第七章微生物的遗传变异和育种

合集下载

微生物遗传变异和育种 答案

微生物遗传变异和育种  答案

第7章微生物遗传变异和育种填空题1.证明DNA是遗传物质的三个经典实验是、、和。

而证明基因突变自发性和不对应性的三个经典实验是、、和细菌转化噬菌体感染植物病毒重建变量试验涂布试验影印平板培养法2.______是第一个发现转化现象的。

并将引起转化的遗传物质称为_______。

Griffith 转化因子3.Avery和他的合作者分别用降解DNA、RNA和蛋白质的酶作用于有毒的S型细胞抽提物,然后分别与______混合,结果发现,只有DNA被酶解而遭到破坏的抽提物无转化活性,说明DNA是转化所必须的转化因子。

无毒的R型细胞(活R菌)4.Alfred 和Martha Chase用P32标记T2噬菌体的DNA,用S35标记的蛋白质外壳所进行的感染实验证实:DNA携带有T2的______。

全部遗传信息5.H. Fraenkel Conrat用含RNA的烟草花叶病毒进行的拆分与重建,实验证明______也是遗传物质。

RNA6.细菌在一般情况下是一套基因,即______;真核微生物通常是有两套基因又称______。

单倍体二倍体7.DNA分子中一种嘧啶被另一种嘌呤取代称为______。

颠换8.______质粒首先发现于大肠杆菌中而得名,该质粒含有编码大肠菌素的基因Col9.原核生物中的基因重组形式有4种类型:_______、_______、_______和_______。

转化转导接合原生质体融合10.当DNA的某一位置的结构发生改变时,并不意味着一定会产生突变,因为细胞内存在一系列的_______,能清除或纠正不正常的DNA分子结构和损伤,从而阻止突变的发生。

修复系统11.营养缺陷型是微生物遗传学研究中重要的选择标记和育种的重要手段,由于这类突变型在_______上不生长,所以是一种负选择标记。

基本培养基12.两株多重营养缺陷型菌株只有在混合培养后才能在基本培养墓上长出原养型菌落,而未混合的两亲菌均不能在基本培养基上生长,说明长出的原养型菌落是两菌株之间发生了遗传_______和_______所致。

第七章微生物的遗传和变异

第七章微生物的遗传和变异
酶活性的改变:
大肠埃希菌
乳糖
环境无乳糖,则不产生三种酶
含链霉素培基 痢疾杆菌 依赖链霉素株 ( 耐药菌株 )
耐药性改变:
二、微生物遗传和变异的物质基础 真核微生物的遗传物质: 原核微生物的遗传物质: 病毒的遗传物质:
一、微生物的遗传变异现象
形态与结构变异 菌落形态变异 毒力变异 酶活力变异 抗药性变异
形态改变1
3-6% NaCl 鼠疫杆菌────→多形态性(衰残型) 琼脂培基
青霉素、溶菌酶 正常形态细菌 L型变异 抗体或补体 (部分或完全失去胞壁)
正常霍乱弧菌
霍乱弧菌L型
形态改变2
42-43℃ 炭疽杆菌────→失去形成芽胞能力, 毒性减弱 10-20天 0.1%石炭酸 变形杆菌(有鞭毛) (无鞭毛)
1923年: 胆汁、甘油、马铃薯培养基 牛型结核杆菌 卡介苗 (有毒) 13年(230代) (弱毒,保持抗原性)
毒力改变2
β-半乳糖苷酶 半乳糖苷渗透酶 半乳糖苷转酰酶
中国科学院武汉病毒所菌种保藏中心
单位 缩写
单位名称
单位 缩写
单位名称
各国主要菌种保藏机构
(二) 菌种的复壮 使衰退的菌种恢复原来优良性状。是指在菌种已发生衰退的情况下,通过纯种分离和生产性能测定等方法,从衰退的群体中找出未衰退的个体,以达到恢复该菌原有典型性状的措施。
纯种分离
生物学性状检测 生产性能检测
国内外菌种保藏机构
KIM
德国微生物研究所菌种收藏室
NCIB
英国国立工业细菌收藏所
MIG
德国发酵红叶研究所微生微生物收藏室
CMI
英联邦真菌研究所
RKI
德国科赫研究所

