【精选】七年级数学上册代数式单元培优测试卷

合集下载

【精选】七年级数学上册 代数式单元培优测试卷

【精选】七年级数学上册 代数式单元培优测试卷

一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。

苏科版七年级数学上册培优单元测验第3章 代数式含答案

苏科版七年级数学上册培优单元测验第3章 代数式含答案

代数式一.填空题(共8小题,每小题3分共24分)1.我们把 和 统称为整式.2.单项式3234a b π-的系数是 . 3.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是 .4.若单项式12m a b -与22n a b 的和仍是单项式,则m n 的值是 .5.当13m <…时,化简|1||3|m m ---= .6.已知m 是系数,关于x 、y 的两个多项式22mx x y -+与2323x x y -++的差中不含二次项,则代数式233m m +-的值为 .7.若2019a b +=,10c d +=-,则(3)(3)a c d b ---= .8.按照一定规律排列的一列数依次是1,65,1210,2017,3026,4237⋯,此规律排下去,第n 个数是 . 二.选择题(共10小题,每小题3分共30分)9.a 、b 、c 、m 都是有理数,且23a b c m ++=,2a b c m ++=,那么b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定10.某商品打九折后价格为a 元,则原价为( )元.A .aB .10%aC .109aD .910a 11.在式子22a +,1x ,2ab ,xy π,8x -,0中,整式有( ) A .3个B .4个C .5个D .6个 12.单顶式3116a b π-的系数与次数分别是( ) A .1,516- B .1,516 C .1,416π D .1,416π- 13.下列结论中,正确的是( )A .单项式23x yπ的系数是13,次数是2 B .单项式mn 的次数是1,没有系数C .单项式2ab x -的系数是1-,次数是4D .多项式223x xy ++是三次三项式14.已知单项式21925x m n --和5325y m n 是同类项,则代数式x y -的值是( ) A .3 B .6 C .3- D .015.下列去(或添)括号正确的是( )A .()a b c a b c --+=-+-B .2()2c a b c a b +-=+-C .()a b c a b c --=--D .221(1)a a a a -+=-+ 16.已知220192a a -=,则240382a a --的值是( )A .2019B .2019-C .4038D .4038-17.若2|2|(1)0x x y -+--=,则多项式22(2)y x y --+的值为( )A .7-B .5C .5-D .13-18.下列图案均是用相同的小正方形按一定的规律拼成:拼第1个图案需1个小正方形,拼第2个图案3个小正方形,⋯.,依此规律,拼第6个图案需小正方形( )个.A .15B .21C .24D .12三.解答题(共7小题满分66分,其中19题7分,20题6分,21题15分,22、23、24题每小题10分,25题8分)19.已知单项式22x y -的系数和次数分别是a ,b .(1)求b a ab -的值;(2)若||0m m +=,求||||b m a m --+的值.20.把多项式323274x x y y xy --+-重新排列(1)按x 的升幂排列;(2)按y 的升幂排列.21.化简:(1)5(32)(37)a a a -+---;(2)22(56)4(382)a a a a +---+(3)32[4(3)]b c a c b c -----+.22.(1)已知多项式313223(1)4m x y xy n x y +-++--是六次三项式,求2(1)3n m +-的值.(2)关于x ,y 的多项式2(32)(910)27a x a b xy x y +++-++不含二次项,求35a b -的值.23.先化简,再求值:(1)32322(79)2(34)x x x x x x ----+,其中1x =-.(2)已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.24.已知代数式22A x xy y =+-,2221B x xy x =-+-(1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值.25.蜜蜂是自然界神奇的“建筑师“,它能用最少的材料造成最牢固的建筑物“蜂窝“,观察下列的“蜂窝图“.(1)若“ “中每条边看成1个建筑单位,则第1个图形中共有19个建筑单位,第2个图案中共有 个建筑单位:第3个图案中共有 个建筑单位;第n 个图案中共有 个建筑单位.(用含有n 的代数式表示)(2)若现在有74个建筑单位材料,能建成符合上述规律的“蜂窝“吗?若能求出它符合第几图形,若不能请说明理由.参考答案一.填空题(共8小题)1. 单项式 多项式 . 2. 34π-. 3. 15 . 4. 8 . 5. 24m - . 6. 3- . 7. 2049 . 8. 221n n n ++ . 二.选择题(共10小题)9-18:ACCDC DAAAB三.解答题(共8小题)19.已知单项式22x y -的系数和次数分别是a ,b .(1)求b a ab -的值;(2)若||0m m +=,求||||b m a m --+的值.【解】:由题意,得2a =-,213b =+=.3(2)(2)3862b a ab -=---⨯=-+=-;(2)由||0m m +=,得0m ….||||()3(2)1b m a m b m a m b a --+=-++=+=+-=;20.把多项式323274x x y y xy --+-重新排列(1)按x 的升幂排列;(2)按y 的升幂排列.【解】:(1)按x 的升幂排列为:322347y xy x y x ---;(2)按y 的升幂排列为:322374x x y xy y ---+.21.化简:(1)5(32)(37)a a a -+---;(2)22(56)4(382)a a a a +---+(3)32[4(3)]b c a c b c -----+.【解】:(1)原式53237a a a =-+--+55a =-+;(2)原式225612328a a a a =+--+-233318a a =-+-;(3)原式32(43)b c a c b c =----++3243b c a c b c =-++-+4a =.22.(1)已知多项式313223(1)4m x y xy n x y +-++--是六次三项式,求2(1)3n m +-的值.(2)关于x ,y 的多项式2(32)(910)27a x a b xy x y +++-++不含二次项,求35a b -的值.【解】:(1)由题意可知,多项式最高项的次数为6,所以13m +=,因为多项式为三项式,所以10n -=,所以2m =,1n =,所以22(1)3(21)36n m +-=+-=(2)由题意可得,320a +=且9100a b +=,所以32a =-,96a =-,106b =,5 3b =,所以35235a b -=--=-23.先化简,再求值:(1)32322(79)2(34)x x x x x x ----+,其中1x =-.(2)已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.【解】:(1)原式32322279268x x x x x x x x =-+-+-=-+,当1x =-时,原式112=--=-;(2)原式22223664242(2)x xy x xy y x y x y =--+-=-=-,由2250x y --=,得到225x y -=,则原式10=.24.已知代数式22A x xy y =+-,2221B x xy x =-+-(1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值.【解】:(1)2A B -222(2)(221)x xy y x xy x =+---+-22224221x xy y x xy x =+--+-+441xy x y =--+;(2)2441(41)41A B xy x y y x y -=--+=--+,且其值与x 无关,410y ∴-=, 解得14y =.25.蜜蜂是自然界神奇的“建筑师“,它能用最少的材料造成最牢固的建筑物“蜂窝“,观察下列的“蜂窝图“.(1)若“ “中每条边看成1个建筑单位,则第1个图形中共有19个建筑单位,第2个图案中共有 30 个建筑单位:第3个图案中共有 41 个建筑单位;第n 个图案中共有 811n + 个建筑单位.(用含有n 的代数式表示)(2)若现在有74个建筑单位材料,能建成符合上述规律的“蜂窝“吗?若能求出它符合第几图形,若不能请说明理由.【解】:(1)第1个图形中共有19个建筑单位,第2个图案中共有1911130+⨯=个建筑单位,第3个图案中共有1911241+⨯=个建筑单位,第n 个图案中共有1911(1)811n n +-=+个建筑单位,故答案为30,41,811n +;(2)能建成符合上述规律的“蜂窝“,它符合第6图形.理由:根据题意11874n +=,解得6n =,∴能建成符合上述规律的“蜂窝“,它符合第6图形.。

