ADAMS仿真分析及调试
ADAMSCAR车辆操稳性国标试验仿真设定参数

ADAMSCAR车辆操稳性国标试验仿真设定参数车辆操稳性是评判一辆车辆在行驶中稳定性和控制性能的重要指标,而国标试验是一种标准化的测试方法,用来评估车辆在各种路况下的操稳性表现。
为了提高车辆的操稳性,必须通过仿真模拟来研究并优化车辆在不同条件下的行驶性能。
在进行车辆操稳性国标试验的仿真设定参数时,需要考虑以下几个关键因素:
1.道路条件:不同的道路条件对车辆操稳性的影响很大,因此需要考虑在干燥、湿滑、结冰等各种不同路面条件下进行测试。
在仿真模拟中,可以通过调整路面摩擦系数和路面粗糙度等参数来模拟不同的道路条件。
2.车辆参数:车辆的动力学特性和操纵性能对操稳性有着重要影响,比如车辆的质量、轴距、悬架刚度、转向系统等参数。
在仿真模拟中,需要正确设置车辆的动力学模型和操纵性能模型,以便准确地评估车辆在各种条件下的操稳性表现。
3.控制系统:车辆的控制系统对操稳性也有着重要影响,比如ABS、ESP等电子辅助系统。
在仿真模拟中,需要正确设置控制系统的参数和工作逻辑,以便模拟真实车辆在紧急情况下的控制响应。
4.测试项目:车辆操稳性国标试验通常包括直线行驶、转向稳定性、抗侧滑性、抗侧风性等多个测试项目。
在仿真模拟中,需要设置合适的测试项目和参数,以便完整地评估车辆的操稳性性能。
综上所述,车辆操稳性国标试验的仿真设定参数是一个复杂的过程,需要考虑到各种因素的相互影响。
通过准确设置道路条件、车辆参数、控制系统和测试项目等参数,可以有效地评估车辆在不同条件下的操稳性表
现,为改进车辆性能提供重要参考。
通过仿真模拟研究,可以提高测试效率、降低成本,并为优化车辆设计和改进控制系统提供指导。
基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析1. 引言1.1 背景介绍机械四连杆机构是一种常见的机械系统,由四个连杆组成,通过铰链连接在一起。
该机构具有简单结构、运动灵活等特点,广泛应用于工程领域中的机械传动系统、转动机械装置等。
随着现代工程技术的发展,人们对机械四连杆机构的运动性能和工作特性提出了更高的要求。
利用ADAMS软件进行机械四连杆机构的运动仿真分析已成为一种常用的研究方法。
通过仿真分析,可以全面地了解机构在不同工况下的运动规律和性能特点,为设计优化和故障分析提供重要依据。
1.2 研究目的本文旨在利用ADAMS软件对机械四连杆机构进行运动仿真分析,探讨其运动规律及特性。
通过建立机构的数学模型,模拟机构在不同工况下的运动状态,分析机构的运动学性能和动力学特性,为设计优化提供理论支持。
借助ADAMS软件的功能,对机构进行参数优化,使机构的性能达到最佳状态。
本文研究的目的包括:1. 分析机械四连杆机构的运动规律,揭示其运动特性;2. 探讨机构在不同工况下的运动状态和特点,评估机构的性能;3. 基于仿真结果,进行参数优化,提高机构的工作效率和稳定性;4. 对机构可能出现的故障进行分析,为机构的维护和保养提供参考。
通过对机械四连杆机构的运动仿真分析,旨在为机械工程师提供设计和优化机构的参考,促进机械系统的创新和发展。
1.3 研究方法研究方法是本文的关键部分,主要包括以下几个步骤:(1)了解ADAMS软件的基本原理和使用方法,包括建模、设置参数、运动仿真等操作。
(2)建立四连杆机构的三维模型,并根据实际情况设置各个连杆的长度、质量、摩擦系数等参数。