知识点1遗传变异的物质基础

知识点1遗传变异的物质基础

一、三个经典实验
经典试验1. 肺炎链球菌的转化试验
S型和R型细胞侵染试验
分离后的S型细胞物质对R型细胞的转化
经典试验2. 噬菌体感染实验
经典试验3. 植物病毒重建试验
结论
细胞生物的遗传物质是核酸, 核酸尤其是DNA才是一切生物遗 传变异的真正物质基础。
第七章 微生物的遗传变异和育种源自第一节 第二节 第三节 第四节
遗传变异的物质基础 基因突变和诱变育种 基因重组和杂交种育 菌种的衰退、复壮和保藏
遗传 :上一代生物如何将自身的一整套遗传基因稳定地传递给
下一代的行为或功能,它具有极其稳定(保守)的特性。
变异:生物体在某种外因或内因的作用下所引起的遗传物质结构
或数量的改变,即遗传型的改变。概率低、变化幅度大、变后新 性状稳定可遗传。
遗传型(基因型):某生物个体含有的全部遗传因子即基因组所
携带的遗传信息。是一种内在的可能性或潜力,其实质就是遗传 物质上所负载的特定遗传信息。
表型:某一生物所具有的一切外表特征和内在特性的总和,是遗
传型在合适环境条件下通过代谢发育而得到的具体体现。具现实 性。
饰变:指外表的修饰性改变, 不涉及遗传物质结构,只发生 在转录、转译水平上的表型变化。
特点:每一个体都发生变化性状变化的幅 度小;因遗传物质不变故饰变是不遗传的。
粘质沙雷氏菌 : 在25℃下培养时会产生深红色的
灵杆菌素,在37℃时不产生色素。
一、三个经典实验 二、遗传物质在微生物细胞内存
在的部位和方式

第七章微生物的遗传变异和育种2

第七章微生物的遗传变异和育种2

10-6~10-9
若干细菌某一性状的突变率
菌名
突变性状
突变率
Escherichia coil (大肠杆菌)
抗T1噬菌体
3×10-8
E.coil
抗T3噬菌体
1×10-7
E.coil
不发酵乳糖
1×10-10
E.coil
Staphylococcus aureus(金黄色葡 萄球菌)
S.aureus
抗紫外线 抗青霉素 抗链霉素
间接引起置换的诱变剂:
引起这类变异的诱变剂都是一些碱基类似物,如5-溴尿嘧 啶(5-BU)、5-氨基尿嘧啶(5-AU)、8-氮鸟嘌呤 (8-NG)、2-氨基嘌呤(2-AP)和6-氯嘌呤(6-CP) 等。它们的作用是通过活细胞的代谢活动掺入到DNA 分子中后而引起的,故是间接的。
(2)移码突变(frame-shift mutation 或phase-shift mutation)
(四) 基因突变的自发性和不对应性的证明
一种观点:突变是“定向变异”,是“驯化”,是由环 境因子诱发出来的;
另一种观点;基因突变是自发的,且与环境因素是不对 应的,后者只不过是选择因素;
1、 变量试验(fluctuation test) 又称波动试验或彷徨试 验。
2、涂布试验(Newcombe experiment) 3、平板影印培养试验(replica plating) 1952年,J.Lederberg夫妇
2、定向培育优良品种:指用某一特定因素长期处理某微生 物的群体,同时不断的对它们进行移种传代,以达到积 累并选择相应的自发突变株的目的。由于自发突变 的 频 率较低,变异程度较轻微,所以培育新种的过程十分缓 慢。与诱变育种、杂交育种和基因 工程技术相比,定向 培育法带有“守株待兔”的性质,除某些抗性突变外, 一般要相当长的时间

微生物的遗传变异与育种答案解析

微生物的遗传变异与育种答案解析

第七章习题答案一.名词解释1.转座因子:具有转座作用的一段DNA序列.2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌的现象称为普遍转导。

