经济数学基础1
经济数学基础-知识点归纳

第一章函数与极限1.理解函数概念。
(1)掌握求函数定义域的方法,会求初等函数的定义域和函数值。
函数的定义域就是使函数有意义的自变量的变化范围。
学生要掌握常见函数的自变量的变化范围,如分式的分母不为0,对数的真数大于0,偶次根式下表达式大于0,等等。
(2)理解函数的对应关系f 的含义:f 表示当自变量取值为x 时,因变量y 的取值为f (x )。
(3)会判断两函数是否相同。
(4)了解分段函数概念,掌握求分段函数定义域和函数值的方法。
2.掌握函数奇偶性的判别,知道它的几何特点。
判断函数是奇函数或是偶函数,可以用定义去判断,即(1)若)()(x f x f =-,则)(x f 为偶函数;(2)若)()(x f x f -=-,则)(x f 为奇函数。
也可以根据一些已知的函数的奇偶性,再利用“奇函数±奇函数、奇函数×偶函数仍为奇函数;偶函数±偶函数、偶函数×偶函数、奇函数×奇函数仍为偶函数”的性质来判断。
3.了解复合函数概念,会对复合函数进行分解。
4.知道初等函数的概念,牢记常数函数、幂函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)的解析表达式、定义域、主要性质。
基本初等函数的解析表达式、定义域、主要性质在微积分中常要用到,一定要熟练掌握。
5.了解需求、供给、成本、平均成本、收入和利润函数的概念。
6.知道一些与极限有关的概念(1)知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等;(2)了解无穷小量的概念,知道无穷小量的性质;(3)了解函数在某点连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点。
第二章导数及其应用1.知道一些与导数有关的概念(1)会求曲线的切线方程(2)知道可导与连续的关系(可导的函数一定连续,连续的函数不一定可导)2.熟练掌握求导数或微分的方法。
(1)利用导数(或微分)的基本公式(2)利用导数(或微分)的四则运算(3)利用复合函数微分法3.会求函数的二阶导数。
经济数学基础(1)

极限=。
A.B. ∞C. 0D. 不存在答案:C下列函数在指定区间上单调增加的是。
A. sinxB.C.D. 5-2x答案:B极限=。
答案:2设函数f (x) 的定义域是 (0,1),那么f (x+1) 的定义域是。
A. (0,1)B. (-1,0)C. (1,2)D. (0,2)答案:B设的最小值点是。
A. -1B. 1C. -1和3D. 3答案:B设,则A的秩为。
答案:3若,则=。
A. 2B. 1C. -1D. -2答案:C设,则3A=。
A.B.C.D.答案:A已知生产某种商品q件时的总成本(单位:万元)为:,如果每售出一件该商品的收入为9万元.则生产10件该商品时的平均利润万元。
答案:1设A、B为同阶可逆方阵,则下列说法正确的是。
A. 若AB=O,必有A=O或B=OB.C. r (A+B)=r (A)+r (B)D.答案:D已知生产某种产品的成本函数为C(q)=80+2q,则当产量q=50单位时,答案:3.6当x→0时,下列变量中为无穷小量的是。
A.B.C.D.答案:C下列是积分区间为对称的定积分中,其中积分值为0的是。
A.B.C.D.答案:A某产品的成本函数,那么该产品的平均成本函数=4q++。
答案:8求极限=。
答案:1设,则A的秩为。
答案:3曲线在点(,)处的切线平行于直线y=-2x+3。
答案:-12下列结论中正确的是。
A.B.C.D.答案:D曲线在点(4,2)处的切线方程是y=x+1。
答案:1/4或四分之一函数是函数。
答案:偶设函数满足,则该函数在实数域中。
A. 有一个极大值和极小值B. 仅有一个极大值C. 无极值D. 无法确定有无极值答案:C下列函数中,是的原函数。
A.B.C.D.答案:D线性方程组AX=b答案:秩(A,b)=秩(A)或系数矩阵的秩等于增广矩阵的秩求极限,则k=。
答案:3下列函数中,在区间 (-∞,+∞) 是单调减少的。
A.B. sin xC.D.答案:D矩阵的秩是。
经济数学基础讲义 第1章 函数

第1章 函数1.1 函数概念1.1.1 函数的定义同学们从入小学到高中毕业一直要学习数学,在这一阶段所面对的数学对象的特点是:所讨论的量在研究问题的过程中保持不变.只是从未知到已知.例如解方程或方程组,求得的解都是固定不变的.又如讨论三角形,它的边长也是固定不变的量.这些量叫做常量.常量——只取固定值的量这门课程中讨论的量在研究问题的过程中不是保持不变的.如圆的面积与半径的关系:S =πr 2考虑半径r 可以变化的过程.面积和半径叫做变量.变量——可取不同值的量变域——变量的取值范围我们考虑问题的过程中,不仅是一个变量,可能有几个变量.比如两个变量,要研究的是两个变量之间有什么关系,什么性质.函数就是变量之间确定的对应关系.比如股市中的股指曲线,就是时间与股票指数之间的对应关系.又如银行中的利率表 存期六个月 一年 二年 三年 五年 年利率(%) 5.40 7.47 7.92 8.28 9.00它反映的是存款存期与存款利率之间的对应关系.这几个例子反映的都是两个变量之间的确定的对应关系.函数的定义是:定义1.1 设x , y 是两个变量,x 的变域为D ,如果存在一个对应规则f ,使得对D 内的每一个值x 都有唯一的y 值与x 对应,则这个对应规则f 称为定义在集合D 上的一个函数,并将由对应规则f 所确定的x 与y 之间的对应关系,记为:)(x f y =,称x 为自变量,y 为因变量或函数值,D 为定义域. 集合},)({D x x f y y ∈=称为函数的值域.