即可.2、二次函数型涉及到二次函数地问题是复习地重点,同学们要加强学习、归纳、总结,提炼出一些具体地方法,在今后地解题中自觉运用.<1)若二次函数y=ax 2+bx+c(a≠0>大于0恒成立,则有00<∆>且a <2)若是二次函数在指定区间上地恒成立问题,可以利用韦达定理以及根地分布知识求解.例3.若函数12)1()1()(22++-+-=a x a x a x f 地定义域为R,求实数a 地取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数地讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立,所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a有,91,09101{22≤<⇒≤+->a a a a 综上所述,f(x>地定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 地取值范围.分析:()y f x =地函数图像都在X 轴及其上方,如右图所示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 地取值范围.分析:要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 地最小值0)(≥a g 即可.解:22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上地最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥73a ∴≤又4a> a ∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()(3024a a g a f a ==--+≥62a ∴-≤≤又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥7a ∴≥-又4a <- 74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 地取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号地左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0地问题.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:<运用根地分布)2—2⑴当-<-2,即a >4时,g (a )=f (-2)=7-3a ≥2∴a ≤2a ∉(4,+∞)∴a 不存53在.⑵当-2≤-≤22a,即-4≤a ≤4时,2g (a )=f (a 2)=--a +3≥24a ,2-22-2≤a ≤2-22-2∴-4≤a ≤2⑶当->2,即a <-4时,g (a )=f (2)=7+a ≥2,2a∴a ≥-5∴-5≤a <-4综上所述-5≤a ≤22-2.此题属于含参数二次函数,求最值时,轴变区间定地情形,对轴与区间地位置进行分类讨论;还有与其相反地,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法<如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上地最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量地范围已知,另一个变量地范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号地两边,则可将恒成立问题转化成函数地最值问题求解.运用不等式地相关知识不难推出如下结论:若对于x 取值范围内地任何一个数都有f(x>>g(a>恒成立,则g(a><f(x>min 。
参数范围求恒成立问题
专题——求参数取值范围一般方法概念与用法恒成立问题是数学中常见问题,也是历年高考的一个热点;题型特点大多以已知一个变量的取值范围,求另一个变量的取值范围的形式出现;这样的题型会出现于代数中的不等式里也会出现在几何里;就常考题型的一般题型以及解题方法,我在这里做了个小结;题型以及解题方法一,分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值;例1、已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围; 解:根据题意得:21a x x +->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,设()23f x x x =-+,则()23924f x x ⎛⎫=--+ ⎪⎝⎭ 当2x =时,()max 2f x = 所以2a >例2.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围;分析:在不等式中含有两个变量a 及x,其中x 的范围已知x ∈R,另一变量a 的范围即为所求,故可考虑将a 及x 分离; 解:原不等式即:4sinx+cos2x<45-a -a+5要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求fx=4sinx+cos2x 的最值问题; fx= 4sinx+cos2x=-2sin 2x+4sinx+1=-2sinx -12+3≤3, ∴45-a -a+5>3即45-a >a+2上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x,而cos2x=1-2sin 2x,故若把sinx 换元成t,则可把原不等式转化成关于t 的二次函数类型;二,变主换元在给出的含有两个变量的不等式中,学生习惯把变量x 看成是主元未知数,而把另一个变量a 看成参数,在有些问题中这样的解题过程繁琐;如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程; 例3.