3.准性生殖:是一种类似于有性生殖,但比它更为原始的两性生殖方式,这是一种在同种而不同菌株的体细胞间发生的融合,它可不借减数分裂而导致低频率基因重组并产生重组子.4.艾姆氏试验:是一种利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌剂的简便有效方法5.局限转导:通过部分缺陷的温和噬菌体把供体的少数特定基因携带到受体菌中,并与后者的基因整合,重合,形成转导子的现象.6.移码突变:诱变剂使DNA序列中的一个或几个核苷酸发生增添或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变.7.感受态:受体细胞最易接受外源DNA片段并能实现转化的一种生理状态.8. 高频重组菌株:该细胞的F质粒已从游离态转变为整合态,当与F- 菌株相接合时,发生基因重组的频率非常高.9.基因工程:通过人工方法将目的基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新的遗传性状的一种育种措施称基因工程。

10.限制性内切酶:是一类能够识别双链DNA分子的特定序列,并能在识别位点内部或附近进行切割的内切酶。

11.基因治疗:是指向靶细胞中引入具有正常功能的基因,以纠正或补偿基因的缺陷,从而达到治疗的目的。

12.克隆:作为名词,也称为克隆子,它是指带有相同DNA序列的一个群体可以是质粒,也可以是基因组相同的细菌细胞群体。

作为动词,克隆是指利用DNA体外重组技术,将一个特定的基因或DNA序列插入一个载体DNA分子上,进行扩增。

二. 填空1.微生物修复因UV而受损DNA的作用有光复活作用和切除修复.2.基因组是指一种生物的全套基因。

3.基因工程中取得目的基因的途径有 _____3_____条。

4.基因突变可分为点突变和染色体突变两种类型。

微生物的遗传变异和育种要点︰四个概念︰遗传型表型

微生物的遗传变异和育种要点︰四个概念︰遗传型表型

第一節微生物的遺傳變異的概述遺傳和變異是生物體最本質的屬性之一。

所謂遺傳,講的是發生在親子間的關係,即指生物的上一代將自己的一整套遺傳因子穩定地傳遞給下一代的行為或功能,它具有極其穩定的特性。

而變異是指子代與親代之間的不相似性。

遺傳是相對的,變異是絕對的。

遺傳保證了物種的存在和延續,而變異推展了物種的進化和發展。

在學習遺傳、變異內容時,先應清楚掌握以下幾個概念︰(一)遺傳型又稱基因型,指某一生物個體所含有的全部遺傳因子即基因組所攜帶的遺傳訊息。

遺傳型是一種內在可能性或潛力,其實質是遺傳物質上所負載的特定遺傳訊息。

具有某遺傳型的生物只有在適當的環境條件下,透過自身的代謝和發育,才能將它具體化,即產生表型。

(二)表型指某一生物體所具有的一切外表特徵及內在特性的總和,是其遺傳型在合適環境下透過代謝和發育而得到的具體體現。

所以,它與遺傳型不同,是一種現實性。

(三)變異指在某種外因或內因的作用下生物體遺傳物質架構或數量的改變,亦即遺傳型的改變。

變異的特點是在群體中以極低的機率(一般為10-5~10-10)出現,性狀變化的幅度大,且變化后的新性狀是穩定的、可遺傳的。

(四)飾變指一種不涉及遺傳物質架構改變而只發生在轉錄、翻譯水準上的表型變化。

其特點是整個群體中的幾乎每一個體都發生同樣變化;性狀變化的幅度小;因其遺傳物質不變,故飾變是不遺傳的。

例如,Serratia marcescens(粘質沙雷氏菌)在25℃下培養時,會產生深紅色的靈杆菌素,它把菌落染成鮮血似的。

可是,當培養在37℃下時,群體中的一切個體都不產色素。

如果重新降溫至25℃,所有個體又可恢復產色素能力。

所以,飾變是與變異有著本質差別的另一種現象。

上述的S.marcescens產色素能力也會因發生突變而消失,但其機率僅10-4,且這種消失是不可恢復的。

從遺傳學研究的角度來看,微生物有著許多重要的生物學特性︰微生物架構簡單,個體易于變異;營養體一般都是單倍體;易于在成分簡單的合成培養基上大量生長繁殖;繁殖速度快;易于累積不同的最終代謝產物及中間代謝物;菌落形態特徵的可見性與多樣性;環境條件對微生物群體中各個體作用的直接性和均一性;易于形成營養缺陷型;各種微生物一般都有相應的病毒;以及存在多種處于進化過程中的原始有性生殖模式等。