我们要研究的是如何发现和确定变量之间的对应关系.例1 求函数)1ln(1-=x y 的定义域. 解:)1ln(1-=x y ,求函数的定义域就是使表达式有意义的.由对数函数的性质得到01>-x ,即.由分式的性质得到0)1ln(≠-x ,即11≠-x ,即. 综合起来得出所求函数的定义域为),2()2,1(∞+= D .例2 设国际航空信件的邮资与重量的关系是⎩⎨⎧≤<-+≤<=20010,)10(3.04100,4)(m m m m F 求)20(,)8(,)3(F F F .解:⎩⎨⎧≤<-+≤<=20010,)10(3.04100,4)(m m m m F 用3替代,由第一个关系式表示,得到4)3(=F ,同样可以得到4)8(=F .用20替代,由第二个关系式表示,得到7)20(=F1.1.2 有关函数的几点解释1.函数的表示法如何表示函数关系是需要我们不断研究和发现的.常用的方法有三种:一种是用一个数学公式来表示,叫做解析法;一种是用坐标系中的曲线反映两个变量之间的函数关系,叫做图示法;还有一种方法是用一个表格反映两个变量之间的函数关系,叫做表格法.一般经常使用的就是这三种方法.2.函数的记号在考虑一个问题的过程中,f 表示一个确定的对应关系,在之后考虑这个问题的过程中,f 自始至终表示同样的对应关系.比如53)(2-+=x x x f ,它反映的就是这样一种对应关系:5)(3)()(2-⨯+=f ,等式左端的函数括号中带入一个量,表示要对其进行等式右端的运算.如:15131)1(2-=-⨯+=f ,又如:535)(3)()(242222-+=-⨯+=x x x x x f无论左端带入什么,都对它进行同样的运算.1.1.3 函数的基本性质下面把在中学里大家已经知道的函数的基本属性复习一下,也就是:函数的单调性、奇偶性、有界性、周期性.当一个变量增加时另一个变量也跟着增加, 这样的函数就叫做单调增加的函数.从图形上看这条曲线,曲线上的点x 在增加的时候,它所对应的纵坐标y 也在增加,这样的函数是单调增加的. 单调减少是相反的,随着x 的增加相对应的y 在减少,这样的函数是单调减少的,正如图形中演示的这样.如果函数当x 在增加的时候,它所对应的y 不是增加,也不是减少,这样的函数就不具有单调性.例1 判断函数f (x )=x 2当x >0时的单调性.分析:可以利用单调性的定义,证明对任意的x 1 > x 2,有f (x 1)>f (x 2).解:当x >0时,对任意的x 2 >0,有2221x x >(当x 1 > x 2 >0时,在不等式x 1 > x 2两端同乘以x 1或x 2,显然有2121x x x >,2221x x x >,由不等式的传递性就得到2221x x >.) 由定义可知f (x )=x 2当x >0时是单调增加的.一个函数的图形如果关于y 轴对称,这样的函数就称为偶函数.从图形上来分析,曲线上任一点关于y 轴的对称点也在曲线上面,这条曲线所描绘的函数就是偶函数.从解析式上看,如果有f (-x )=f (x ),f (x )就叫做偶函数.一个函数的图形如果关于原点对称,这样的函数就称为奇函数.曲线上任一点关于原点的对称点也在曲线上面,这条曲线所描绘的函数就是奇函数.从解析式上看,如果有f (-x )=-f (x ),f (x )就叫做奇函数.例2 判断下列函数的奇偶性:(1)y =x 3-1 (2)y =x cos x解:(1)取 x =1,-1,f (1)=0,f (-1)=-2,显然f (1) ≠-f (-1),由此可知y =x 3-1 不是奇函数.又显然f (1) ≠f (-1),由此可知y =x 3-1 不是偶函数.(2)因为y =x 是奇函数, y =cos x 是偶函数,而奇函数和偶函数的乘积是奇函数. 所以y =x sin x 是奇函数如果自变量在定义域中变化时,函数值始终在一个有限的区间内变化,如图形中演示的,无论怎样变化,都有-M ≤ f (x ) ≤ M ,这条曲线所反映的函数就是有界函数.如果存在一个正数T ,对任意的自变量x ,有f (x + T )=f (x ),这样的函数就叫做周期函数. 从图形上反映,这个函数在相隔为T 的任意两点上函数值都是一样的.也可以这样来看,从任意一点出发,以长度T 为间隔划分区间,在每个区间上的函数图形都是可以完全重合的.1.2 几类基本初等函数我们在中学的学习中已经认识了一些函数, 这些函数是非常基本的,有这样几类:1. 常数函数:y = c .这个函数在它的定义域中的取值始终是一个常数,它在直角坐标系中的图形就是一条水平线.2. 幂函数:y = x α,(α∈R ).以x 为底,指数是一个常数.当α = 1时就是y = x ,它的图形是过原点且平分一、三象限的直线;当α=2时就是y = x 2,它的图形是过原点且开口向上的抛物线;当α=3时就是y = x 3,它的图形是过原点的立方曲线.3. 指数函数:y = a x ,( a >0,a ≠1).底数是常数,指数是变量.例如y = e x ,y = 2 x ,y = () x . 所有指数函数的图形都过(0,1)点,当a >1时,函数单调增加,当a <1时,函数单调减少.4. 对数函数: y = log a x ,( a >0,a ≠1).以a 为底的x 的对数.例如y = ln x ,y = log 2x ,y =.所有对数函数的图形都过(1,0)点,当a >1时,函数单调增加;当a <1时,函数单调减少.5. 三角函数:正弦函数:y = sin x .余弦函数:y = cos x .例1判断下列函数中,哪些不是基本初等函数:(1) y =; (2) y =()x ; (3) y =lg(-x );(4) y =; (5) y =2x ; (6) y =e 2x .