正弦函数余弦函数图像教案及反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.1 正弦函数、余弦函数的图象

教材分析

三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。

由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.

教学目标

1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.

2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.

3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.

重点难点

教学重点:正弦函数、余弦函数的图象.

教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.

教学用具:多媒体教学、几何画板软件、ppt控件

教学过程

导入新课

1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)?

2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象.

推进新课

新知探究

提出问题

问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢?

问题②:如何得到y=sinx,x∈R时的图象?

对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分

成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O 1上的各分点作x 轴的垂线,就可以得到对应于0、

6π、4π、3π、2

π

、…、2π等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx 在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.

图1

对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx 在x ∈[2kπ,2(k+1)π],k ∈Z 且k≠0上的图象与函数y=sinx 在x ∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x ∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x ∈R 的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)

图2

操作结果、总结提炼:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x ∈[0,2π]的图象.

②左、右平移,每次2π个长度单位即可. 提出问题

如何画出余弦函数y=cosx,x ∈R 的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?

意图:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础. 讨论结果:

把正弦函数y=sinx,x ∈R 的图象向左平移

2

π

个单位长度即可得到余弦函数图象.如图3.

图3

正弦函数y=sinx,x ∈R 的图象和余弦函数y=cosx,x ∈R 的图象分别叫做正弦曲线和余弦曲线点.

提出问题

问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?

问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗?

活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx 在[0,2π]上的图象的形状就基本上确定了.这五点如下: (0,0),(

2

π

,1),(π,0),(23π,-1),(2π,0).

因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们

连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.

对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象. 讨论结果:①略.

②关键点也有五个,它们是:(0,1),(

2

π

,0),(π,-1),(23π,0),(2π,1).

学生练习巩固:1。用五点法作出函数y=sinx 在[0,2π]上的图象;2. 用五点法作出函数y=cosx

在[0,2π]上的图象 应用示例

例1 画出下列函数的简图

(1)y=1+sinx,x ∈[0,2π];(2)y=-cosx,x ∈[0,2π]. x 0 2

π π 2

3π 2π sinx 0 1 0 -1 0 1+sinx

1

2

1

1

图4

x

2

π π

2

3π 2π

相关文档
最新文档