微生物的遗传变异和育种

微生物的遗传变异和育种

第七章微生物的遗传变异和育种第一节微生物的遗传变异的概述遗传和变异是生物体最本质的属性之一。

所谓遗传,讲的是发生在亲子间的关系,即指生物的上一代将自己的一整套遗传因子稳定地传递给下一代的行为或功能,它具有极其稳定的特性。

而变异是指子代与亲代之间的不相似性。

遗传是相对的,变异是绝对的。

遗传保证了物种的存在和延续,而变异推动了物种的进化和发展。

在学习遗传、变异内容时,先应清楚掌握以下几个概念:(一)遗传型又称基因型,指某一生物个体所含有的全部遗传因子即基因组所携带的遗传信息。

遗传型是一种内在可能性或潜力,其实质是遗传物质上所负载的特定遗传信息。

具有某遗传型的生物只有在适当的环境条件下,通过自身的代谢和发育,才能将它具体化,即产生表型。

(二)表型指某一生物体所具有的一切外表特征及内在特性的总和,是其遗传型在合适环境下通过代谢和发育而得到的具体体现。

所以,它与遗传型不同,是一种现实性。

(三)变异指在某种外因或内因的作用下生物体遗传物质结构或数量的改变,亦即遗传型的改变。

变异的特点是在群体中以极低的概率(一般为10-5~10-10)出现,性状变化的幅度大,且变化后的新性状是稳定的、可遗传的。

(四)饰变指一种不涉及遗传物质结构改变而只发生在转录、翻译水平上的表型变化。

其特点是整个群体中的几乎每一个体都发生同样变化;性状变化的幅度小;因其遗传物质不变,故饰变是不遗传的。

例如,Serratia marcescens(粘质沙雷氏菌)在25℃下培养时,会产生深红色的灵杆菌素,它把菌落染成鲜血似的。

可是,当培养在37℃下时,群体中的一切个体都不产色素。

如果重新降温至25℃,所有个体又可恢复产色素能力。

所以,饰变是与变异有着本质差别的另一种现象。

上述的S.marcescens产色素能力也会因发生突变而消失,但其概率仅10-4,且这种消失是不可恢复的。

从遗传学研究的角度来看,微生物有着许多重要的生物学特性:微生物结构简单,个体易于变异;营养体一般都是单倍体;易于在成分简单的合成培养基上大量生长繁殖;繁殖速度快;易于累积不同的最终代谢产物及中间代谢物;菌落形态特征的可见性与多样性;环境条件对微生物群体中各个体作用的直接性和均一性;易于形成营养缺陷型;各种微生物一般都有相应的病毒;以及存在多种处于进化过程中的原始有性生殖方式等。

微生物的遗传变异和育种PPT课件

微生物的遗传变异和育种PPT课件
实验设计者
1952年,美国的莱德伯格夫妇
实验材料
E.coli K12
实验过程
Lederberg 的平板培养法
(四)突变的特点
不对应性 自发性 稀有性 独立性 诱变性 稳定性 可逆性
核基因组
真核生物的 有核膜包裹的真核
(DNA+组蛋白)
原核生物的 无核膜包裹的核区
(环状双链DNA)
线粒体
真核生物的
细胞质基因 共生生物
叶绿体等
核外染色体
2um质粒等 F因子(F质粒)
R因子(R质粒)
原核生物的
Col质粒
Ti质粒 巨大质粒
降解性质粒等
原核生物的质粒
1. 质粒的定义
•指游离于原核生物核基因组以外,具有独立复制 能力的小型共价闭合环状的dsDNA分子,即 cccDNA(circular covalently closed DNA)。
4)Ti质粒 (tumor inducing plasmid)
Agrobacterium tumefaciens(根
癌土壤杆菌)从一些双子叶植物的受 伤根部侵入,最后在其中溶解,释放 出Ti质粒,其上的T-DNA片段与植物 细胞中的核染色体组发生整合,合成 正常菌株所没有的冠瘿碱类,破坏控 制细胞分裂的激素调节系统,从而使 它转变成癌细胞。
自发突变几率 一般在10-6~10-9范围内;
突变率为10-9的含义
抗性突变是最常见的突变类型;
细菌产生抗药性的途径 基因突变 抗药性质粒的转移 生理适应
由基因突变引起的抗药性的原因?
两种观点:
突变的性状与引起突变的原因间呈对应 性 — 抗性突变株的产生是由环境因素 诱发出来的,属定向变异;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章微生物的遗传变异和育种重点:四个概念:遗传型、表型、变异和饰变。