分析:依据基本初等函数的表达式来判断.解: 直接观察可知⑵与⑷中的函数是基本初等函数,而由52521-==x x y ,y =e 2x =(e 2)x 可知(1)与(6)中的函数是基本初等函数.(3)与(5)中的函数不是基本初等函数1.3 函数的运算函数的运算当然有加、减、乘、除运算,这些就不需要讲了.在这里我们主要将函数的复合运算.所谓复合运算,就是指如果y 是u 的函数,u 是x 的函数,y 通过u 作为中间媒介就成为x 的函数,这就是函数的复合运算.如下面这个例子表示的:u y ln =x u sin =x y sin ln =这里y 是u 的函数,u 是x 的函数,y 通过u 作为中间媒介就成为x 的函数,这就是函数的复合运算.下面把这个复合的步骤以及它们的变域联系起来仔细地介绍一下:y 是u 的函数,这个函数用 f 来表示.u 是x 的函数,这个函数用φ来表示.φ的值域正好落在函数 f 的定义域里,经过u 作为媒介y 就成为x 的函数,这个复合函数的定义域是这样一个(红色)区域,它的值域就缩小成为这样一个(绿色)区域了. 这是为什么呢?因为x 在它的定义域内变化时,u 仅在这样一个(黄色)区域取到值,相应的y 的取值范围就缩小成为这样一个(绿色)区域.复合函数的记号就记为y = f (φ(x )) .这种运算就叫做函数的复合运算.这样我们把函数分一下类:由基本初等函数经过有限次加、减、乘、除或复合而得到的函数称为初等函数.这样的分类把函数分成了初等函数和非初等函数.我们在前面所见到的分段函数就是非初等函数的例子.例1 已知函数y = f (x )的定义域为[0, 1],求函数y = f (e x )的定义域.分析:要使函数u = e x 的值域包含于函数y = f (x )的定义域中,由这个约束条件重新确定x 的取值范围.解:设u = e x ,它的值域要包含于y = f (x )的定义域中,即0 ≤e x ≤1由此得-∞ <x ≤0,由此可知复合函数y = f (e x )的定义域是(-∞, 0].(附:已知函数ln t 是单调增加的,显然有1ln e ln ln lim 0≤<+→xt t ,由此得-∞ <x ≤0 ) 例2 将下列初等函数分解为基本初等函数的四则运算或复合运算:(1)2)2sin(e +=x y (2)x y x 2cos ln 2=分析:由定义知初等函数是基本初等函数经有限次的四则运算和复合运算得到的.具体解决的步骤是:先看函数表达式有无四则运算,如有,则对每一个运算项进行分析,看其是否为复合函数,如是,则选择适当的中间变量将其化为基本初等函数.依此步骤反复进行. 解:(1),v u sin =,,2+=x w其中y , u , v 分别作为中间变量u , v ,w 的函数都是基本初等函数.而w 是幂函数x 与常数函数2的和.(2)u y x ln 2=,,x v cos = 其中y 是指数函数2x 与对数数函ln u 的乘积.而中间变量u , v 分别作为v , x 的函数都是基本初等函数.1.5 经济分析中常见的函数1.5.1 需求函数与供给函数这一节课的内容是要把学习数学和将来搞经济工作联系起来, 我们把经济分析中最最常见的5种函数介绍给大家(这节课只介绍前两个).同时我们希望通过这一节的学习能够使大家感受到数学工具在经济分析中的应用.首先我们介绍需求函数和供给函数.y = f (ϕ(x ))大家可以想象到一个商品在市场上的需求肯定是与它的价格有关系,价格贵,需求量就少,价格便宜,买的人就多.需求和价格之间是有关系的,它们是不是函数关系呢?我们可以把它简化为一种函数关系.我们先不考虑其它因素,简单地认为价格定了需求量就随之确定,这样需求量就是价格的函数.供给,就是厂方能够为市场提供多少产品,当然它也是和价格有关系的,产品价格高,厂方就增加生产,反之供给量就减少.我们也可以把它简化为一种函数关系.需求量与价格之间的函数就称为需求函数,供给量与价格之间的函数就称为供给函数.现在我们讨论一种最简单的情况,认为需求函数和供给函数都是线性函数(一次函数),在这种关系下通过讨论看可以得到什么性质.)0,0(<>+=b a b ap q d表示需求量,表示价格,表示常数.)0,0(1111><+=b a b p a q s表示需求量,表示价格,表示常数.我们容易理解需求量应随价格的增加而减少,所以0<a ,当然0>b .而 01<b ,因为当价格为零时,不会有供给量.我们把这两条曲线放在同一个坐标系中,就会发现有这样的关系,两条直线交于一点,这一点的含义是,在价格为时,产品的需求量与供给量是相同的,即供需达到了平衡.这一点称为供需平衡点. 价格超过时,供过于求;价格低于时,供不应求.在经济分析中,供需平衡点所对应的价格,称为市场均衡价格;它所对应的需求量或供给量称为市场均衡数量. 例1 某种商品的供给函数和需求函数分别为:1025-=p q s ,p q d 5200-=, 求该商品的市场均衡价格和市场均衡数量.解:由市场均衡条件:s d q q =,得到:p p 52001025-=-解出:,1650=q1.5.2 成本函数我们再介绍经济分析中常见的三种函数:第一种叫做成本函数,第二种叫做收入函数,第三种叫做利润函数.我们先介绍成本函数.q p O q pO qp O一种产品的成本可以分为两部分:固定成本C 0,比如,生产过程中的设备投资,或使用的工具,不管生产产品与否,这些费用都是要有的,它是不随产量而变化的,这种成本称为固定成本.变动成本C 1, 比如每一件产品的原材料,这些费用依赖于产品的数量,这种成本称为变动成本.总成本就是固定成本加上变动成本:C = C 0 + C 1成本应与产品的产量有关,这种函数表示为C (q ) = c 0 + C 1(q )这就是成本函数.