浙教版七年级上册数学第4章 代数式 培优测试卷及答案

浙教版七年级上册数学第4章 代数式 培优测试卷及答案

浙教版七年级上册数学第4章代数式培优测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列运算正确的是( )A. x3+x2=x5B. x4+x4=2x4C. x3+x3=2x6D. x4+x4=x82.下列选项中,两个单项式属于同类项的是()A. a3与b3B. 3x2y与﹣4x2yzC. x2y与﹣xy2D. ﹣2a2b与ba23.用语言叙述代数式a2-b2,正确的是()A. a ,b两数的平方差B. a与b差的平方C. a与b的平方的差D. b,a两数的平方差4.下面的说法错误的个数有()①单项式πmn的次数是3次;② 表示负数;③1是单项式;④ 是多项式A. 1B. 2C. 3D. 45.若代数式b为常数的值与字母x的取值无关,则代数式的值为A. 0B. —1C. 2或—2D. 66.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A. 1B. 2C. 7D. 87.若时,式子的值为2033,则当时,式子的值为A. 2018B. 2019C.D.8.考试院决定将单价为元的统考试卷降价出售,降价后的销售价为()A. B. C. D.9.某果糖店的甲,乙两种果糖的销售单价分别为每公斤a,b元,先将m公斤甲种果糖和n公斤乙种果糖混合成什锦糖,店长为了保持利润不变,则该什锦糖每公斤应定价为( )A. B. C. a+b D.10.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A. 甲乙同时到达B地B. 甲先到达B地C. 乙先到达B地D. 谁先到达B地与速度v有关11.已知m2-m-1=0,则计算:m4-m3-m+2的结果为()A. 3B. -3C. 5D. -512.有7个如图的长为x,宽为的小长方形,按图的方式不重叠的放在长方形ABCD 中,未被覆盖的部分用阴影表示,若右下角阴影部分的面积与左上角阴影部分的面积之差为S ,当BC的长度变化时,按照相同的放置方式,S始终保持不变,则x与y满足的关系式为A. B. C. D.二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.0.4xy3的系数是________,次数为________.14.若4x+3y+5=0,则3(8y﹣x)﹣5(x+6y﹣2)的值等于________.15.体育委员带了500元钱去买体育用品,若二个足球a元,一个篮球b元,则代数式500-3a-2b表示________16.若x2+2x=1,则2x2+4x+3的值是________.17.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是________平方米.18.如图,已知在矩形ABCD内,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中末被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为________ .三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(8分)先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.20.(8分)已知:,,.(1)试求所得的结果;(用含,的式子表示)(2)若,满足,求(1)中所得结果的值.21.(8分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为  岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

七年级数学上册第三章 代数式 单元测试卷(人教版 2024年秋)

七年级数学上册第三章 代数式  单元测试卷(人教版 2024年秋)

七年级数学上册第三章代数式单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A.b×12B.4÷(a+b)C.225xD.3n 2.[母题教材P71例2]用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A.a与b的差的12B.a与b的一半的积C.a与b的12的差D.a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/-7元/-7的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2]下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为()A.a元B.0.918a元C.0.972a元D.0.96a元7.[2023·雅安]若m2+2m-1=0,则2m2+4m-3的值是()A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为()A.ab-π16b2B.ab-π8b2C.ab-π4b2D.ab-π2b29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a1,a2,a3,…,a n满足如下关系:a2=1+11-1,a3=1+21-2,a4=1+31-3,…,a n+1=1+1-,若a1=2,则a2025的值是()A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n个图形中共有棋子()A.2n枚B.(n2+1)枚C.n(n-1)枚D.n(n+1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是.(填序号)①2x-1;②a=1;③S=πR2;④π;⑤72m;⑥12>13. 12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m+n”可以赋予其实际意义:一个篮球的价格是m元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m+n)元,请你给式子“2a”赋予一个实际意义:.13.[情境题生活应用]房间面积一定时,每块砖的面积和铺砖的块数(填“满足”或“不满足”)反比例关系.14.把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.[2024·南京期末]如果|m|=2,那么代数式1-m+2m2的值为.16.将长为30cm的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2cm.(1)3张白纸黏合后的总长度为cm;(2)x张白纸黏合后的总长度为cm.(用含x的代数式表示)三、解答题(共72分)17.(6分)用代数式表示:(1)m的3倍与n的一半的和;(2)比a与b的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求+2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x >y)的长方形铁皮的四个角上,分别截去半径都为2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1.D 2.C 3.A4.C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2.5.C6.C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7.A 【点拨】因为m 2+2m -1=0,所以m 2+2m =1.所以2m 2+4m =2.所以2m 2+4m -3=2-3=-1.8.B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×=ab -π8b 2.9.D 【点拨】因为a 1=2,所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现.因为2025÷4=506……1,所以a 2025=a 1=2.10.D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子.二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1000m+n15.7或11【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,+2+cd-m=032+1-3=-2,当m=-3时,+2+cd-m=0(−3)2+1-(-3)=4.综上,+2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80km.20.【解】(1)水池的容积是500+20×35=1200(升).(2)依题意得TQ=1200或T=1200,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-34×82=48.答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。

【精选】数学七年级上册 代数式单元培优测试卷

【精选】数学七年级上册 代数式单元培优测试卷
(2)解:由题意得-2+1+9+x=3, 解得:x=-5, 则第 5 个台阶上的数 x 是-5
(3)解:应用:由题意知台阶上的数字是每 4 个一循环, ∵ 31÷4=7…3, ∴ 7×3+1-2-5=15, 即从下到上前 31 个台阶上数的和为 15; 发现:数“1”所在的台阶数为 4k-1 【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的 值,求出第 5 个台阶上的数 x 的值;(3)根据题意知台阶上的数字是每 4 个一循环,得到 从下到上前 31 个台阶上数的和,得到数“1”所在的台阶数为 4k-1.
一、初一数学代数式解答题压轴题精选(难)
1.如图,阶梯图的每个台阶上都标着一个数,从下到上的第 1 个至第 4 个台阶上依次标着
-5,-2,1,9,且任意和是多少? (2)求第 5 个台阶上的数 是多少? (3)应用 求从下到上前 31 个台阶上数的和. 发现 试用含 k(k 为正整数)的式子表示出数“1”所在的台阶数. 【答案】 (1)解:由题意得前 4 个台阶上数的和是-5-2+1+9=3
b=1. (2)结合(1),由题意得
, 所以原式去绝对值化简得原式=x+1-(x-1)+2(4-x)=-
2x+10. (3)结合(1),由题意得 AP=2t,PC=5-2t;然后分情况讨论 P 在 B 点左右两侧两种情 况。
4.某商场将进货价为 40 元的台灯以 50 元的销售价售出,平均每月能售出 800 个.市场 调研表明:当销售价每上涨 1 元时,其销售量就将减少 10 个.若设每个台灯的销售价上涨
次方程,得
. ②点 P 在点 B 的右侧,如下图.
因 为 AP=2t , AB=2 , 所 以 PB=AP-AB=2t-2. 因 为