经典转化实验、噬菌体感染实验和植物病毒重建实验。

基因突变、诱变育种:相关概念营养缺陷型的筛选环节。

基因重组方式基因工程:概念及步骤。

第一节微生物的遗传变异的概述遗传:指生物的上一代将自己的一整套遗传因子稳定地传递给下一代的行为或功能,它具有极其稳定的特性。

变异:指子代与亲代之间的不相似性。

应掌握的几个概念:(一)遗传型(又称基因型)指某一生物个体所含有的全部遗传因子即基因组所携带的遗传信息。

(二)表型指某一生物体所具有的一切外表特征及内在特性的总和,是其遗传型在合适环境下通过代谢和发育而得到的具体体现。

(三)变异指在某种外因或内因的作用下生物体遗传物质结构或数量的改变,亦即遗传型的改变。

变异的特点是在群体中以极低的概率(一般为10-5〜10-10)出现,性状变化的幅度大,且变化后的新性状是稳定的、可遗传的。

(四)饰变指一种不涉及遗传物质结构改变而只发生在转录、翻译水平上的表型变化。

特点是整个群体中的几乎每一个体都发生同样变化;性状变化的幅度小;因其遗传物质不变,故饰变是不遗传的。

为什么微生物是研究现代遗传学和其他许多重要的生物学基本理论问题的最佳材料和研究对象?答案:从遗传学研究的角度来看,微生物有着许多重要的生物学特性:1.微生物结构简单,个体易于变异;2•营养体一般都是单倍体;3.易于在成分简单的合成培养基上大量生长繁殖;4.繁殖速度快;5.易于累积不同的最终代谢产物及中间代谢物;6.菌落形态特征的可见性与多样性;7.环境条件对微生物群体中各个体作用的直接性和均一性;易于形成营养缺陷型;8.各种微生物一般都有相应的病毒;9.存在多种处于进化过程中的原始有性生殖方式。

★第二节遗传变异的物质基础一、证明核酸是遗传变异的物质基础的经典实验★★(一)经典转化实验英国医生F.Griffith (1928年)以肺炎链球菌(旧称肺炎双球菌)作为研究对象。

有荚膜肺炎链球菌是致病性的,它的菌落表面光滑,所以称S型;无荚膜肺炎链球菌无致病性,菌落外观粗糙,故称R 型。

F.Griffith做了以下3组实验:2.细菌培养试验活的S菌培养皿培养培养皿培养培养皿培养不生长长出R菌4长出大量R菌+ 10-6S菌肺炎链球菌热死S菌活S菌热死S菌+活R菌3. S 型菌的无细胞抽提液试验活R 菌+ S 菌的无细胞抽提液 一培养_培养_-长出大量R 菌和少量S 菌I以上实验说明,加热杀死的S 型细菌细胞内可能存在一种具 有遗传转化能力的物质,能通过某种方式进入 R 型细胞,并使R 型细胞获得表达S 型荚膜性状的遗传特性。

1944年,Avery 等人从热死的S 型肺炎链球菌中提纯了可能 作为转化因子的各种成分,并深入到离体条件下进行了转化实 验。

(1)从活的S 菌中抽提各种细胞成分(DNA 、蛋白质、荚膜 多糖等)对各生化组分进行转化试验① 加S 菌的DNA —② 加S 菌的DNA 和DNA 酶以外的酶③ 加S 菌的DNA 和DNA 酶④ 加S 菌的RNA⑤ 加S 菌的蛋白质⑥ 加S 菌的荚膜多糖 结果只有S 型菌株的DNA 才能将肺炎链球菌的R 型转化为 S 型,而且DNA 的纯度越高,其转化效率也越高,只取用 6X 10-8g 的纯DNA 时,仍保持转化活力。