其中总成本C (q )是产量q 的函数,c 0与产量无关,变动成本C 1(q )也是产量q 的函数. 我们在引入平均成本的概念q q C C )(=,总成本除以产量q ,就是产量为q 时的平均成本,用来表示.例1 生产某商品的总成本是q q C 2500)(+=,求生产50件商品时的总成本和平均成本. 解:成本q q C 2500)(+= 平均成本25002500)()(+=+==qq q q q C q C 600502500)50(=⨯+=C ,12250500)50(=+=C 1.5.3 收入函数下面我们来讲收入函数.一种产品销售之后就会有销售收入,销售收入应该是价格乘以产量.但价格与产量之间也有一定的关系,这样就得到R = q p (q )其中p (q )是价格与产量之间的函数关系.相应地有平均收入函数qq R R )(= 现在我们来研究一种最简单的情况,把收入看作产量的线性函数(价格不随产量而变化),也就是R = pq ,它的图形就是下面这样图形说明销售数量越多收入越多,这是一条单调增加的直线.还有一个函数就是利润函数,利润函数大家也容易理解,因为在收入中减去成本得到的就是利润. 既然成本是产量q 的函数,收入也是q 的函数,那么利润也是q 的函数.即 L (q ) = R (q ) −C (q )qq L L )(= (1) L (q ) > 0 盈利(2) L (q ) < 0 亏损(3) L (q ) = 0 盈亏平衡q O满足L (q ) = 0的q 0称为盈亏平衡点(又称保本点).在假设成本函数和收入函数都是线性函数的情况下来做一些分析:C = c 0 + c 1q ,R = pq它们的图形是两条直线的交点表示收入与成本相等,q 0就是盈亏平衡点.如果两条直线出现了下面这种情况此时两条直线没有交点,也就是没有盈亏平衡点.为了找到盈亏平衡点,我们可以采取两种手段,一种是提高价格;另一种是降低变动成本c 1.这两种手段都可以重新找到盈亏平衡点.从几何上看,增加直线R 的斜率或减小直线C 的斜率都可以使两条直线重新相交.从以上分析可以看出数学工具在经济分析中的作用.例2 某商品的成本函数与收入函数分别为:q C 521+=,q R 8=求该商品的盈亏平衡点.解:q q C 521)(+=,q q R 8)(=,)()(q R q C =q q 8521=+, qOqOq O q O。
经济数学基础第一章1

无理数
上页
下页
返回
-3 -2 -1
0
1
2
3
x
实数与数轴上的点一一对应. 实数与数轴上的点一一对应 实数a 实数 点a 实数的稠密性. 实数的稠密性 2.实数的绝对值 2.实数的绝对值
a a≥0 | a |= − a a < 0 (1) | a |≥ 0, | a |=| −a |, | a |= a 2
( 2)− | a |≤ a ≤| a |
上页 下页 返回
( 3) | a |≤ K (K ≥ 0) (4) | a ± b |≤| a | + | b |
−K ≤a≤ K
(5) |பைடு நூலகம்a | − | b | ≤| a − b |
(6) | ab |=| a | | b | a |a| (7) = (b ≠ 0 ) b |b|
(a, b] = {x | a < x ≤ b, x ∈ R}
无穷区间
( −∞ , b ) = {x | x < b, x ∈ R} ( −∞ , b] = {x | x ≤ b, x ∈ R}
(a,+∞ ) = {x | x > a, x ∈ R} [a,+∞ ) = {x | x ≥ a, x ∈ R} R = ( −∞ ,+∞ ) = {x | −∞ < x < + ∞}
x0
U δ (x 0 )
( −δ
{x 0 }
δ
x0
δ
x0
)δ +
x
= (x 0 − δ, x 0 ) U (x0 , x0 + δ) = { x 0 <| x − x 0 |< δ , x ∈ R }
《经济数学基础》课件第1章

表 1-1
存期 年利率%
三个月 2.60
六个月 2.80
一年 3.0
二年 3.75
三年 4.25
五年 4.75
4. 某城市电话局规定的市话收费标准如下:当月所打电话 次数不超过30次时,只收月租费10元,超过30次时,每次加 收0.20元, 则电话费y和用户当月所打电话次数x的关系可表 示如下:
10,
x 30,
y 10 0.20(x 30), x 30.
像这种在自变量的不同取值范围内,函数关系用不同的 式子来表示的函数,通常称为分段函数.分段函数是微积分中 常见的一种函数.例如,符号函数(如图1-4所示)可以表示成
1, x 0
sgn
x
0,
x0
1, x 0
注 (1) 分段函数是用几个不同解析式表示一个函数,而
(2) 图像法: 把函数关系用平面上的点集反映出来,一般 情况下,它是一条平面曲线.如图1-3所示的是气象站的自动 温度记录仪所记录的某地当天的气温变化曲线,该曲线将气 温T与时间x的函数关系清晰直观地表示出来,如x=12时, T=10℃.
图 1-3
(3) 表格法: 把变量间的函数关系通过表格形式反映出来. 如表1-1给出了2014年3月开始执行的中国银行的人民币定期 储蓄存期与年利率的函数关系.
复杂. 例如,企业的产品收入R是产量Q的函数,而产量Q又 是时间t的函数,于是时间t通过产量Q间接影响收入R,则收 入R构成时间t的函数,这种函数就是复合函数.
定义1.11 设函数y=f(u)、u=φ(x),如果u=φ(x)的值域或 其部分包含在y=f(u)的定义域中,则y通过中间变量u构成x的 函数,称为x的复合函数,记作
例2 设f(x+1)=x2-3x,求f(x).