对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围;分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数;显然可将p 视作自变量,则上述问题即可转化为在-2,2内关于p 的一次函数大于0恒成立的问题;解:不等式即x -1p+x 2-2x+1>0,设fp= x -1p+x 2-2x+1,则fp 在-2,2上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3.例4、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围;解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<< 三,利用二次函数根的分布例5.设fx=x 2-2ax+2,当x ∈-1,+∞时,都有fx ≥a 恒成立,求a 的取值范围;分析:题目中要证明fx ≥a 恒成立,若把a 移到等号的左边,则把原题转化成左边二次函数在区间-1,+∞时恒大于0的问题;解:设Fx= fx -a=x 2-2ax+2-a.ⅰ当∆=4a -1a+2<0时,即-2<a<1时,对一切x ∈-1,+∞,Fx ≥0恒成立;ⅱ当∆=4a -1a+2 ≥0时由图可得以下充要条件:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆,1220)1(0a f 即⎪⎩⎪⎨⎧-≤≥+≥+-,1030)2)(1(a a a a 得-3≤a ≤-2;综合可得a 的取值范围为-3,1四,利用集合与几何之间的关系 在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围;例6、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围;解:1log 1a x -<<(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭ 3113a a ≥⎧⎪∴⎨≤⎪⎩ 3a ∴≥ (2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤ 综上所得:103a <≤或3a ≥ 五,几何中的求参 要确定变量k 的范围,可先建立以k 为函数的目标函数)(t f k =,从而使这种具有函数背景的范围问题迎刃而解;的范围。
浅析高中数学中的恒成立问题
浅析高中数学中的恒成立问题作者:窦剑眉来源:《考试周刊》2013年第18期在高中数学学习中我们经常会遇到一类题型——恒成立问题. 它们以函数知识为载体,涉及一次函数、二次函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法.恒成立问题是高中数学学习中的热点问题.下面笔者以这类问题为蓝本,对它进行解析,供同学们在学习中参考.一、恒成立问题的基本类型类型1:设f(x)=ax+bx+c(a≠0),(1)f(x)>0在x∈R上恒成立?圳a>0且Δ(2)f(x)类型2:设f(x)=ax+bx+c(a≠0),(1)当a>0时,f(x)>0在x∈[α,β]上恒成立?圳-0或a≤-≤βΔ>0或->βf(β)>0,f (x)(2)当a0在x∈[α,β]上恒成立f(α)>0f(β)>0,f(x)0或a≤-≤βΔβf(β)类型3:f(x)>α对一切x∈I恒成立?圳f(x)>αf(x)α.类型4:f(x)>g(x)对一切x∈I恒成立?圳f(x)的图像在g(x)的图像的上方或f (x)>g(x),x∈I.对于在区间D上求函数f(x)的最大值或者最小值问题,我们可以采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等方法求函数f(x)的最值.二、恒成立问题在解题过程中常见以下题型(一)构造一次函数法.若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷.给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图像(直线)可得上述结论等价于f(m)>0f(n)>0同理,若在[m,n]内恒有f(x)例1:对于满足|a|≤2的所有实数a,求使不等式x+ax+1>2a+x恒成立的x的取值范围.分析:在不等式中出现了两个字母:x及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a视作自变量,则上述问题即可转化为在[-2,2]内关于a的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x-2x+1>0在|a|≤2时恒成立.设f(a)= (x-1)a+x-2x+1,则f(a)在[-2,2]上恒大于0,故有:f(-2)>0f(2)>0即x-4x+3>0x-1>0,解得:x>3或x1或x∴x3,即x∈(-∞,-1)∪(3,+∞).此类题本质上是利用了一次函数在区间[m,n]上的图像是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.(二)构造二次函数法.涉及二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用.(1)若二次函数y=ax+bx+c(a≠0)大于0恒成立,则有a>0且Δ(2)若是二次函数在指定区间上的恒成立问题,则可以利用韦达定理及根的分布知识求解.例2:若函数f(x)=的定义域为R,求实数a的取值范围.分析:该题就转化为被开方数(a-1)x+(a-1)x+≥0在R上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当x∈R时(a-1)x+(a-1)x+≥0恒成立,所以,①当a-1=0,即当a-1a+1≠0时,a=1,此时(a-1)x+(a-1)x+=1≥0,∴a=1.②a-1≠0时,即当a-1>0,Δ=(a-1)2-4(a-1)≤0时,有a>1a-10a+9≤0?圯1综上所述,f(x)的定义域为R时,a∈[1,9].