浙教版七年级数学上册第4章《代数式》单元培优测试题含答案

浙教版七年级数学上册第4章《代数式》单元培优测试题含答案

七上数学第4章《代数式》单元培优测试题一、选择题(本大题有12小题,每小题3分,共36分) 下面每小题给出的四个选项中,只有一个是正确的. 1.在式子a 2+2,,ab 2,,﹣8x ,0中,整式有( )A. 3个B. 4个C. 5个D. 6个 2.计算2a-3a ,结果正确的是( )A. -1B. 1C. -aD. a3.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了15%,则2月份的产值是( ) A. (1+15%)x 万元 B. (1-15%x)万元 C. (x-15%)万元 D. (1-15%)x 万元4.当a=-1 时,(-a 2)3 的结果是( )A. -1B. 1C. a 6D. 以上答案都不对5.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A. B. C. D.6.下列结论中,正确的是( ) A. 单项式的系数是3,次数是2. B. 单项式m 的次数是1,没有系数.C. 单项式﹣xy 2z 的系数是﹣1,次数是4.D. 多项式5x 2-xy+3是三次三项式. 7.如果2x 3y n +(m-2)x 是关于x ,y 的五次二项式,则m ,n 的值为 ( )A. m=3.N=2B. m ≠ 2,n=2C. m 为任意数,n=2D. m#2,n=3 8.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A. 8x 2+13x ﹣1 B. ﹣2x 2+5x+1 C. 8x 2﹣5x+1 D. 2x 2﹣5x ﹣19.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( ) A. -1 B. 1 C. -2 D. 210.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A. B. ba C. D.11.当x=1时,代数式x 3+x+m 的值是7,则当x=-1时,这个代数式的值是( ) A. 7 B. 3 C. 1 D. -712.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(m-n)cm 二、填空题(本大题有6小题,每小题3分,共18分)13.写出一个含字母x ,y 的三次单项式________(只写出一个即可) 14.当x=1,y=31时,代数式x 2+2xy+y2的值是________. 15.单项式3x m+2n y 8与-2x 2y 3m+4n 的和仍是单项式,则m+n= ________ . 16.若+|n+3|=0,则m+n 的值为________ .17.某城市3年前人均收入为x元,预计今年人均收入是3年前的2倍多500元,那么今年人均收入将达________元.18.若x2+2x=1,则2x2+4x+3的值是________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(8分)先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.20.(6分)已知的平方根是±3,的立方根是2,求的平方根.21.(8分)填写下表,观察下列两个代数式的值的变化情况:用代入检验的方法说明取哪个整数时,哪个代数式的值先超过100?22.(10分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

【培优版】浙教版(2024)七上第四章 代数式 单元测试(含解析)

【培优版】浙教版(2024)七上第四章 代数式 单元测试(含解析)

【培优版】浙教版(2024)七上第四章代数式单元测试一、选择题(每题3分,共30分)1.(2024七上·仙居期末)下列计算正确的是( ).A.(−12)3=18B.(−1)3−(−2)2=−3C.x+y=xy D.a2b−2b a2=−a2b2.(2018七上·衢州期中)某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为( )A.(a-5%)(a+9%)万元B.(a-5%+9%)万元C.a(1-5%+9%)万元D.a(1-5%)(1+9%)万元3.(2024七上·鄞州期末)下列去括号正确的是( )A.a−(−3b+2c)=a−3b+2c B.−(x2+y2)=−x2−y2C.a2+(−b+c)=a2−b−c D.2a−3(b−c)=2a−3b+c4.当x=2时,整式ax3+bx-1的值等于-100,那么当x=-2时,整式ax3+bx-1的值为( )A.100B.-100C.98D.-985.(2024七上·拱墅期末)三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n 的差,只需知道一个图形的边长,这个图形是( )A.整个长方形B.图①正方形C.图②正方形D.图③正方形6.(2023七上·瑞安期中)如图是一个计算程序图,若输入x的值为6,则输出的结果的值是( )A.−18B.90C.126D.738 7.(2017七上·乐清期中)有理数a,b在数轴上对应的位置如图所示,那么代数式|a+1|a+1−|a|a+b−a |a−b|−1−b|b−1|的值是( )A .﹣1B .0C .1D .28.(2023七上·义乌月考)如图,7张全等的小长方形纸片(既不重叠也无空隙)放置于矩形ABCD 中,设小长方形的长为a ,宽为b (a >b ),若要求出两块黑色阴影部分的周长和,则只要测出下面哪个数据( )A .aB .bC .a +bD .a−b9.(2023七上·拱墅月考)已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是(用含a 的代数式表示)( )A .12aB .34aC .aD .54a 10.(2023七上·北仑期中)如图,长为y (cm ),宽为x (cm )的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为2cm ,下列说法中正确的有( )①小长方形的较长边为y−6;②阴影A 的较短边和阴影B 的较短边之和为x−y +2;③若y 为定值,则阴影A 和阴影B 的周长之差为定值;④当y =10时,阴影B 的周长比阴影A 的周长多4cm .A.①③B.①④C.①③④D.①②④二、填空题(每题4分,共24分)11.(2021七上·柯桥月考)若单项式2x2y m与﹣x n y3是同类项,则m+n= .12.(2024七上·仙居期末)若3a−2b=5,则式子6a−4b−5的值为 .13.(2024七上·鄞州月考)三个三位数abb,bab,bba由数字a,b组成,它们的和是2331,则a+b 的最大值是 .14.(2024七上·柯桥期中)若a,b互为倒数,x,y互为相反数,p是最大的负整数,则代数式ab+ x+y2023−p2的值为 .15.某种电视机每台定价为m元,商店在节日期间搞促销活动,这种电视机每台降价20%,促销期间这种电视机每台的实际售价为 元.(用含m的代数式表示)16.(2022七上·鄞州期中)如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图长方形的面积S2的比是 .三、解答题(共8题,共66分)17.(2024七上·诸暨月考)已知|x|=2,|y|=5,且|x+y|=−x−y,求x−y的值.18.(2024七上·义乌期末)先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b =﹣1.19.(2024七上·杭州月考)七年级(8)班某同学做一道题:“已知两个代数式A,B,A=x2+2x-1,计算A+2B.”他误将A+2B写成了2A+B,结果得到答案x2+5x-6,请你帮助他求出正确的答案.20.(2023七上·杭州月考)已知甲、乙两个油桶中各装有a升油.(1)把甲油桶的油倒出13给乙桶,用含a的代数式表示现在乙桶中所装油的体积.(2)在(1)的前提下,再把乙桶的油倒出14给甲桶,最后甲、乙两个桶中的油一样多吗?请说明理由.21.(2023七上·诸暨期中)已知A−B=7a2−7ab+1,且B=−4a2+6ab+5,(1)求A;(2)若|a+1|+(b−2)2=0,求A+B的值.22.(2023七上·诸暨期中)宁波市中考总分中要加大体育分值,我校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌篮球和跳绳,在查阅天猫网店后发现篮球每个定价120元,跳绳每条定价40元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一条跳绳;乙网店:篮球和跳绳都按定价的90%付款.已知要购买篮球60个,跳绳x条(x>60)(1)若在甲网店购买,需付款 元(用含x的代数式表示);若在乙网店购买,需付款 元(用含x的代数式表示);(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?23.(2023七上·杭州期中)数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2 +2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2−2a=2,则2a2−4a= ;(2)已知a−b=5,b−c=3,求代数式(a−c)2+3a−3c的值;(3)当x=−1,y=2时,代数式a x2y−bx y2−1的值为5,则当x=1,y=−2时,求代数式a x2 y−bx y2−1的值.24.(2020七上·温岭期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2﹣6(a﹣b)2+3(a﹣b)2(2)已知x2﹣2y=4,求6x2﹣12y﹣27的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.答案解析部分1.【答案】D【知识点】有理数的减法法则;有理数的乘方法则;合并同类项法则及应用【解析】【解答】解:A.(−12)3=−18≠18,故选项A错误;B.(−1)3−(−2)2=−1−4=−5≠−3,故选项B错误;C.x与y不是同类项,不可以合并,故选项C错误;D.a2b−2b a2=−a2b,故选项D正确;故答案为:D.【分析】根据有理数的乘方法则判断选项A;根据有理数的乘方法则、有理数的减法法则判断选项B;根据合并同类项法则判断选项C、D,即可得解.2.【答案】D【知识点】列式表示数量关系【解析】【解答】解:由题意得:12月份的利润为:a(1-5%)(1+9%)故答案为:D【分析】根据11月份比10月份减少5%,可得出11月份的利润,再求出12月份的利润。