经济数学基础作业1.doc

经济数学基础作业1 一、填空题1、12、13、y=12(x+1)4、2x5、- π2二、单项选择题1、D2、B3、B4、B5、C 三、解答题 1、计算极限⑴1lim →x x 2-3x+2/x 2-1 = 1lim →x (x-2)(x-1)(x+1)(x-1) =1lim →x (x-2)(x+1)= — 12 ⑵2lim →x (x 2-5x+6)(x 2-6x+8) =2lim →x (x-2)(x-3)(x-2)(x-4) =2lim →x (x-3)(x-4) =12 ⑶0lim→x 1-x-1x = 0lim →x (1-x-1)(1-x+1)x(1-x+1)=0lim →x —11-x+1= — 12 ⑷∞→x lim (x 2-3x+5)(3x 2+2x+4)=∞→x lim (1-3x +5x 2)(3+2x +4x2)= 13⑸0lim →x (Sin3x)( Sin5x) =0lim →x 35( Sin3x 3x )(Sin5x 5x )= 35⑹2lim →x (x 2-4)Sin(x-2)=2lim →x (x+2)Sin(x-2)(x-2)= 42、b=1时,f(x)在x=0处有极限存在,a=b=1时,f(x)在x=0处连续3、计算下列函数的导数或微分⑴、y ′= (x 2)′+(2x) ′+ (㏒2x) ′-(22)′= 2x+2xln2+1x ln2⑵y ′=(ax+b )′(cx+d )- (cx+d) ′(ax+b)(cx+d)2=(ad-cb)(cx+d)2⑶y ′= (13x-5)′= —32(3x-5)-3/2⑷y ′=(x-xe x) ′= (x)′+(xe x) ′=12x -1/2 — (1+x)ex⑸dy= (e ax Sinbx )′dx=e ax(asinbx+bcosbx)dx ⑹dy=(e1/x+x x)′dx=( -1x 2e 1/x +32x 1/2)dx⑺dy=(cosx-e -x2) ′dx=(2xe-x2-12xsin x)dx⑻y ′=n(sinx)n-1xcosx+ncos(nx)⑼y ′=ln(x+1+x 2)′= (x+1+x 2)′1x+1+x 2=(x)(1+x 2) 1x+1+x2⑽y ′= (2cot1/x) ′+(1x) ′+(x 1/6) ′=2cot1/xln2x -2(sin 1x )2 –12x -3/2+16x-5/6 4、下列各方程中y 是的x 隐函数,试求y ′或dy ⑴dy=(y-2x-3)(2y-x)dx⑵dy=(4-cos(x+y)-ye xy)(cos(x+y)+xe xy)dx ⑶y ′′=(2-2x 2)(1+x 2)2⑷y ′′=34x -5/2+14x -3/2y ′′(1)=1经济数学基础作业2 一、填空题1、2xln2+2 2、sinx+c 3、-12F(1-x 2)+c 4、0 5、- 11+t2 二、单项选择题1、D2、C3、C4、C5、B 三、解答题1、计算下列不定积分⑴11-ln33x e -x +c ⑵2x 1/2+43x 3/2+25x 5/2+c⑶12x 2+2x+c ⑷-12ln |1-2x |+C ⑸13(2+x 2)+c ⑹2cos x+c ⑺-2xcos x 2+4sin x2+c⑻(x+1)ln(x+1)-x+c 2、计算下列定积分⑴52 ⑵e-e ⑶2 ⑷-12 ⑸e 2+14⑹3(1-e -4) 经济数学基础作业3一、填空题1、32、-723、AB 为对称矩阵4、(I-B )-1A5、[3/1002/10001-]二、单项选择题1、C2、B3、C4、A5、B 三、解答题 ⑴[5321-]⑵[000]⑶[0]2、计算[142301112155---]3、04、Λ=945、γ(A )=3 6求下列矩阵⑴[943732421---]⑵[21172033---]7、x=[3411--]四、证明题1、证明:∵(B 1+B 2)A=B 1A+B 2A=AB 1+AB 2=A(B 1+B 2)∴B 1+B 2与A 可交换∵(B 1B 2)A=B 1(B 2A)=B 1AB 2=(B 1A)B 2=AB 1B 2=A(B 1B 2)∴B 1B 2与A 可交换2、证明:∵(A+A T )T=A T+(A T )T=A T+A=A+A T∴A 与A+A T是对称矩阵 ∵(AA T )T= (A T )T A T=AA T∴AA T 是对称矩阵 ∵(A TA)T= A T(A T )T=A TA ∴A T A 是对称矩阵3、证明:必要性:(AB )T=(B T A T)=BA=AB充分性:AB=BA=B T A T =(AB )T故得证4、证明:∵(B -1AB )T=(AB )T(B -1)T=B T A T(B T)T=B -1AB ∴B -1AB 是对称矩阵经济数学基础作业4 一、填空题1、(1 ,2)∪(2 ,4]2、1 , 1 , 小3、-12P 4、4 5、t ≠1二、单项选择题1、B2、C3、A4、D5、C 三、解答题1、求解下列可分离变量的微分方程⑴ y=-ln(-e x+c) ⑵ y 3=(x-1)e x+c2、求解下列一阶线性微分方程 ⑴ y=(x+1)2(12x 2+x+c)3、求解下列微分方程的初值问题 ⑴y=ln[12(e 2x+1)]⑵y=1|x|(e x-e)4、求解下列线性方程组的一般解⑴ ⎩⎪⎨⎪⎧x 1=-2x 3+x 4x 2=-x 3 其中x 3,x 4是自由未知量⑵⎩⎪⎨⎪⎧x 1=115x 3-65x 4+45x 2=35x 3-75x 4+35⑶⎩⎪⎨⎪⎧x 1=x 2+5x 3-4x 2+2x 2=-13x 3+9x 4-36解:当a=-3,且b ≠3时, γ(A)<γ─(A ),方程组无解 当a=-3,且b=3时,γ(A)=γ─(A )<3 方程组有无穷多解 当a=-3,γ(A)=γ─(A )=3,方程组有唯一解 7、求解下列经济问题:⑴ 、①当q=10时, ─C (10)=18.5(万元) C ′(10)=11(万元)②当q=20时,平均成本最小 ⑵当q=250时利润最大,L(250)=1230元 ⑶总成本函数为C(x)=x 2+40x+36成本增量为C (600)-C(400)=100(万元)平均成本─C (x )=2x+40+36x令─C ′(x )=0,得x=6 ∴ 当产量q=6百台时,平均成本最低 ⑷ ①总成本函数为C(x)=2x总收益函数为R(x)=-0.01x 2+12x故利润函数为L(x)= R(x)- C(x)= -0.01x 2+10x 令L ′(x)=0,得x=500(件)当q=250时利润最大126②△L= L(550)- L(500) = ⎰+-550500)1002.0(dx x = -25,既利润减少25元2006年11月。