说明S 型转移给R 型的绝不是遗传性状(在这里是荚膜多 糖)的本身,而是以 DNA 为物质基础的遗传信息。

(二)噬菌体感染实验1952年,A.D.Hershey 和M.Chase 发表了证实 DNA 是噬菌 体的遗传物质的著名实验一一噬菌体感染实验。

先将大肠杆菌培养在以放射性 3巾043-或3%042-作为磷源或 硫源的合活R 菌 长出S 菌成培养基中,获得含32P-DNA核心或含35S-蛋白质外壳的两种实验用噬菌体。

接着做以下两组实验(略P.191)。

在噬菌体的感染过程中,蛋白质外壳未进入宿主细胞。

进入宿主细胞的虽只有DNA,但经增殖、装配后,却能产生一大群既有DNA核心、又有蛋白质外壳的完整的子代噬菌体粒。

证明,在DNA中存在着包括合成蛋白质外壳在内的整套遗传信息。

(三)植物病毒的重建实验H.Fraenkel-Conrat(1956年)进一步用含RNA的烟草花叶病毒(TMV )进行了著名的植物病毒重建实验。

把TMV放在一定浓度的苯酚溶液中振荡,就能将它的蛋白质外壳与RNA核心相分离。

结果发现裸露的RNA也能感染烟草,并使其患典型症状,且在病斑中还能分离到完整的TMV粒子。

由于提纯的RNA缺乏蛋白质衣壳的保护,所以感染频率要比正常TMV粒子低些。

在实验中,还选用了另一株与TMV近缘的霍氏车前花叶病毒(HRV)。

整个实验的过程和结果如下:艷土咗杂含的帶矯的電新分离Ww 拆开的病暉病埠烟叶的病寄当用TMV-RNA与HRV-衣壳重建后的杂合病毒去感染烟草时,烟叶上出现的是典型的TMV 病斑,再从中分离出来的新病毒也是未带任何HRV 痕迹的典型TMV 病毒。

用HRV- RNA与TMV-衣壳进行重建时,也可获得相同的结论。

证明:在RNA 病毒中遗传的物质基础也是核酸(RNA)。

3 个经典实验的共同结论:只有核酸才是负载遗传信息的真正物质基础。

二、遗传物质在细胞中的存在方式从7 个层次探讨。

(一)细胞水平真核微生物核外有核膜,叫真核。

原核微生物核外无核膜,叫拟核或原核,也称核区。

在不同的微生物细胞中,细胞核的数目是不同的,但孢子只有一个核。

(二)细胞核水平真核微生物的DNA 与组蛋白结合在一起形成染色体,由核膜包裹,形成有固定形态的真核。

原核微生物的DNA 不与任何蛋白质结合,也有少数与非组蛋白结合在一起,形成无核膜包裹的呈松散状态存在的核区,其中的DNA 呈环状双链结构。

不论是真核微生物还是原核微生物,除细胞核外,在细胞质中还有能自主复制的遗传物质。

例如,真核微生物的中心体、线粒体、叶绿体等细胞器,还有2卩m质粒。

原核微生物的质粒种类很多,常见的质粒有细菌的致育因子(F 因子)、抗药因子(R因子)以及大肠杆菌素因子等。

(三)染色体水平真核微生物的细胞核中染色体数目较多,而原核微生物中只有一条。

除染色体的数目外,染色体的套数也不相同。

有单倍体、双倍体之分。

(四)核酸水平考虑:遗传物质是DNA 还是RNA 、是双链还是单链结构、长短差别、呈环状还是线状。

(五)基因水平原核生物的基因可分为调节基因、启动基因、操纵基因和结构基因。

(六)密码子水平遗传密码是指DNA 链上特定的核苷酸排列顺序。

基因中携带的遗传信息通过mRNA 传给蛋白质。

遗传密码的单位是密码子。

三联密码子一般都用mRNA 上的3 个核苷酸序列来表示。

(七)核苷酸水平核苷酸是核酸的组成单位,大多数微生物的DNA 中只含有dAMP 、dTMP 、dGMP 和dCMP 4种脱氧核糖核苷酸;在大多数RNA 中只含有AMP 、UMP 、GMP 和CMP 4 种核糖核苷酸。