(3)设定机构的初始条件和约束条件,如应用驱动力、初始速度、固定关节等,以模拟机构的运动过程。
(4)进行仿真分析,观察四连杆机构在不同驱动力、摩擦系数下的运动情况,包括角速度、位移、加速度等参数的变化。
(5)分析和比较仿真结果,探讨四连杆机构运动特性的影响因素,如摩擦力、驱动力大小、连杆长度等,并对结果进行合理解释。
ADAMS柔性体运动仿真分析及运用

ADAMS柔性体运动仿真分析及运用摘要:ADAMS(Automated Dynamic Analysis of Mechanical Systems)是一种用于机械系统运动仿真分析的软件工具,它可以模拟复杂的运动和多体动力学行为。
本文介绍了ADAMS软件及其在柔性体运动仿真分析中的应用,包括柔性体建模、刚-柔耦合系统模拟、柔性体动力学分析和柔性体控制策略等方面。
1.引言ADAMS是一种用于机械系统运动仿真分析的软件工具,由美国MSC Software公司开发。
它可以模拟复杂的运动和多体动力学行为,广泛应用于机械系统设计、优化和性能评估等领域。
柔性体是一种具有形变和弯曲等特性的物质,出现在很多工程和机械系统中。
ADAMS软件能够对柔性体运动进行仿真分析,帮助工程师更好地理解和预测柔性体系统的运动行为。
2.ADAMS柔性体建模在ADAMS中,柔性体可以通过素材法(Material Subsystem)进行建模。
素材法是一种基于连续介质力学的方法,将物体划分为多个微小单元,并根据其材料性质和力学行为进行建模。
通过调整单元的尺寸和连接方式,可以模拟各种不同的柔性体结构和形变行为。
3.刚-柔耦合系统模拟在实际工程中,往往存在着刚体和柔性体相互作用的情况,这就需要进行刚-柔耦合的系统模拟。
ADAMS可以通过使用接触、连接和约束等功能来实现刚-柔耦合系统的建模。
例如,在汽车悬挂系统中,车轮和车身之间存在接触和连接关系,同时车身又是一个柔性体,这就需要通过ADAMS进行刚-柔耦合系统模拟。
4.柔性体动力学分析ADAMS可以对柔性体系统进行动力学分析,包括振动分析、形变分析和动态响应分析等。
通过设置初始条件和加载条件,可以对柔性体系统的运动行为进行模拟和分析。
例如,在机械臂系统中,可以通过ADAMS对机械臂的振动和形变进行分析,进而优化机械臂的结构设计和控制策略。
5.柔性体控制策略在柔性体系统中,控制策略对于保持系统的稳定性和精确性起着重要作用。
ADAMS柔性体运动仿真分析及运用

ADAMS柔性体运动仿真分析及运⽤ADAMS 柔性体运动仿真分析及运⽤焦⼴发,周兰英(北京理⼯⼤学机械与车辆⼯程学院100081)摘要介绍了ADAMS柔性体基本理论及在ADAMS中⽣成柔性体的⼏种⽅法,并构建机械系统仿真模型.通过⼀个实例验证了ADAMS 柔性体运动仿真分析的实效.关键词:ADAMS 柔性体运动仿真继电器Application of ADAMS flexible body kinetic simulationJiao guangfa Zhou lanying(Beijing institute of technology ,school of mechanical and vehicular engineering , Beijing 100081 ) Abstract Introduced the basic theory of ADAMS flexible body and some methods of adding flexible bodies to a model to study the