在解决函数在给定区间上求参数取值范围问题时利用二次函数型判别式法解决有时并不是最好的方法,我们还可以选择更为简洁方便的方法——分离参数法.(三)分离参数法.若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解.例3:已知当x∈R时,不等式a+cos2x分析:在不等式中含有两个变量a及x,其中x的范围已知(x∈R),另一变量a的范围即为所求,故可考虑将a及x分离.解:原不等式即:4sinx+cos2x要使上式恒成立,只需-a+5大于4sinx+cos2x的最大值,故上述问题转化成求f(x)=4sinx+cos2x的最值问题.f(x)= 4sinx+cos2x=-2sin2x+4sinx+1=-2(sinx-1)2+3≤3,∴-a+5>3即>a-2;上式等价于a-2≥05a-4≥05a-4>(a-2)或a-2恒成立问题在高中数学中还有其他一些形式,限于篇幅原因,这里不一一列举.我们在学习的时候必须重点把握和归纳总结,在平时的训练中不断领悟和总结,看清它的实质,做题时才会更加顺利.。
恒成立问题的类型及方法处理
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立 例1:若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范围。
分析:习惯上把x 当作自变量,记函数m x mx y -+-=122,于是问题转化为当22≤≤-m 时,0<y 恒成立,求x 的范围。
解决这个问题需要应用二次函数以及二次方程实根分布原理,这是比较复杂的。
若把x 与m 两个量互换一下角色,即将m 视为变量,x 为常量即“反客为主”,则上述问题可转化为关于m 的一次函数在[]4,0内大于0恒成立的问题。
解析:将不等式化为:0)12()1(2<---x x m , 构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
恒成立问题常见类型及解法
恒成立问题常见类型及解法重庆清华中学 张忠在近年高考试题中,常见条件中出现“恒”、“都”、“总”、“永远”、“一切”等关键词的试题,我们习惯上称之为恒成立问题。
对此类题,许多学生常常一筹莫展,但如果了解它的题型,选择合适的对策,解决问题就会游刃有余。
高中数学中的恒成立问题,总体上分为两种典型类型:等式的恒成立和不等式的恒成立。
一、等式的恒成立问题(恒等问题)【例】 是否存在常数a 、b 、c 使得等式:122311122222··…++++=+++n n n n an bn c ()()()对一切自然数n 都成立?证明你的结论。
(一). 利用多项式恒等定理,建立方程组求参数多项式f(x)g(x)的充要条件是:对于a 的任意一个取值,都有f (a )g (a );或者两个多项式各同类项的系数对应相等。
解法一:因为3222)1(n n n n n ++=+所以12231222··…++++n n ()=++++++++++++=++++++=+++()()()()()()()()()1232121212131211411231110222333222………n n n n n n n n n n n n n n显然当a b c ===31110,,时等式对一切自然数n 都成立。
(二). 待定系数法和数学归纳法对策:先用待定系数法探求a 、b 、c 的值,再利用数学归纳法证明等式对一切自然数n 都成立。
解法二:令n=1,n=2,n=3可得,解得。
以下用数学归纳法证明:等式1·22+2·32+…+n(n+1)=(3n 2+11n+10)对一切自然数n 都成立(证略)。
(三)、根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)((f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,f(x)=f(x+T)恒成立。
恒成立问题答案
高三数学恒成立问题的一般解法第一部分高三数学复习中的恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
一、一次函数型:给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例1、 对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>p+2x 恒成立的x 的取值范围。
分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。
略解:不等式即(x-1)p+x 2-2x+1>0,设f(p)= (x-1)p+x 2-2x+1,则f(p)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.二、二次函数型若二次函数y=ax 2+bx+c=0(a ≠0)大于0恒成立,则有⎩⎨⎧<∆>00a若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。
数学恒成立问题
“恒成立”问题的一般解法郸城希望高中 樊战胜“恒成立”问题是数学中常见的问题,经常与参数的范围联系在一起,在高考中频频出现,是高考中的一个难点问题。
“恒成立”问题常常涉及到一次函数、二次函数的性质和图象,渗透着换元、化归、数形结合、函数与方程等多种数学思想和方法,因此也成为历年高考的一个热点。
恒成立问题在解题过程中主要可分为以下几种类型:1、一次函数型;2、二次函数型;3、分离变量型;4、函数的性质型;5、数形结合型 例题解析1、一次函数型给定一次函数b ax x f y +==)((0≠a ),若)(x f y =在[m,n]内恒有)(x f >0,则根据函数的图象(直线)可得上述结论等价于(1)⎩⎨⎧>>0)(0m f a 或(2)⎩⎨⎧><0)(0n f a 可以等价于⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有)(x f <0,则有⎩⎨⎧<<0)(0)(n f m f例1、 当||m ≤2时,不等式2112x m x ->-()恒成立,求x 的范围。