【精选】人教版七年级数学上册 代数式单元培优测试卷

【精选】人教版七年级数学上册 代数式单元培优测试卷

一、初一数学代数式解答题压轴题精选(难)1.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.2.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。

【精选】七年级数学上册代数式单元测试卷附答案

【精选】七年级数学上册代数式单元测试卷附答案

一、初一数学代数式解答题压轴题精选(难)1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。

2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

人教版七年级数学上册 代数式单元培优测试卷

人教版七年级数学上册 代数式单元培优测试卷

一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.3.电话费与通话时间的关系如下表:通话时间a(分)电话费b(元)10.2+0.820.4+0.830.6+0.840.8+0.8……;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.4.已知:a、b、c满足a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,P为数轴上一动点,其对应的数为x,若点P 在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点P从A点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?【答案】(1)解:因为,所以a+1=0,c-4=0,即a=-1,c=4. 因为a=-b,a=-1,所以b=-a=-(-1)=1. 综上所述,a=-1,b=1,c=4(2)解:因为点P在线段BC上,b=1,c=4,所以 . 因为,所以x+1>0,, . 0时,;当时,;当时, . 因此,当点P在线段BC上(即 )时,== = .(3)解:设点P的运动时间为t秒. 因为点P从A点出发,以每秒2个单位长度的速度向右运动,所以AP=2t. 因为点A对应的数为-1,点C对应的数为4,所以AC=4-(-1)=5. PB. 故点P不可能在点C的右侧. 因此,PC=AC-AP. 因为AP=2t,AC=5,所以PC=AC-AP=5-2t. 分析本小题的题意,点P与点B的位置关系没有明确的限制,故本小题应该对以下两种情况分别进行求解. ①点P在点B的左侧,如下图. 因为点A对应的数为-1,点B对应的数为1,所以AB=1-(-1)=2. 因为AP=2t,AB=2,所以PB=AB-AP=2-2t. 因为PC=3PB,PC=5-2t,PB=2-2t,所以5-2t=3(2-2t). 解这个关于t的一元一次方程,得. ②点P在点B的右侧,如下图.因为AP=2t,AB=2,所以PB=AP-AB=2t-2. 因为PC=3PB,PC=5-2t,PB=2t-2,所以5-2t=3(2t-2). 解这个关于t的一元一次方程,得 .综上所述,当点P运动或秒时,PC=3PB.【解析】【分析】(1)因|a+1|0;(c-4)20,所以由题意得a+1=0,c-4=0,即a=-1,c=4,所以b=1.(2)结合(1),由题意得,所以原式去绝对值化简得原式=x+1-(x-1)+2(4-x)=-2x+10.(3)结合(1),由题意得AP=2t,PC=5-2t;然后分情况讨论P在B点左右两侧两种情况。

七年级上学期数学代数式培优竞赛测试卷(图片版)附答案

七年级上学期数学代数式培优竞赛测试卷(图片版)附答案
第12题主要考查代数式求值,非负数的性质等知识、根据非负数的性质,得出m=-1,n=0,再即代入求值即可得到结论;
第13题要使a+b+c+d最大,则d4、c³、b²都最小,a最大即可,由于d>1,则d=2,c=1,b=3,a=64,从而可求得答案.
第19题将x=0代入代数式求得c=2,当x=-3时, ax³ +bx 的值与x=3时, ax ³+bx 的值互为相反数;将x=-3代入代数式化简将x=3时值代入即可求得;
第22题(1)根据所给数字可以发现,百位数字+个位数字=十位数字,据此解答即可;(2)根据多位数的表示法写出该三位数,把a+c=b代入即可证明其正确性;(3)根据所给数字可以发现,百位数字+个位数字-11=十位数字,据此解答即可。
第20题根据多项式的性质,对应的x次幂的系数应该相等,只需要比较最高次项系数和常数项,即可列出关于a,b的方程,求解即可得出a,b的值;不必将(ax³-x+6)(3x²+5x+b) 计算出来;
第21题中(1)观察数轴可知b<0,a与b互为相反数,a>c,b<c,由此可得答案。(2)观察数轴可知b<1,a>1,从而可判断出b-1,a-1的符号,然后化简绝对值,合并即可。(3)由a+b=0,a>c,b<c,再化简绝对值,然后合并同类项;
第10题可以仿照所给的推理过程,设所求代数式为S,因为底数都为5,所以两边都乘以5得到5S,再用5S+S将两个等式某些项消掉,再利用合并同类项可求解;
第11题根据绝对值的意义可得|x+y+z+1|=x+y+z+1或|x+y+z+1|=-(x+y+z+1),从而可得x+y+z+1=x+y-z-2或-(x+y+z+1)=x+y-z-2,解得z=-2/3 或x+y=1/2 , 然后将其分别代入原式中计算即可;