dynamic characteristics of the mechanical system1,constructed mechanical system simulation model1 Tested the validity of the ADAMS flexible kinematical simulation through an example1.Key words :ADAMS Flexible body Kinetic simulation relayADAMS全称是机械系统⾃动动⼒学分析软件,它是⽬前世界范围内最⼴泛使⽤的多体1系统仿真分析软件,其建模仿真的精度和可靠性在现在所有的动⼒学分析软件中也名列前茅.机械系统动⼒学仿真分析是机械设计的重要内容,过去分析时建⽴的模型,其构件都是属于刚体,在作运动分析时不会发⽣弹性变形.⽽实际上,在较⼤载荷或加、减速的情况下,机构受⼒后会有较⼤的变形和位移变化,产⽣振动.ADAMS的分析对象主要是多刚体,但ADAMS提供了柔性体模块,运⽤该模块可以实现柔性体运动仿真分析,以弹性体代换刚体,可以更真实地模拟出机构动作时的动态⾏为,同时还可以分析构件的振动情况[1].⼀、ADAMS柔性体理论及⽣成柔性体的⼏种⽅法ADAMS柔性模块是采⽤模态来表⽰物体弹性的,它基于物体的弹性变形是相对于连接物体坐标系的弹性⼩变形,同时物体坐标系⼜是经历⼤的⾮线性整体移动和转动这个假设建⽴的.其基本基⾦项⽬:北京市重点学科建设(XK100070424);北京理⼯⼤学基⾦(0303E10)作者简介:焦⼴发(1982—),男,河北⼈,硕⼠,主要研究⽅向为动⼒学仿真,有限元分析和表⾯涂层技术. 思想是赋予柔性体⼀个模态集,采⽤模态展开法,⽤模态向量和模态坐标的线性组合来表⽰弹性位移,通过计算每⼀时刻物体的弹性位移来描述其变形运动.ADAMS柔性模块中的柔性体是⽤离散化的若⼲个单元的有限个结点⾃由度来表⽰物体的⽆限多个⾃由度的.这些单元结点的弹性变形可近似地⽤少量模态的线性组合来表⽰.ADAMS提供了四种⽣成柔性体的⽅法,对于外形简单的构件,可以采⽤直接⽣成柔性件的⽅法,即拉伸模式;对于外形复杂的构件,可以采⽤先建刚性件, 再进⾏⽹格划分的模式, 即构件⽹格模式(Solid).1) 拉伸法⽣成柔性体:⾸先要确定拉伸中⼼线,再定义截⾯半径、单元尺⼨、材料属性等,最后定义好柔性体跟其它构件的连接点即外连点,就可以⽣成柔性体.模型⽣成柔性件的同时⽣成模态中性⽂件,该模态中性⽂件中包含了柔性件的质量、质⼼、转动惯量、频率、振型以及对载荷的参数因⼦等信息.将模型中原有的刚体件上的运动副修改在柔性件上,使柔性件与模型上的其它构件连接起来,同时删除⽆效的刚性件.这样可以使模型保持原有的⾃由度,从⽽实现柔性构件的运动仿真运算.2)⼏何外形法⽣成柔性体:这种⽅法是将⼏何体的外形所占⽤的空间进⾏有限元离散化,⼏何体既可以是在ADAMS/View中创建的,也可以是从其他CAD软件中导⼊的模型.这种⽅法⾸先要定义柔性件的附着点,即柔性件与其它构件的连接点.定义好附着点后,需要在附着点的附近的⽹格结点上选取适当数量结点作为⼒的作⽤点,作⽤点的数量和位置根据模型精度的需要来选取.最后,将选取的结点转换成ADAMS 的标识ID后,就可以⽣成模态中性⽂件.⽤这种⽅法与拉伸法相⽐,拉伸法创建的柔性体是六⾯体单元,⽽⼏何外形法⽣成的柔性体是四⾯体单元.