经济数学基础

经济数学基础微积分第一编微分学第二编一元函数积分学线性代数第一编微分学第1章函数第2章极限、导数与微分第3章导数应用第1章函数1.1 函数概念1.2 几类基本初等函数1.3 函数的运算1.4 利息与贴现(略)1.5 经济分析中常见的函数1.1 函数概念1.定义2.几点解释3.基本属性2.几点解释(1)记号(2)两要素(3)单值性(4)图形(5)表示法()y f x=定义域、对应规则一个x只有一个y与之对应解析法、图示法、表格法定义域1)分母≠02)被开偶次方根的数≥03)真数>04)三角函数的定义域列出不等式(组)后解不等式(组)tan ,2cot ,y x x k k Zy xx k k Z πππ=≠+∈=≠∈3.基本属性(1)单调性(2)奇偶性(3)有界性(4)周期性(1)单调性()()()()()()12121212, , x x D f x f x f x x x D f x f x f x ∀<∈∃<∀<∈∃>则称函数单调增加则称函数单调减少(2)奇偶性()()()()()() f x f x f x f x f x f x -=--=则称函数为奇函数则称函数为偶函数(3)有界性()()()()0f x M M f x M f x M M ≤-≤≤>,即则称函数有界显然,注:不是唯一的(4)周期性()()() f x T f x f x T +=则称函数为周期函数注:不是唯一的,其中最小的正数称为最小正周期,简称周期。
1.2 几类基本初等函数1.常数函数2.幂函数3.指数函数4.对数函数5.三角函数6.反三角函数(略)1.常数函数y c=yxcy c=2.幂函数y xα=0(1,1)yxq x() = x-1h x() = x3g x() = x2f x() = x()0,1xy aa a =>≠(0,1)y=(12)xy=2xyx()log 0,1a y x a a =>≠(1,0)ln y x=1lny x=Oxy5.三角函数y=t a n xy=c o s xy=s in xyx1.3 函数的运算1.复合()()(),,y u u x y x y f u u x y f x ϕϕ===⎡⎤⎣⎦是的函数,是的函数,则是的函数,即则2.初等函数:由基本初等函数经过有限次四则运算或复合而得到的能用一个式子表示的函数1.5 经济分析中常见的函数1.需求与供给①需求函数②供给函数③供需平衡点2. 成本、收入、利润①成本②收入③利润()0,0d q aq b a b =+<>()11110,0s q a q b a b =+><d sq q =①成本()()()()0C q c c q C q C q q=+=+==总成本固定成本变动成本总成本平均成本产量②收入()()()()R q q p R q q pq=⨯==⋅收入产价格不变时:量销售量价格③利润()()()()()()0 0 ()0 L q L L q R q C q L q q ==>-=<盈利盈亏平利润收入衡-本本保成亏损第2章极限、导数与微分2.1 极限的概念2.2 极限的运算2.3 函数的连续性2.4 导数与微分的概念2.5 导数计算2.6 高阶导数2.1 极限的概念1.极限的概念(1)数列的极限(2)函数的极限2. 左右极限3. 极限存在定理4. 无穷小量(1)数列的极限“一尺之棰,日截其半,万世不竭”──庄子·天下11111,,,,,,2482n 12n n 当无限增大时,越来越接近于(1)数列的极限{}{}(), lim n n n n n n x n x A n x A x A x A n →∞=→→∞数列当无限增大时,无限地接近于某个固定的常数则称趋于无穷时,数列或以为极限,记作(2)函数的极限①自变量趋于无穷的情形②自变量趋于有限值的情形①自变量趋于无穷xy观察函数1y x=()()()lim lim lim x x x f x f x f x →+∞→∞→-∞⎧⎪⎨⎪⎩②自变量趋于有限值观察函数211x y x -=-()()()0lim lim lim x x x x x x f x f x f x +-→→→⎧⎪⎨⎪⎩0x yx32132012.左右极限()()00lim lim x x x x f x L f x R-+→→==左极限右极限3. 极限存在定理()()()0lim lim lim x x x x x x f x A f x f x A-+→→→⇔===函数在某一点的左、右极限都存在且相等称函数在这点的极限存在4.无穷小量10sin 10sin x x xx x x→→ 如:时是无穷小量时,无穷小,而有界极限为零的量叫无穷小量无穷小量与有界变量的积仍为无穷小量无穷小量的倒数是无穷大量1. 运算法则加、减、乘、除、乘方、开方以后求极限等于先求极限再进行加、减、乘、除、乘方、开方()00lim lim x x x x x C C x x →→→∞==2.求极限的方法:①无穷小量性质()()0→∞→∞有界即无穷大量趋近于0有界即无穷小量趋近于00x x x ②当时,将代入后计算2.求极限的方法:因式分解或分子(分母)有理化,约去零因子后,代入计算0x 0若将代入后为“”型2.求极限的方法:x x ∞→∞∞③当时,将代入后为“”型分子分母同除以的最高次结果有三种:分子次数高:∞分母次数高:0分子分母次数同:最高次的系数比x2.求极限的方法:④两个重要极限()010sin lim 11lim 1lim 1xz x zx z x e x xe →→∞→=⎛⎫→+=+= ⎪⎝⎭3.注意区分0sin lim 1sin lim 01sin x x x xx xx x x →→∞==⎛⎫→∞ ⎪⎝⎭时,是无穷小,有界1.连续:简单讲就是函数在某点的极限等于该点的函数值()()0lim x x f x f x →=()()()()()()()0000000 lim lim lim li m x x x x x x x x f x f x f x f x f x f x f x -+-+→→→→====连续左连续右连续2.