第3章 代数式(中考常考题)-江苏省2023-2024学年上学期七年级数学单元培优

第3章 代数式(中考常考题)-江苏省2023-2024学年上学期七年级数学单元培优

第3章代数式(中考常考题)-江苏省2023-2024学年上学期七年级数学单元培优专题练习(苏科版)一.选择题(共8小题)1.(2023•南通)若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为( )A.24B.20C.18D.16 2.(2022•泰州)下列计算正确的是( )A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn23.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是( )A.A1B.B1C.A2D.B3 4.(2020•无锡)若x+y=2,z﹣y=﹣3,则x+z的值等于( )A.5B.1C.﹣1D.﹣5 5.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为( )A.﹣1B.1C.2D.3 6.(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?( )A.m﹣2B.m+2C.D.2m 7.(2018•无锡)若3a﹣2b=2,则代数式2b﹣3a+1的值等于( )A.﹣1B.﹣3C.3D.5 8.(2017•连云港)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是( )A.4B.2C.2D.0二.填空题(共13小题)9.(2023•淮安)若a+2b﹣1=0,则3a+6b的值是 .10.(2023•泰州)若2a﹣b+3=0,则2(2a+b)﹣4b的值为 .11.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是 .12.(2022•连云港)计算:2a+3a= .13.(2021•扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 .14.(2021•常州)计算:2a2﹣(a2+2)= .15.(2020•连云港)按照如图所示的计算程序,若x=2,则输出的结果是 .16.(2020•苏州)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n= .17.(2019•常州)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是 .18.(2018•南通)计算:3a2b﹣a2b= .19.(2018•徐州)若2m+n=4,则代数式6﹣2m﹣n的值为 .20.(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多 个.(用含n的代数式表示)21.(2018•常州)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是 .三.解答题(共1小题)22.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.第3章代数式(中考常考题)-江苏省2023-2024学年上学期七年级数学单元培优专题练习(苏科版)参考答案与试题解析一.选择题(共8小题)1.(2023•南通)若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为( )A.24B.20C.18D.16【答案】D【解答】解:∵a2﹣4a﹣12=0,∴a2﹣4a=12,∴2a2﹣8a﹣8=2(a2﹣4a)﹣8=2×12﹣8=24﹣8=16,故选:D.2.(2022•泰州)下列计算正确的是( )A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2【答案】A【解答】解:A、原式=5ab,符合题意;B、原式=3y2,不符合题意;C、原式=8a,不符合题意;D、原式不能合并,不符合题意.故选:A.3.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是( )A.A1B.B1C.A2D.B3【答案】B【解答】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.4.(2020•无锡)若x+y=2,z﹣y=﹣3,则x+z的值等于( )A.5B.1C.﹣1D.﹣5【答案】C【解答】解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.5.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为( )A.﹣1B.1C.2D.3【答案】B【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.6.(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?( )A.m﹣2B.m+2C.D.2m【答案】D【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.7.(2018•无锡)若3a﹣2b=2,则代数式2b﹣3a+1的值等于( )A.﹣1B.﹣3C.3D.5【答案】A【解答】解:当3a﹣2b=2时,原式=﹣(3a﹣2b)+1=﹣2+1=﹣1,故选:A.8.(2017•连云港)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是( )A.4B.2C.2D.0【答案】A【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴A0A2017=2R=4.故选:A.二.填空题(共13小题)9.(2023•淮安)若a+2b﹣1=0,则3a+6b的值是 3 .【答案】见试题解答内容【解答】解:∵a+2b﹣1=0,∴a+2b=1,∴原式=3(a+2b)=3×1=3.故答案为:3.10.(2023•泰州)若2a﹣b+3=0,则2(2a+b)﹣4b的值为 ﹣6 .【答案】﹣6.【解答】解:2(2a+b)﹣4b=4a+2b﹣4b=4a﹣2b=2(2a﹣b),∵2a﹣b+3=0,∴2a﹣b=﹣3,∴原式=2×(﹣3)=﹣6.故答案为:﹣6.11.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是 ﹣x39 .【答案】﹣x39.【解答】解:根据前几项可以得出规律,奇数项为正,偶数项为负,第n项的数为(﹣1)n+1×x2n﹣1,则第20个单项式是(﹣1)21×x39=﹣x39,故答案为:﹣x39.12.(2022•连云港)计算:2a+3a= 5a .【答案】见试题解答内容【解答】解:2a+3a=5a,故答案为:5a.13.(2021•扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 1275 .【答案】见试题解答内容【解答】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:=3,第③个图形中的黑色圆点的个数为:=6,第④个图形中的黑色圆点的个数为:=10,…第n个图形中的黑色圆点的个数为,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,…,其中每3个数中,都有2个能被3整除,33÷2=16…1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即=1275,故答案为:1275.14.(2021•常州)计算:2a2﹣(a2+2)= a2﹣2 .【答案】a2﹣2.【解答】解:原式=2a2﹣a2﹣2=a2﹣2,故答案为:a2﹣2.15.(2020•连云港)按照如图所示的计算程序,若x=2,则输出的结果是 ﹣26 .【答案】见试题解答内容【解答】解:把x=2代入程序中得:10﹣22=10﹣4=6>0,把x=6代入程序中得:10﹣62=10﹣36=﹣26<0,∴最后输出的结果是﹣26.故答案为:﹣26.16.(2020•苏州)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n= 4 .【答案】见试题解答内容【解答】解:∵单项式2x m﹣1y2与单项式x2y n+1是同类项,∴,∴m+n=4,故答案为:4.17.(2019•常州)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是 5 .【答案】见试题解答内容【解答】解:∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为5.18.(2018•南通)计算:3a2b﹣a2b= 2a2b .【答案】见试题解答内容【解答】解:原式=(3﹣1)a2b=2a2b,故答案为:2a2b.19.(2018•徐州)若2m+n=4,则代数式6﹣2m﹣n的值为 2 .【答案】见试题解答内容【解答】解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.20.(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多 (4n+3) 个.(用含n的代数式表示)【答案】见试题解答内容【解答】解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n 个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个,方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个,第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个,类推,第n个图案中白色正方形比黑色正方形多[7+4(n﹣1)]个,即(4n+3)个,故第n个图案中白色正方形比黑色正方形多(4n+3)个.21.(2018•常州)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是 15a16 .【答案】见试题解答内容【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.三.解答题(共1小题)22.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.【答案】3.【解答】解:原式=x2﹣2x+1+x2+x=2x2﹣x+1,∵3x2﹣2x﹣3=0,∴x2﹣x=1,∴原式=2(x2﹣x)+1=2×1+1=3.优网小程序。