核苷酸是最小的突变单位或交换单位。

第三节基因突变和诱变育种一、基因突变基因突变:一个基因内部遗传结构或DNA 序列的任何改变,包括一对或少数几对碱基的缺失、插入或置换,而导致的遗传变化。

又称点突变或狭义的突变。

染色体畸变:是指大段染色体的缺失、重复、倒位、易位。

广义的突变包括染色体畸变和点突变。

从自然界分离得到的菌株一般称野生型菌株,简称野生型。

野生型经突变后形成的带有新性状的菌株,称突变株。

★ (一)基因突变的类型根据突变体表型不同,可把突变分成以下几种类型:1. 营养缺陷型概念:某一野生型菌株因发生基因突变而丧失合成一种或几种生长因子、碱基或氨基酸的能力,因而无法在基本培养基(MM )上正常生长繁殖的变异类型,称为营养缺陷型,它们可在加有相应营养物质的基本培养基平板上选出。

营养缺陷型突变株在遗传学、分子生物学、遗传工程和育种等工作中十分有用。

2. 抗性突变型概念:抗性突变型是指野生型菌株因发生基因突变,而产生的对某化学药物或致死物理因子的抗性变异类型,它们可在加有相应药物或用相应物理因子处理的培养基平板上选出。

抗性突变型菌株在遗传学、分子生物学、遗传育种和遗传工程等研究中极其重要。

3. 条件致死突变型概念:某菌株或病毒经基因突变后,在某种条件下可正常地生长、繁殖并呈现其固有的表型,而在另一种条件下却无法生长、繁殖,这种突变类型称为条件致死突变型。

广泛应用的一类是温度敏感突变型。

这些突变型在一定温度条件下并不致死,所以可以在这一温度中保存下来。

它们在另一温度下是致死的,通过它们的致死作用,可以用来研究基因的作用等问题。

4. 形态突变型概念:形态突变型是指由突变引起的个体或菌落形态的变异,一般属非选择性突变。

例如,细菌的鞭毛或荚膜的有无,霉菌或放线菌的孢子有无或颜色变化,菌落表面的光滑、粗糙以及噬菌斑的大小、清晰度等的突变。

5. 抗原突变型概念:抗原突变型是指由于基因突变引起的细胞抗原结构发生的变异类型。

包括细胞壁缺陷变异(L 型细菌等)、荚膜或鞭毛成分变异等,一般也属非选择性突变。

6. 其他突变型如毒力、糖发酵能力、代谢产物的种类和产量以及对某种药物的依赖性等的突变型。

(二)突变率概念:某一细胞(或病毒颗粒)在每一世代中发生某一性状突变的概率,称突变率。

为方便突变率也可以用某一单位群体在每一世代(即分裂一次)中产生突变株的数目来表示。

例如,一个含108个细胞的群体,当其分裂为2X 108个细胞时,即平均发生 1 次突变的突变率也是10-8。

某一基因的突变一般是独立发生的,它的突变率不会影响其他基因的突变率。

要在同一细胞中同时发生两个或两个以上基因突变的概率是极低的,因为双重或多重基因突变的概率是各个基因突变概率的乘积,例如某一基因的突变率为10-8,另一为10-6,则双重突变的概率仅10-14。

★(三)基因突变的特点1. 不对应性即突变的性状与引起突变的原因间无直接的对应关系。

突变性状都可通过自发的或其他任何诱变因子诱发得到。

青霉素、紫外线或高温仅是起着淘汰原有非突变型(敏感型)个体的作用。

2. 自发性在没有人为诱发因素的情况下,各种遗传性状的改变可以自发地产生。

3. 稀有性指自发突变的频率较低,而且稳定,一般在10-6〜10-9间。

4. 独立性突变的发生一般是独立的,即在某一群体中,既可发生抗青霉素的突变型,也可发生抗链霉素或任何其他药物的抗药性。

某一基因的突变,即不提高也不降低其他任何基因的突变率。

突变不仅对某一细胞是随机的,且对某一基因也是随机的。

5.可诱变性通过各种物理、化学诱变剂的作用,可提高突变率,一般可提高10〜105倍。

6.稳定性突变产生的新性状是稳定的和可遗传的。

7.可逆性由原始的野生型基因变异为突变型基因的过程称为正向突变,相反的过程则称为回复突变。

相关文档
最新文档