间断点:不连续的点就是间断点存在三种情况:()()()()0000lim lim x x x x f x f x f x f x →→≠①不存在②不存在③x 02.4 导数与微分的概念1.引入导数的概念的实例2.导数的概念3.导数的几何意义4.可导与连续的关系5.函数的相对变化率(弹性)6.微分的定义①平均速率()()()()1010100000,0lim t s v t t t t t tts t s t s t t s t v t tst tv t ∆→∆=∆=-=+∆∆-+∆-==∆∆∆∆→∆,令当时,如果极限存在,即为时刻的瞬时速率②切线问题()()()()1010100000tan ,tan 0lim tan x yxx x x x x x f x f x f x x f x xxyx xx ααα∆→∆=∆∆=-=+∆-+∆-==∆∆∆∆→∆割线的斜率令当时,如果极限存在,即为处切线的斜率①函数在某一点的导数()()()0000000000lim lim x x x x x x x x f x x f x yx xx x dfdy f x y dxdx∆→∆→===+∆-∆=∆∆''极限存在,称函数在点处可导,极限值为处的导数,记作或或或注:若是左极限,则为左导数若是右极限,则为右导数②导函数()()()()()()(),,y f x a b x f x f x x y f x a b df dyf x y dx dx=''=''如果函数在区间内每一点都可导,则每取一个,都有一个导数与之对应,也就是说也是的一个函数,称其为函数在区间内的导函数,记为或或或,也简称为导数3. 导数的几何意义函数在某一点的导数,就是函数在这点切线的斜率4. 可导与连续的关系可导一定连续连续不一定可导5. 函数的相对变化率函数的相对变化率─ ─弹性()E ()()()()0000000000lim lim x x x xy y x x y Ef x x x y f x x x xEf x y f x y∆→∆→∆∆'==⋅=∆∆''==⋅()1%%xx f x E含义:当产生的改变时, 近似地改变6. 微分的定义dydy y dx y dx''=→=()()()()000000,,x x x x x x y f x x f x x x dydyf x xdx x x x dyf x dx===='∆'=∆''=∆=∆∴= 若函数在点处可导,则称为函数在点处的微分,记作即2.5 导数计算1.导数(微分)的四则运算法则2.复合函数求导法则3.隐函数求导4.基本初等函数求导公式。
《经济数学基础》第一篇第一章--函数

例如: y x, y x3,
y
1 x2
x2
1
y x x2
2
y 3 x2 x3
归纳幂函数的性质:
1 xn xm xnm 如:x3 x5 x8
2
1 xn
xn
如: x13=x3
3
xn
xm
xn xm
xnm
如: x2= 1
x3
x5 x3
n
3
4 m xn x m 如:y 5 x3 x 5
x 3
x
2
x 3
x 3 接下来将: x 2 写成区间的形式
x 3
x
-3 -2
3
得到定义域: D (3,2) (2,3]
三. 计算函数的值
就是将自变量的值代入函数的表达式中, 计算出因变量(函数)的值来。
关键是对函数记号f x的理解: (1) f x0 表示函数f x在x x0处的值;
x 1
解:1gx x2 x, f x gx.
2gx x 2 xx 0; f x xx R
即D f Dg, f x gx.
3 gx x2 1 x 1 x 1
x 1
f x x 1 x R 即D f Dg, f x gx.
例 4.2 判断下列函数是否相同:
1 f x ln x2, gx 2 ln x; 2 f x ln x3, gx 3ln x;
要注意:所有函数可以分为 奇函数、偶函数和非奇非偶函数。
通过图像可以看出: •奇函数的图像是关于原点对称的, •偶函数的图像是关于y轴对称的。
通过定义,我们可以证明得到下面的结论:
•奇+奇=奇, •偶+偶=偶, •奇×奇=偶, •偶×偶=偶, •奇×偶=奇, •奇+偶=非奇非偶函数, • f(x) + f(-x) 为偶函数, f(x) - f(-x) 为奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
x2 3
(4) ( x 2)2 9
解: (1)由绝对值性质得
3 x 1 3
x 1 2或x 1 2
x 3
2 x 4 (2)由绝对值性质得
x 1或x 3 (3)由绝对值性质(两边取算术根)得
x 3或x 3 (4)由绝对值性质(两边取算术根)得
x1 1, x2 2 都是 x 2 3 x 2 0 的根
”、小于号 不等式——用大于号“>”、 大于等于号“ “<”、 小于等于号“ ” 等不等号将两个代数式连结起来 的式子. (1) 一元一次不等式(组)
含有一个未知量,并且未知量的最高次幂是一次的 不等式称为一元一次不等式。
a
(
O
b
]
x
上述有限区间的区间长度均为 b a ,且 a 称为区间的左端点 b 称为区间的右端点。
以下5类集合都称为无限区间 集合 x x a x a x ,记为(a , ) 集合 x x a x a x ,记为[a , )
ab a b
任何一个实数绝对值等于该实数平方后的算术平方根,即
x x2
2 方程与不等式
用等号连接的两个式子叫做等式,含有未知量的等式 叫做方程.如:
2 x 1 5 , x2 3 x 2 0 2 x y 5 x y 1
能够使方程成为恒等式的未知量的值叫做方程的解.
互为相反的一对数,其绝对值相等,即 x x
两个实数乘积的绝对值等于两个实数绝对值的乘积,即
ab a b
两个实数商的绝对值等于两个实数绝对值的商,即 a a ( b 0) b b 两个实数和的绝对值不大于两个实数绝对值之和,即
ab a b
两个实数差的绝对值不小于两个实数绝对值之差,即
2 如果 x a ,那么 x 称为 a 的平方根。
正数 a 才有平方根,其平方根是两个相反的数 a ,其中 a 称为 a 的算术平方根或简称算术根。
3 如果 x a ,那么 x 称为 a 的立方根。
1.2 数轴与绝对值 规定原点、正方向和长度单位的直线叫做数轴.