苏科版七年级数学上册 代数式单元培优测试卷

苏科版七年级数学上册 代数式单元培优测试卷

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式符合代数式书写规范的是( )A .a bB .1a -C .2y x ÷D .3123xy 2.a 是一个两位数,b 是一个三位数,如果把b 放在a 的左边组成一个五位数,这个五位数是( ) A .ba B .b a + C .100b a + D .1000b a +3.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A .(15)x x -B .(30)x x -C .(302)x x -D .(15)x x +4.c 是a 的16,c 是b 的18,那么a 与b 的比是( ) A .11:68 B .4:3 C .3:4 D .5:75.已知5m +和52n -互为相反数,则2m n +的值为( ) A .5- B .52- C .52 D .06.已知关于y 的多项式237n y y -+与3245my y +-的次数相同,那么25n -的值是( )A .80B .80-C .80-或54-D .45-或20- 7.如果()32a =--,()33b =-和223c ⎛⎫=- ⎪⎝⎭,那么a bc +的值为( ) A .4- B .4C .20D .20-8.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .2024B .2022C .6069D .60709.某学校楼阶梯教室,第一排有m 个座位,后面每一排都比前面一排多2个座位,则第n 排座位数是( ) A .2m + B .2(1)m n +- C .2(1)n m +- D .2m n +10.根据图中数字的列规律,在第⑥个图中,a b c --的值是( )A .190-B .66-C .62D .34-二、填空题11.a 的15%减去70可以表示为 .12.某淘宝网店去年的营业额为m 万元,今年比去年增加15%,今年的营业额是 万元. 13.从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1,2,3,4,5,6,7,……当数到2022时,对应的手指为 ;当第n 次数到食指时,数到的数是 (用含n 的代数式表示).14.已知||5a =,||3b =且||a b b a -=-,则a b += .15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是km/h a ,则2h 后两船相距 千米.三、解答题16.下列表述中,字母各表示什么?(1)正方形的周长为4a ;(2)买单价为5元的毛巾,花了5a 元钱;(3)某班女生比男生多1人,女生共有(x +1)人.17.已知:()21102a b -++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 的值:(2)试求代数式()()328b a c d -+-的值.18.渠县同心百货、繁鑫文印两家惠民文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.为促销,同心百货商店推出的优惠方案是:买1支毛笔送2张宜纸,繁鑫文印商店的优惠方案是:按总价的九折优惠.小丽同学想购买5支毛笔,x 张宜纸()10x ≥.(1)用含x 的代数式填空:①若到同心百货商店购买,应付_______元;①若到繁鑫文印商店购买,应付______元;(2)若小丽同学要买50张宣纸,选择哪家文具商店购买更划算?请说明理由.若购买200张呢? 19.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .(1)把,,,a b a b -这四个数用“<”连接起来: ;(2)用“>”或“<”填空:a b +______0,a b -______0;(3)化简:a b a b +--= ;(4)若3,4,2a b c d ==、互为相反数,m n 、互为倒数,求()22023c d mn a b +-++的值.20.111111111111,,,122232334344545=-=-=-=-=⨯⨯⨯⨯(1)第5个式子是_______;第n 个式子是_______.(2)从计算结果中找规律,利用规律计算:111111223344520202021+++++=⨯⨯⨯⨯⨯_______; (3)计算:(由此拓展写出具体过程): ①111113355799101++++⨯⨯⨯⨯; ①1111126129900-----. 21.学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收400元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x 的代数式表示)(2)学校要印刷2400份材料,不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要_____________个三角形;(2)照此规律,摆成第n 个图案需要_____________个三角形(用含n 的代数式表示);(3)照此规律,摆成第2021个图案需要几个三角形?23.若干个1与1-排成一行:1,1,1,1,1,1,1,1,1,------规则是:先写一行1,再在第k 个1与第1k +个1之间插入k 个()11,2,3,k -=.(1)第2012个数是1还是1-?(2)前2012个数的和是多少?参考答案1.A【分析】本题考查了代数式.根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【详解】解:A 、a b书写形式正确,故本选项符合题意; B 、正确书写形式为a -,故本选项不符合题意;C 、正确书写形式为2y x个,故本选项不符合题意; D 、正确书写形式为373xy ,故本选项不符合题意. 故选:A .2.C【分析】本题考查列代数式,由题意得,把新的五位数中b 扩大100倍,即可求解.【详解】解:由题意得,这个五位数是100b a +故选:C .3.A【分析】根据已知表示出矩形的另一边长,进而利用矩形面积求法得出答案.此题主要考查了列代数式,根据题意表示出矩形的另一边长是解题关键.【详解】解:一个矩形的周长为30,矩形的一边长为x∴矩形另一边长为:15x -故此矩形的面积为:(15)x x -.故选:A .4.C【分析】本题考查了比的代数式表示式,根据题意将a 与b 转化为c 的倍数,相比即可解题.【详解】解:c 是a 的16,c 是b 的18 6a c ∴= 8b c =:6:83:4a b c c ∴==故选:C .5.D【分析】本题主要考查了绝对值的非负性、相反数的定义、代数式求值等知识点,根据绝对值的非负性和相反数的定义求出m 与n 的值成为解题的关键.根据绝对值的非负性和相反数的定义求出m 与n 的值,再代入2m n +计算即可.【详解】解:①5m +和52n -互为相反数 ①5025m n ++-= 又①50m +≥502n -≥ ①50m += 502n -= ①552m n =-=, ①2550m n +=-+=故选:D .6.D【分析】本题考查多项式的次数,多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,分0m =与0m ≠两种情况,根据两个多项式的次数相同,求出n 的值,代入求解即可. 【详解】解:当0m =时3224545my y y +-=-,次数为2;当0m ≠时3245my y +-次数为3;多项式237n y y -+的次数为n多项式237n y y -+与3245my y +-的次数相同∴当0m =时 2n = 2255220n -=-⨯=-当0m ≠时 3n = 2255345n -=-⨯=-∴25n -的值是45-或20-.故选D .7.A【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:①()328a =--=()3327b =-=-①()827481249a bc ⨯=-+=+=-- ①a bc +的值为4-.故选:A .8.D 【分析】本题主要考查图形规律,由前4个图形总结得到第n 的图形的规律,即可得到第2024个图形含有的正方形数量.【详解】解:第1个图中有正方形1个第2个图中有正方形413=+个第3个图中有正方形7123=+⨯个第4个图中有正方形10133=+⨯个所以第n 个图中有正方形13(1)(32)n n +-=-个.当2024n =时,图中有3 2 02426070⨯-=个正方形.故选:D .9.B【分析】本题主要考查了列代数式,理解题意是解题的关键.根据题意列出代数式即可.【详解】解:由题意可知,第一排有m 个座位第二排有(21)m +⨯个座位第三排有(22)m +⨯个座位第四排有(23)m +⨯个座位...故第n 排座位数是2(1)m n +-故选B .10.D【分析】本题考查了图形中有关数字的变化规律,通过观察图形,得到()1?2n n a =- ()1?22nn b =-+ ()11?22n n c =⨯- 把6n =代入求出a b c 、、的值,再把a b c 、、的值代入到a b c --计算即可求解,仔细观察图形找到规律是解题的关键.【详解】解:通过观察可得规律:左边三角形上的数字 ()1?2n n a =- 右边三角形上的数字()1?22n n b =-+ 下面三角形上的数字()11?22n n c =⨯- ①当6n =时()661?264a =-= 64266b =+= 164322c =⨯= ①64663234a b c --=--=-故选:D .11.0.1570a -/15%70a -【分析】由已知,先列出a 的15%为0.15a ,再表示它减70即可.【详解】解:a 的15%为0.15a ,再减70则表示为0.1570a -.故答案为:0.1570a -.【点睛】此题是考查学生列代数式为题.值得注意的是a 的15%应列为0.15a ,要求规范列代数式. 12.1.15m【分析】本题考查了列代数式,根据今年的营业额()115%=+⨯去年的营业额列式求解即可.