分析:在不等式中出现了两个字母:x 及m ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m 视作自变量,则上述问题即可转化为在[-2,2]内关于m 的一次函数f m x m x ()()()=---2121大于0恒成立的问题。
略解:原不等式可化为)12()1(2---x m x >0,设f m x m x ()()()=---2121,则)(m f 在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>-->+--0122032222x x x x 解得:-+<<+172132x2、二次函数型若二次函数)0(2≠++=a c bx ax y 大于0恒成立,则有⎩⎨⎧<∆>00a 若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识结合二次函数的图象求解。
恒成立问题常见类型及解法课件
0 a 1。
作直线
x
=
4
,与
y loga
x
和
y sin 2x 的图象分别交于 A、B 两
点,为保证 y loga x 在区间
恒成立问题常见类型及解法
20
(0, ]上的图象在 y sin 2x 图象的上方,不难从图中得到其条件 4
是点 A 在点 B 的上方。
典例导悟
关于 x 的方程 9x+(4+ a )3x+4=0 恒有解,求 a 的取值范围。
【解析】方法 1(利用韦达定理) 设 3x=t,则 t>0.那么原方程有解即方程 t2+(4+ a )t+4=0 有正根。
Δ
x1
x1
0 x2 (4 x2 4 0
a)
0
,即
(4 a)2 a 4
16
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
道德是人类社会的一种重要意识形态是人们在社会生活实践中形成的并由经济基础决定以善恶为评价形式依靠社会舆论传统习俗和内心信念解析作出函数sin函数log的图象总在函数sin点为保证log在区间道德是人类社会的一种重要意识形态是人们在社会生活实践中形成的并由经济基础决定以善恶为评价形式依靠社会舆论传统习俗和内心信念logsin2道德是人类社会的一种重要意识形态是人们在社会生活实践中形成的并由经济基础决定以善恶为评价形式依靠社会舆论传统习俗和内心信念六采用逆向思维考虑使用反证法理论阐释恒成立问题有时候从正面很难入手这时如果考虑问题的反面有时会有柳暗花明又一村的效果所谓正难则反就是这个道理
“恒成立问题”解决的基本策略
“恒成立问题”解决的基本策略一、恒成立问题的基本类型恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
二、恒成立问题解决的基本策略 (一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。
这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。
(二)、赋值型——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义映射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f :(4,3,2,1) → ( )A.10B.7C.-1D.0略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D例2.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=( ).A .1B .-1C .2D . -2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.(三)分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有)(0)(<<n f m f例2.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。
高一数学——恒成立问题
1 函数()0f x ≥恒成立⇔ ()min 0f x ≥1.1 二次函数(定义域无限制)的恒成立问题对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a【例1】 若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
【例2】 若关于的不等式的解集为,求实数的取值范围; 【练习1】 若函数R 上恒成立,求m 的取值范围。
2 函数()f x a ≥恒成立,⇔()min f x a ≥(分离参数法)2.1 二次函数(限制定义域)的恒成立问题【练习1】 当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 . 【练习2】【2006江西】对于一切实数,不等式210x a x ++≥恒成立,则实数a 的取值范围是 【练习3】若不等式22210x mx m -++>对满足01x ≤≤的所有实数x 都成立,求m 的取值范围。
【练习4】 已知函数2()10f x x ax =++≥对于一切1(0,]2x ∈成立,求a 的取值范围。
【练习5】已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立。
x 02>--a ax x ),(+∞-∞a y =令x x x x g 24)(-=,则min )(x g a < 由144)(2-=-=xxx x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。
【练习6】已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
恒成立问题常见类型及解法
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
范围是______.
【解题提示】将恒成立问题转化为最值问题.