数轴上的 O表示原点,原点右边的点表示正数,原点左边的 点表示负数.
a
(
O
b
)
x
集合 x a x b 称为以a , b为端点的闭区间,记为[a , b] 集合 x a x b 称为以a , b为端点的半开区间,记为[a , b )
a a
[
O
b
]x[O Nhomakorabeab
)
x
集合 x a x b 称为以a , b为端点的半开区间,记为(a , b]
解: 由以上结果可得
(1) x x2或x x1 (2) x1 x x2
例3:解不等式
(1) x 2 -5 x 6 0 (2) x 2 +4x 5 0
解: (1) x 2 -5 x 6 ( x 2)( x 3) 0
(2) x 2 +4x 5 ( x 5)( x 1) 0
3 x 2
1 (2) 2 x 2 +x 1 2( x )( x 1) 0 2 1 x 或x 1 2 (3) 1 x 3 1 2 x4
(4) x 2 16 x 4
4 x 4
3 区间与邻域
介于两个实数 a, b 之间的全体实数构成的集合称为有限区间。 设 a, b R, 且a b 集合 x a x b 称为以a , b为端点的开区间,记为(a , b )
例如 25 32 ( 1.3)2 1.69
a 0 1 (a 0) ( 2)3 8
0100 0
VI 开方规则 正数的奇次方根是一个正数.
3
125 5 0 0
正数的偶次方根有两个互为相反的数; 0 的n(n为正整数)次方根是 0;
n
9 3 25 5
负数的奇次方根是一个负数,在实数范围内,负数没有偶 3 次方根. 8 2
第一章
第0节
函数
预备知识
1.实数 由于经济数学基础这门课程主要是在实数范围内研究 微积分、线性代数等问题,因此,本节课主要复习与实数有 关的一些基础知识. 1.1 实数中的基本概念及运算 (1) 实数按照以下方法分类,形成实数系表:
R
实数由有理数和无理数组成.
有理数——能表示为两个整数相除形式的数(包括整数、分 数(或表示成有限小数、无限循环小数)); 无理数——无限不循环小数,即不能表示为两个整数相除形 式的数. (2) 基本概念
数轴上的点与全体实数是一一对应的.
数 x 的绝对值就是数轴上表示这个数的点到原点的距离, 记作: x
正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝 对值是 0.即 x x0 x 0 x0 x x 0 例如 19 19 , 0 0 , 2.56 2.56 绝对值有以下性质: 任何实数都有唯一的绝对值,且绝对值非负,即 x 0 任何一个实数都不大于它的绝对值,且不小于它的绝对值 的相反数,即 x x x
x2 x 1 2 2
x2 x 1
不等式组的解为:1 x 2
2x 4x 6 练习1:解不等式组 4 x 3 2 x 1
(2) 一元二次不等式(组) 设 x 2 bx c ( x x1 )( x x2 )
集合 x x b x x b,记为( , b )
实数集 R x x ,记为( , )
a - ( b - c) = a - b + c a - b + c = a - ( b - c)
(-a) b = -( b a)
(-a) (-b) = b a
V 乘方规则 正数的非 0 次幂是正数;
负数的非 0 偶次幂是正数,奇次幂是负数;
0 的正数次幂等于 0,非 0 数的 0 次幂等于 1.
(3) 实数的运算规则 I 加法、乘法运算规则 加法交换律 a + b = b + a 加法结合律 (a + b) + c = a + (b + c) 乘法交换律 a b = b a 乘法结合律 (a b) c = a (b c)
1 1
2
分配律 a (b + c) = a b + a c
b b 2 4ac x 2a
c 因式分解法:将方程变形为
x2 b c x 0 a a
再将方程写成两个一次项的乘积
b c x x ( x p)( x q ) a a
2
找到 p, q 即得方程的根:x1 p, x2 q
如 x 2 3 x 2 ( x 1)( x 2)
方程的求解方法: a.公式法
b b 2 4ac x 2a
当b2 4ac 0时,有两个不同实数根
b b 2 4ac x1 2a b b 2 4ac , x2 2a
当b2 4ac 0时,有两个相同实数根
b x1 x2 2a
当b2 4ac 0时,没有实数根
x2 3
3 x 2 3 1 x 5
练习2:解下列不等式
(1)
(3)
x 2 +x 6 0
x3 1
(2) 2 x 2 +x 1 0 (4) x 2 16 0
2 解答: (1) x +x 6 ( x 3)( x 2) 0
II 括号规则
a + ( b - c) = a + b – c a + b - c = a + ( b - c) III 正负规则 a (-b) = -( b a) IV 比例规则
a 1 a (b 0) b b a c ac b d bd a c ad bc (b, d 0) b d bd a c a d ad (b, d 0) (b, d 0) b d b c bc
正数和0通常叫做非负数,即当 x 是非负数时,x 0 相反,0和负数通常叫做非正数,即当 y 是非正数时,y 0
在我们遇到的问题中,只用有理数来描述也是不够的。例 如,一个两条等边长为 1分米的等腰直角三角形,其第三条 边的长度是 2 分米。又如,圆的周长与直径之比是一个常数 ,叫做圆周率,用符号 表示。这里的 2 和 是不能被表 示成两个整数之比的,这些数被叫做无理数.无理数又分为 正无理数和负无理数.
ax b 0 (a 0)
含有相同未知量的几个一元一次不等式所组成的不等 式组称为一元一次不等式组。 解法: 移项得 ax b
若a 0,则 x b b ; 若a 0,则 x a a
7 x 3 5 x 1 例1:解不等式组 x 1 x 2 2 7 x 5 x 3 1 解: x 1 x 2 2
正数——由正整数、正分数和正小数组成,记作 a 0
有时用正数也不能准确描述一件事情,例如,白天的最高 气温为7°C,晚上气温下降了10°C,达到最低气温那么应该 怎样描述晚上最低温度呢?
a 负数——在正数前面添上“-”号的数,记作
用负数就可以将晚上最低温度记为-3°C.
( a 0)
0 是一个特殊的数.它既不是正数,也不是负数,而是一 个正、负数的分界数,是一个中性的整数.
含有一个未知量的方程的解也叫做方程的根.
x 2是 2 x 1 5 的根, x1 1, x2 2 都是 x 2 3 x 2 0 的根