算法设计读书笔记

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析读书笔记

班级:计算1213 学号:201221121029 姓名:徐国强

算法设计的任务是对各类具体的问题设计高质量的算法,以及研究设计算法的一般规律和方法。常用的算法设计方法主要有哈夫曼编码算法,分治法、动态规划法,贪婪法和回溯法,分支限界法等。下面是学习到的几个算法的笔记.

读书笔记1:

1、问题描述

哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。一个包含100,000个字符的文件,各字符出现频率不同,如下表所示。

有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。

前缀码:对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。

译码过程需要方便的取出编码的前缀,因此需要表示前缀码的合适的数据结构。为此,可以用二叉树作为前缀码的数据结构:树叶表示给定字符;从树根到树叶的路径当作该字符的前缀码;代码中每一位的0或1分别作为指示某节点到左儿子或右儿子的“路标”。

从上图可以看出,表示最优前缀码的二叉树总是一棵完全二叉树,即树中任意节点都有2个儿子。图a表示定长编码方案不是最优的,其编码的二叉树不是一棵完全二叉树。在一般情况下,若C是编码字符集,表示其最优前缀码的二叉树中恰有|C|个叶子。每个叶子对应于字符集中的一个字符,该二叉树有|C|-1个内部节点。

给定编码字符集C及频率分布f,即C中任一字符c以频率f(c)在数据文件中出现。C的一个前缀码编码方案对应于一棵二叉树T。字符c 在树T中的深度记为d T(c)。d T(c)也是字符c的前缀码长。则平均码长定

义为:使平均码长达到最小的前缀码编码方案称为C 的最优前缀码。

2、构造哈弗曼编码

哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码。其构造步骤如下:

(1)哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。

(2)算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。

(3)假设编码字符集中每一字符c的频率是f(c)。以f为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n-1次的合并后,优先队列中只剩下一棵树,即所要求的树T。

2.分治法读书笔记:

问题描述:

设有n=2^k个运动员要进行网球循环赛。现要设计一个满足以下要求的比赛日程表:

(1)每个选手必须与其他n-1个选手各赛一次;

(2)每个选手一天只能参赛一次;

(3)循环赛在n-1天内结束。

请按此要求将比赛日程表设计成有n行和n-1列的一个表。在表中的第i行,第j列处填入第i个选手在第j天所遇到的选手。其中1≤i≤n,1≤j≤n-1。8个选手的比赛日程表如下图:

算法思路:按分治策略,我们可以将所有的选手分为两半,则n个选手的比赛日程表可以通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。这时只要让这两个选手进行比赛就可以了。如上图,所列出的正方形表是8个选手的比赛日程表。其中左上角与左下角的两小块分别为选手1至选手4和选手5至选手8前3天的比赛日程。据此,将左上角小块中的所有数字按其相对位置抄到右下角,又将左下角小块中的所有数字按其相对位置抄到右上角,这样我们就分

别安排好了选手1至选手4和选手5至选手8在后4天的比赛日程。依此思想容易将这个比赛日程表推广到具有任意多个选手的情形。

算法步骤:

(1)用一个for循环输出日程表的第一行for(int i=1;i<=N;i++) a[1][i] = i

(2)然后定义一个m值,m初始化为1,m用来控制每一次填充表格时i(i表示行)和j(j表示列)的起始填充位置。

(3)用一个for循环将问题分成几部分,对于k=3,n=8,将问题分成3大部分,第一部分为,根据已经填充的第一行,填写第二行,第二部分为,根据已经填充好的第一部分,填写第三四行,第三部分为,根据已经填充好的前四行,填写最后四行。for (ints=1;s<=k;s++) N/=2;

(4)用一个for循环对③中提到的每一部分进行划分

for(intt=1;t<=N;t++)对于第一部分,将其划分为四个小的单元,即对第二行进行如下划分

同理,对第二部分(即三四行),划分为两部分,第三部分同理。

(5)最后,根据以上for循环对整体的划分和分治法的思想,进行每一个单元格的填充。填充原则是:对角线填充

for(int i=m+1;i<=2*m;i++) //i控制行

for(int j=m+1;j<=2*m;j++) //j控制列

{

a[i][j+(t-1)*m*2]= a[i-m][j+(t-1)*m*2-m];/*右下角的值等于左上角的值*/

a[i][j+(t-1)*m*2-m] =a[i-m][j+(t-1)*m*2];/*左下角的值等于右上角的值*/

}

运行过程:

(1)由初始化的第一行填充第二行

(2)由s控制的第一部分填完。然后是s++,进行第二部分的填充

相关文档
最新文档