⼀般来说六⾯体单元要⽐四⾯体单元要好些.3)导⼊有限元模型的⽹格⽂件创建柔性体:在ADAMS/AutoFlex的Flexbody 中选择Import mesh项,然后输⼊⽹格⽂件名,最后定义⽹格的材料属性,壳单元的厚度和计算的模态数,就可以导⼊柔性体,但是应⽤范围很⼩,只能输⼊Natran的bdf⽹格⽂件和I-DEAS的universal⽹格⽂件[2].4)利⽤ANSYS的宏命令⽣成ADAMS柔性体:A NSYS是⼀个多重物理有限元分析软件,适⽤于各种复杂的、跨领域的分析设计.ANSYS与ADAMS之间的双向数据接⼝可以⽅便地处理柔性体部件对机械系统运动的影响,并得到基于精确动⼒学分析结果的应⼒应变分析结果,从⽽提⾼分析⽔平.通过ADAMS软件与ANSYS软件之间的接⼝,可以很⽅便的考虑柔性体部件对机械系统运动的影响,并得到基于精确动⼒学仿真结果的应⼒应变分析结果,提⾼分析精度.ANSYS程序在⽣成柔性体部件的有限元模型之后,利⽤ADAMS宏命令可以很⽅便地输ADAMS软件所需要的模态中性⽂件Jobname.mnf此⽂件包含了ADAMS中柔性体的所有信息.在ADAMS软件中直接读⼊此⽂件即可看到柔性体部件的模型,指定好柔性体与其它部件的连结⽅式, 并给系统施加必要的外载后即可进⾏系统的动⼒学仿真[3].⼆、实例分析本⽂主要应⽤ADAMS提供的⼏何外形法⽣成柔性体.1.应⽤solidworks软件建⽴继电器三维实体模型,模型由衔铁、顶⽀架、底⽀架、触头、动簧⽚、动断静簧⽚、动何静簧⽚等组成,在建⽴模型过程中,对模型作了简化,省略了线圈、磁铁等部件,结构如图:1.顶⽀架2.动簧⽚3.动断静簧⽚4.触头5.动簧⽚6.动合静簧⽚7.衔铁8.挡圈9.底⽀架图1 三维软件模型2.建⽴模型后,⽣成Parasolid格式,保存于ADAMS的⼯作⽬录下.3.导⼊ADAMS中,并定义各部件的材料属性,同时ADAMS⾃动计算出转动惯量和质量.对各个部件进⾏约束.在这⾥对结构进⾏了简化,忽略了电学的⼲扰,只考虑机械结构之间的相互关系.⾸先⽤固定副把顶⽀架和底⽀架与⼤地固定在⼀起,然后固定动簧⽚,动断静簧⽚,动合静簧⽚,还要把触头与衔铁固定在⼀起,最后在衔铁与底⽀架之间施加旋转副,由于触头与动簧⽚接触,动合静簧⽚,动断静簧⽚之间也产⽣接触⼒,因此在这些部件之间也要定义接触.因为这次主要是为了验证柔性体的仿真,忽略了电磁学问题,同时也可忽略掉顶⽀架和底⽀架,因此把顶⽀架和底⽀架设置为哑物体,并对部分构件设为透明如图2所⽰.经简化后,在旋转副上加正弦驱动⼒来模拟电磁铁产⽣的吸附⼒,驱动⼒为9.5d *sin(1200* time),再进⾏仿真.设置仿真时间为0.015s,步长为0.000025s,由于动簧⽚为刚性体,当触头与动簧⽚接触时就会发⽣错误,当时间步长⾜够⼩时,也会发⽣穿透现象.1.衔铁2.动簧⽚3.动合静簧⽚4.动断静簧⽚5.触头6.衔铁7.底⽀架图2 简化后的模型4.把关键部件改变为柔性体。
ADAMS系统测量与仿真和仿真后处理

对象 结构 关系
栏
特性 编辑 区
工具条
后处理程序窗口
后处理的绘图 区
菜单栏 页面操 作区
控制面 板区 状态 栏
2、仿真模型的调入和仿真重 现
仿真模型调入:
I)激活拟显示虚拟样机仿真过程的屏 幕视窗,然后将鼠标置于视窗上, 打开弹出式菜单。
2)选择Load Animation命令,调入 ADAMS/View的仿真计算结果,可 以在屏幕上看见已经调入的样机。
名称 测量零件 测量特征 测量分量
测 量 构Ⅰ 件 对 话 框
Selected Object参数表示构件、运 动副、力、运动、点或标记等各种对