【详解】解:根据题意,得:今年的营业额是()115% 1.15m m +=故答案为:1.15m .13. 无名指 ()812n -+或()818n -+【分析】本题考查规律型数字的变化类问题,解题的关键是从一般到特殊探究规律、发现规律、利用规律解决问题,属于中考常考题型.先探究规律,发现规律后利用规律即可解决问题.【详解】解:如题意可知,八次为一个循环体重复出现202282526÷=⋯⋯当数到2022时,对应的手指与第6次对应的一样为:无名指;第一个循环体出现食指时,数到的数是:()8112-+ ()8118-+;第二个循环体出现食指时,数到的数是:()8212-+ ()8218-+;第三个循环体出现食指时,数到的数是:()8312-+ ()8318-+;⋯当第n 次数到食指时,数到的数是()812n -+ ()818n -+故答案为:无名指,()812n -+或()818n -+.14.8-或2-/−2或−8【分析】本题考查代数式求值,绝对值的意义,根据绝对值的意义,得到0a b -<,进而求出,a b 的值,再代入代数式计算即可.【详解】解:①||5a = ||3b =①5,3a b ①||a b b a -=-①0a b -<①5,3a b =-=±①538a b +=--=-或532a b +=-+=-;故答案为:8-或2-.15.160【分析】本题主要考查列代数式,根据:2h 后甲、乙间的距离=甲船行驶的路程+乙船行驶的路程即可得,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.【详解】解:解:2h 后两船间的距离为:2(40)2(40)160a a ++-=千米;故答案为:16016.(1)a 表示正方形的边长(2)a 表示毛巾的数量(3)x 表示男生的人数【分析】(1)根据正方形的周长=边长×4即可得出答案;(2)根据总价=单价×数量即可得出答案;(3)根据女生比男生多1人即可得出答案.【详解】(1)解:根据题意可得,a 表示正方形的边长;(2)解:根据题意可得,a 表示毛巾的数量;(3)解:根据题意可得,x 表示男生的人数.【点睛】本题考查了代数式,熟练掌握各代数式的意义是解题的关键.17.(1)11,2a b ==- 0,1c d ==- (2)8-【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【详解】(1)解:21102a b 110,02a b 11,2a b c 是最小的自然数,d 是最大负整数0,1c d ;(2)解:11,2a b0,1c d ==- 328b a c d 32181012 18118 9818918=-.18.(1)()460x + ()3.690x +(2)若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买50张宣纸,选择繁鑫文印商店购买更划算,理由见解析:【分析】(1)根据所给的两个商店的优惠标准列式求解即可;(2)根据(1)所求分别代入50x =,200x =求出两个商店的费用即可得到答案.【详解】(1)解:由题意得,若到同心百货商店购买,应付()()520410460x x ⨯+-=+元;若到繁鑫文印商店购买,应付()()95204 3.69010x x ⨯+⨯=+ 故答案为:()460x + ()3.690x +;(2)解:若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算,理由如下:当50x =时46045060260x +=⨯+= 3.690 3.65090270x +=⨯+=①260270<①若小丽同学要买50张宣纸,选择同心商店购买更划算;当200x =时460420060860x +=⨯+= 3.690 3.620090810x +=⨯+=①810860<①若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算.【点睛】本题主要考查了列代数式和代数式求值,正确理解题意是解题的关键.19.(1)b a a b <-<<(2)<,>(3)2a - (4)214【分析】(1)由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即可解答;(2)由数轴可知3,3,03,b b a a b -<<<,进而完成解答;(3)先利用(2)的结论去绝对值,然后再运算即可;(4)由数轴可知0,0b a <>从而确定a 、b 的值,再根据相反数、倒数的性质代入计算即可.【详解】(1)解:由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即b a a b <-<<. 故答案为:b a a b <-<<.(2)解:由数轴可得:3,3,03,b b a a b -<<<,则0a b 0a b -.故答案为:<,>(3)解:①0a b 0a b -①()()2a b a b a b a b a b a b a +--=-+--=---+=-.故答案为:2a -.(4)解:由数轴可知0,0b a <>①3,4,2a b c d ==、互为相反数,m n 、互为倒数 ①3,4,0,12a b c d mn ==-+== ①()22203525211411202320232244c d mn a b +⎛⎫⎛⎫-++=-+-=-+-=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了数轴、去绝对值、相反数、倒数代数式求值等知识点,掌握数轴的应用成为解题的关键.20.(1)1115656=-⨯;()111n n 1n n 1=-++ (2)20202021(3)①50101;①1100【分析】此题主要考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)观察一系列等式得到一般性规律,写出第5个式子与第n 个式子即可;(2)原式利用得出的规律化简,计算即可得到结果;(3)①原式变形为9139111111123501⎛⎫-+-+⋯+- ⎪⎝⎭,利用得出的规律化简,计算即可得到结果; ①原式变形为1223349910011111-----⨯⨯⨯⨯,利用得出的规律化简,计算即可得到结果. 【详解】(1)解:①111122=-⨯ 1112323=-⨯ 1113434=-⨯ 1114545=-⨯ ①第5个式子是:1115656=-⨯; 第n 个式子是()111n n 1n n 1=-++; 故答案为:1115656=-⨯ ()111n n 1n n 1=-++; (2)解:111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420202021=-+-+-+⋯+-112021=- 20202021=; (3)解:①111113355799101++++⨯⨯⨯⨯ 1111111233599101⎛⎫=-+-+⋯+- ⎪⎝⎭ 1112101⎛⎫=- ⎪⎝⎭50101=. ①1111126129900----- 0111122334911190=⨯---⨯-⨯-⨯ 1112233499101110⎛⎫=⎪++- ⨯⨯++⨯⨯⎝⎭ 1111111122334199100⎛⎫=⎪-+-+-++-- ⎝⎭ 111100⎛⎫=-- ⎪⎝⎭111100=-+1100=. 21.(1)甲:()0.2400x +元,乙:0.4x 元(2)选择甲印刷厂比较合算,见解析【分析】本题考查了列代数式、求代数式的值,理解题意,正确列出代数式是解此题的关键. (1)根据甲、乙两厂的收费方式列出代数式即可;(2)把2400x =代入(1)中所求的代数式,分别计算出甲、乙两厂的费用,比较即可得出答案.【详解】(1)解:由题意得:甲印刷厂的收费为:()0.2400x +元乙印刷厂的收费为:0.4x 元;(2)解:当2400x =时甲印刷厂的收费为:0.24000.22400400880x +=⨯+=(元).乙印刷厂的收费为:0.40.42400960x =⨯=(元)因为880960<所以选择甲印刷厂比较合算.22.(1)16(2)31n +(3)6064【分析】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律“31n a n =+”是解题的关键.(1)根据前4个图案所需三角形的个数,可得出每个图案所需三角形的个数比前一个图形多3个,再结合4a 的值即可求出5a 的值;(2)由(1)的结论“每个图案所需三角形的个数比前一个图形多3个”,可得出21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+;(3)代入2021n =即可求出结论.【详解】(1)解:设摆成第n (n 为正整数)个图案需要n a 个三角形.①1234471013a a a a ====,,,①2132433a a a a a a -=-=-=①54316a a =+=.故答案为:16;(2)解:由(1)可知:21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+.故答案为:31n +;(3)解:当2021n =时20213202116064a =⨯+=①摆成第2021个图案需要6064个三角形.23.(1)第2012个数为1-.(2)1888-【分析】本题主要考查了数字规律,理解并应用数字规律是解题的关键.(1)根据规则可知第1k -行共有数字个数为()()()21111122k k k k k +--++-=-,由于62k =时,数字个数为1953个,63k =时,数字个数为2016个,从而得出第2012个数;(2)由(1)可知2012个数在62行,则共有62个1,其余均为1-,然后据此求和即可.【详解】(1)解:排列规律如下:1行:1,1-2行:1,1,1--3行:1,1,1,1---………k 行①到第1k -行共有数字个数为()212341122k k k k k +++++⋯+=-=- 由于62k =时219532k k +=,63k =时220162k k +=. ①第2012个数为1-.(2)解:设前2012个数的和为S由(1)可得:2012个数在62行,则共有62个1,其余均为1-.则()()62112012621888S =⨯+-⨯-=-.。