【解析】因为x>0 ,所以 x 1 2(当且仅当x=1时取等
x
号),所以有
x2
x 3x
1
x
1 1
3
2
1
3
1 5
,即
x x2 3x 1
的最大值为 1,故a≥1 .
x
5
5
【方法技巧】不等式恒成立问题的解题方法 1.不等式的恒成立问题与函数最值有密切的关系,解决不等 式恒成立问题,通常先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数的最值问题,通常采用导数法 解决.
x
恒成立, 2k , 4k k Z ,所以 k 不可能为 6。
2
五、 把不等式恒成立问题转化为函数图象问题
【理论阐释】 若把不等式进行合理的变形后,能非常容易地画出不等
号两边对应函数的图象,这样就把一个很难解决的不等式的 问题转化为利用函数图象解决的问题,然后从图象中寻找条 件,就能解决问题。
典例5
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x
∈
(0,
恒成立问题的求解方法
恒成立问题的求解方法复杂的问题往往由一些简单问题的演变和拼接组合,解题过程是不断分解、转化问题的过程。
注重基本题型的积累,就可以敏感地抓住问题的结构特征,找到合适的解题方法.解决恒成立问题的常用方法有:①转换为求函数的最值法;②分离参数法;③主参换位法;④数形结合法;⑤利用二次函数根的分布。
一、转换求函数的最值法:(1)a x f >)(恒成立min )(x f a <⇔,a x f <)(恒成立max )(x f a >⇔;(2)()()f x g x >恒成立()()min 0f x g x ⇔->⎡⎤⎣⎦; ()()f x g x <恒成立()()max 0f x g x ⇔-<⎡⎤⎣⎦; (3)()()12f x g x >恒成立()()min max f x g x ⇔>; (4)若存在x 使()()f x g x <()()min max f x g x ⇔>;例1.设函数432()2()f x x ax x b x R =+++∈,其中,a b R ∈.若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围.分析:()1f x ≤,即m a x ()1f x ≤,[]22a ∈-,,x ∈[]11-,,要解决此题关键是求max ()f x 。
解:322()434(434)f x x ax x x x ax '=++=++由条件[]22a ∈-,可知29640a ∆=-<,从而24340x ax ++>恒成立.当0x <时,()0f x '<;当0x >时,()0f x '>.因此函数()f x 在[]11-,上的最大值是(1)f 与(1)f -两者中的较大者.为使对任意[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,当且仅当max ()1f x ≤, 即(1)1(1)1f f ≤-≤⎧⎨⎩,即22b ab a ≤--≤-+⎧⎨⎩在[]22a ∈-,上恒成立.即min min(2)(2)b a b a ≤--≤-+⎧⎨⎩,[]22a ∈-,所以4b ≤-,因此满足条件的b 的取值范围是(]4--∞,.二、分离参数法:(适用题型:参数与变量能分离;函数的最值易求出。
一元二次解法恒成立、根的分布情况
④原不等式的解集为{x|-1<x<2或2<x<3}.
例7 解不等式 ( x 1)( x x 6) 0 .
2
解:原不等式 ( x 1)(x 3)(x 2) 0
( x 2)(x 1)(x 3) 0
-2
.
1
.
.
3
∴原不等式的解集为:
{x | x 2, 或1 x 3}.
例题选讲
题型五. 恒成立问题
2 ( a 2 ) x 2(a 2) x 4 0 例5.不等式
对一切 x R 恒成立,则a的取值范围。 变式1.不等式(a 2 4) x2 (a 2) x 1 0 的解集为空集,求a的取值范围。
变式2.若函数 f ( x) kx 2 6kx ( k 8) 的定义 域为R,求实数k的取值范围.
例题选讲
题型四. 一元二次不等式的解与系数的关系(韦达定理)
例4.不等式 ax bx 2 0 的解集为
2
1 1 {x | x }, 求 a, b. 2 3 1 1 2 , 是方程 ax bx 2 0 解:由题意可得,
2 3
的两个根,且a<0.
1 1 b 2 3 a 1 1 2 2 3 a
并将各因式x的系数化“+”
②求根,并在数轴上表示出来(注意空心?实心?)
③由右上方穿线,经过数轴上表示各根的点
④若不等式是“>0”,则找“线”在x轴上方的区间;若 不等式是“<0”,则找“线”在x轴下方的区间.