【精选】七年级上册代数式单元培优测试卷

【精选】七年级上册代数式单元培优测试卷

一、初一数学代数式解答题压轴题精选(难)1.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦! 某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表:________元;(2)如果他批发x 千克太湖蟹(150<x <200),则他在A 家批发需要________元,在B 家批发需要________元(用含x 的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由. 【答案】 (1)4968;4890 (2)54x ;45x+1200 (3)解:当x=170时, 54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B 家批发更优惠【解析】【解答】解:(1)A :90×60×92%=4968(元),B :50×60×95%+40×60×85%=4890(元)。

( 2 )A :60×90%x=54x ,B :50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.【分析】(1)根据A 、B 两家的优惠办法分别列式求出在两家批发需要的费用。

(2)根据题意列式分别表示出在A 、B 两家批发x 千克太湖蟹(150<x <200)所需的费用。

(3)将x=170分别代入(2)种表示的在A 、B 两家批发所需费用的两个式子计算,然后再比较大小即可。

2.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:(1)某用户4月份用水量为10吨,求该用户4月份应缴水费是多少元.(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。

新人教版初中数学七年级上册第三单元《代数式》单元测试卷

新人教版初中数学七年级上册第三单元《代数式》单元测试卷

新人教版初中数学七年级上册第三单元《代数式》单元测试卷1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是()A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是()A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是()A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为()A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为()A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为()A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是()A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个()A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是()A.1B.−5C.6D.−4二、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022=.13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为岁.14.(3分)(2024八下·兴国期末)当x=1时,二次根式√9−x的值为.15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为.三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.5cd+17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为[x],当n为非负整数时,①若n−12≤x<n+12,则[x]=n:②若[x]=n,则n−12≤x<n+12.如[0]=[0.49]=0,[0.64]=[1.49]=1,[2]=2.(1)(1分)[π]=;(2)(1分)若|t+1|=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4= 92−72;8×5=−92;8×=132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要元;按照方式二购买需要元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.某超市在十一长假期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠超过100元但低于500元超过100元部分给予九折优惠超过500元超过500元部分给予八折优惠________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

(4)解:一次性购物能更省钱。

【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.3.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

4.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.5.已知:a、b、c满足a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,P为数轴上一动点,其对应的数为x,若点P 在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点P从A点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?【答案】(1)解:因为,所以a+1=0,c-4=0,即a=-1,c=4. 因为a=-b,a=-1,所以b=-a=-(-1)=1. 综上所述,a=-1,b=1,c=4(2)解:因为点P在线段BC上,b=1,c=4,所以 . 因为,所以x+1>0,, . 0时,;当时,;当时, . 因此,当点P在线段BC上(即 )时,== = .(3)解:设点P的运动时间为t秒. 因为点P从A点出发,以每秒2个单位长度的速度向右运动,所以AP=2t. 因为点A对应的数为-1,点C对应的数为4,所以AC=4-(-1)=5. PB. 故点P不可能在点C的右侧. 因此,PC=AC-AP. 因为AP=2t,AC=5,所以PC=AC-AP=5-2t. 分析本小题的题意,点P与点B的位置关系没有明确的限制,故本小题应该对以下两种情况分别进行求解. ①点P在点B的左侧,如下图. 因为点A对应的数为-1,点B对应的数为1,所以AB=1-(-1)=2. 因为AP=2t,AB=2,所以PB=AB-AP=2-2t. 因为PC=3PB,PC=5-2t,PB=2-2t,所以5-2t=3(2-2t). 解这个关于t的一元一次方程,得. ②点P在点B的右侧,如下图.因为AP=2t,AB=2,所以PB=AP-AB=2t-2. 因为PC=3PB,PC=5-2t,PB=2t-2,所以5-2t=3(2t-2). 解这个关于t的一元一次方程,得 .综上所述,当点P运动或秒时,PC=3PB.【解析】【分析】(1)因|a+1|0;(c-4)20,所以由题意得a+1=0,c-4=0,即a=-1,c=4,所以b=1.(2)结合(1),由题意得,所以原式去绝对值化简得原式=x+1-(x-1)+2(4-x)=-2x+10.(3)结合(1),由题意得AP=2t,PC=5-2t;然后分情况讨论P在B点左右两侧两种情况。

6.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子方案二:课桌和椅」都按定价的80%付款某校计划添置100张课桌和把椅子,(1)若,请计算哪种方案划算;(2)若,请用含的代数式分别把两种方案的费用表示出来(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.【答案】(1)解:当x=100时方案一:100×180=18000;方案二:(100×180+100×80)×80%=20800;18000<20800∴方案一划算;(2)解:当x>100时方案一:100×180+80(x-100)=80x+10000;方案二:(100×180+80x)×80%=64x+14400;(3)解:当x=320时按方案一购买:80×320+10000=35600按方案二购买:64×320+14400=3488035600>34880∴方案二更省钱.【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。

相关文档
最新文档