穿线的原则:奇穿偶不穿
例5:解不等式 x(x-3)(2-x)(x+1)>0.
解:①将原不等式化为x(x-3)(x-2)(x+1)<0
高三数学剖析高考中的恒成立问题
剖析高考数学中的恒成立问题某某省某某市坡头区第一中学 X 友玉新课标下的高考越来越注重对学生的综合素质的考察,恒成立问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用。
这三年的数学高考中频频出现恒成立问题,其形式逐渐多样化,但都与函数、导数知识密不可分。
解决高考数学中的恒成立问题常用以下几种方法:①函数性质法;②主参换位法;③分离参数法;④数形结合法。
下面我就以近三年高考试题为例加以剖析: 一、函数性质法1、二次函数:①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或00a <⎧⎨∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。
例1(08年某某卷理12).已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值X 围是(A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)分析:()f x 与()g x 的函数类型,直接受参数m 解析:当0m =时,()810f x x =-+>在1(,)8-∞上恒成立,而()g x 在R 上恒成立,显然不满足题意;(如图1)当0m <时,()g x 在R 上递减且()0g x mx =>只在(,0)-∞而()f x 是一个开口向下且恒过定点(0,1当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞上恒成立,而()f x 是一个开口向上且恒过定点(0,1)的二次函数,要使对任一实数()f x 与()g x 的值至少有一个为正数则只需()0f x >在(,0]-∞则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈。
二次方程根的分布及恒成立问题
两实根,则 x1, x2 分布范围与二次方程系数之间的关 系见下表:
根的分布 x1<x2<k k<x1<x2 x1<k<x2
图象
等价条件
f(k)<0
课前自修
根的 分布
(续上表)
xt;k2<x2<k3 在(k1,k2)内有且仅有一个根
图象
等价 条件
课前自修
1.已知函数f(x)=x2+mx-1,若对于任
一元二次方程根的分布问题 及恒成立问题
一元二次方程根的分布问题
研究一元二次方程的根的分布,一般情况下需要从以下三个 方面考虑: (1)一元二次方程根的判别式; (2)相应二次函数区间端点函数值的符号; b (3)相应二次函数图象——抛物线的对称轴x=- 与端点的 2a 位置关系.
课前自修
设x1,x2是实系数二次方程ax2+bx+c=0(a>0)的
(0,1)∪(9,+∞)
解析:设y1=f(x)=|x2+3x|,y2=a|x-1|, 栏 目 链 接
在同一直角坐标系中作出y1=|x2+3x|,y2=a|x-1|的图 象如图所示.
练习
恒成立问题 1
练习
不相等的实根,求分别满足下列条件的 a 的取
值范围.
(1)方程两根都大于1;
(2)方程一根大于1,另一根小于1.
解析:设f(x)=x2-2ax+2+a. (1)∵两根都大于1, 2 Δ = 4a -4(2+a)>0,
∴a>1, f(1)=3-a>0,
解得2<a<3.
(2)∵方程一根大于1,一根小于1, ∴f(1)<0, ∴a>3.
考点探究
高中数学常见的恒成立问题的一般解法
高中数学常见的恒成立问题的一般解法摘要:本文针对高中数学的恒成立问题,通过分析恒成立问题在解题过程中的几种类型和解题的常用方法进展分类,并通过实例进展说明,比拟系统的展现了高中数学中恒成立问题的一般解法,帮助学生对恒成立问题有了系统、详细的认识。
关键词:恒成立问题;解法;函数;不等式我们在高中数学教学中,经常遇到一些恒成立问题,我们反复讲解,大多数学生也束手无策,不知道从哪里下手,找不到问题的突破口,因而感觉十分困难,主要是缺乏系统归类。
高中数学中的恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考察学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用,因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①函数型;②不等式型;③方程型。
而这三种类型又不是独立出现的,有时会把两者融合在一起。
对于这三种类型的题解决的方法常有:①函数性质法;②别离参数法;③数形结合法。
一、函数性质法函数的性质包括函数的定义域、值域、单调性、奇偶性、周期性等,而对于恒成立问题经常用到函数的单调性。
下面根据函数类型对利用函数性质法来解恒成立问题做一个说明。
〔一〕一次函数型对于一次函数y=f(x)=kx+b(k≠0),假设y=f(x)在[m,n]内恒有f(x)>0,那么根据函数的图象〔直线〕或一次函数的单调性〔当k>0时,y=f(x) 在[m,n]内为增函数,当k<0时,y=f(x) 在[m,n]内为减函数〕可得ⅰ〕0()0k f m >⎧⎨>⎩或ⅱ〕0()0k f n <⎧⎨>⎩即一次函数y=f(x)=kx+b(k ≠0)在[m,n]的最小值大于0。
假设k 不知道正负,上面两种情况亦可合并定成⎩⎨⎧>>0)(0)(n f m f ,这样可以回避讨论k 的正负。
同理,假设在[m,n]内恒有f(x)<0,那么有⎩⎨⎧<<0)(0)(n f m f 例1、 对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>a+2x 恒成立的x 的取值X 围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
故a的范围为
[
52
,)
Y
5
即 a 52
5
1 O
10
X0
b2 4ac 0
1.两个正根
x1
x2
b a
0
x1
x2
c a
0
2、两个负根
x1
x2
b a
0
x1
x2
c a
0
3、一正根一负根
x1·x2=
c a
0
(二)k 分布
1.两根均大于k
b2 4ac 0
af
(k
)
0
b
k
2a
2.两根均小于k
b2 4ac 0
af (k) 0
b
k
2a
3、一根小k另一根大于k
af (k) 0
4.有且只有一个根在某区间内
f (k1 ) f (k2 ) 0
作业
《练习册》 P65例3、p66 ex4、ex6、 ex9
《优化》课时作业(15)ex7、ex8、ex11
恒成立问题及根的分布
一、一元二次不等式恒成立问题
(一)对一切实数恒成立
不等式
ax 2
bx c
0(a
0)
恒成立的条件是?
a 0 0
不等式
ax 2
bx c
0(a
0)
恒成立的条件是?
a
0 0
注意:当无“a 0”条件时,应该讨论a=0和a 0 两种情况;
不等式 a f (x)恒成立的条件是 a f (x)min 不等式 a f (恒x)成立的条件是 a f (x)max
又∵
f (1) 5,
f (10)
52 5
∴
f (x)max
f (10)
52 5
∴
a
52 5
故a的范围为
[
52 5
,)
解注法:二分(离图参象数法法)是(将可参不数画孤图立)到:不等式的一端,要求 参设数f (x前) =的x系2 数ax( 4(含xx的[1式,10子])),∵符f号(x确) 定0恒,成否立则不能用 分即离f (参x)位数于法[!1,!1!0]内的图象在X轴下方或在X轴上。
求参数a的取值范围;
解法一(分离参数法):由原不等式得 ax x2 4
∵ x [1,10] ∴ a x2 4 x 4
x
x
设 f (x) x 4( x [1,10]) 即 a f (x)恒成立,
x
∴ a f (x)max 而函数 f (x) 在[1,2]上为减函数,
在[2,10]上为增函数(注:此函数为双勾函数)
∴
f (1) 5 a 0
f
(10)
104
10a
0
即a 52 5
故a的范围为
[52 5
,)
解法三(最值法):设 f (x) = x2 ax 4(x [1,10]),
则原不等式恒成立相当于 f (x)max 0
因 f (x)
=
x2
ax
4
=
(x
a)2 2
4
a2 4
∴ 对称轴为 x a 2
例1.已知关于x的函数y=(k2+4k-5)x2+4(1-k)x+3 的图象都在X轴上方,求实数k的取值范围;
例2.若关于x的不等式sinxcosx+cos2x-a>0对一 切实数恒成立,求实数a的取值范围;
(二)对特定区间恒成立
已知关于x的不等式 x2 ax 4 0 在区间[1,10]上恒成立,
(1)当
a 2
11,即a 11 时,f
2
( x) m ax
f (10)
104
10 a
0
∴ a 52
5
又因 a 11
∴ 52 a 11
5
(2)当 a
2
11,即a 11 时,
2
f (x)max
f (1) 5 a 0
∴a5
又∵ a 11 ∴ a 11
综上所述:52 a 11或 a 11