象的测量;
Point—to—Point参数表示两点之间 的相对运动测量;
Orientation参数表示坐标系标记方向 的测量;
Range 参数表示已定义的测量的统计值 ,例如:平均值、最大值等;
页的操作
操作工具
后
前新
删
翻
翻建
除
视窗的操作
视窗布置 选择视窗 放大视窗 转移视窗内容 删除视窗内容
对象结构关系及其转性编辑
Modeling项包括与仿真样机 有关的各种对象类型,例如 :构件、运动副、作用力等
Plotting项包括与绘制 数据曲线图有关的各种 对象类型,例如:曲线
、标题等。
重现仿真过程
数据曲线自变量坐标轴的选择
在控制面板右侧 的自变量轴选择 区(Independent
Axis),选择 Data项
在弹出的自变量 轴浏览对话框, 选择自变量轴(X 轴)的变量,然
后选择OK
修改坐标轴的特性
特性:坐标轴 的范围、颜色 、坐标刻度、 坐标刻度标记 、坐标标题和
基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析1.引言机械四连杆机构是一种常见的机械结构,它由四个连杆组成,通过转动连接在一起,能够实现复杂的运动。
对于这种机构的运动行为进行仿真分析,可以帮助工程师们更好地理解其工作原理和性能特点,为设计优化和控制提供可靠的理论基础。
本文将介绍基于ADAMS的机械四连杆机构运动仿真分析的方法和结果,以期为相关领域的研究和应用提供参考。
2.问题描述机械四连杆机构的运动仿真分析主要涉及以下几个问题:首先是机构的运动学特性,包括连杆的运动轨迹、角度、速度和加速度等;其次是机构的力学特性,包括连杆的受力情况、驱动力和阻力等;最后是机构的动力学特性,包括连杆的动力学模型、运动过程中的能量转换和损耗等。
通过分析这些问题,可以全面了解机械四连杆机构的运动规律和工作性能,为相关工程设计和控制优化提供重要参考。
3.基于ADAMS的机械四连杆机构运动仿真分析方法ADAMS(Adams Dynamics)是一款专业的多体动力学仿真软件,可以对多体机械系统的运动行为进行模拟和分析。
基于ADAMS的机械四连杆机构运动仿真分析主要包括以下几个步骤:建立模型、设定运动和约束条件、进行仿真计算、分析结果并优化设计。
3.1 建立模型首先需要在ADAMS软件中建立机械四连杆机构的三维模型,包括连杆、连接点、驱动装置等。
通过软件提供的建模工具,可以简单快速地绘制出机构的几何结构,并添加材料、质量、惯性等物理属性,为后续的仿真计算做好准备。
3.2 设定运动和约束条件在建立好模型后,需要设定机械四连杆机构的运动和约束条件。
通过ADAMS软件提供的运动学分析工具,可以简单地定义连杆的转动角度、线速度和角速度等运动参数,同时添加约束条件,限制机构的运动范围和姿态,以保证仿真计算的准确性和可靠性。
3.3 进行仿真计算设定好运动和约束条件后,即可进行仿真计算。
ADAMS软件提供了理想化模拟和实验数据验证两种仿真方式,可以根据需求选择合适的方法进行计算。
ADAMS仿真分析及调试

7.3.1 仿真分析和试验工具
仿真 工具
仿 真 分 析 设 置
仿真分析设置
6
7.3.2 仿真分析和试验---互交式、
选择仿真类型
Default默认、Dynamic动力学、Kinematic运动学、Static静态
选择仿真分析时间的定义方法,输入仿真分析时间
• End Time --义时间间隔
8
7.3.4 管理仿真结果
管理仿真结果
• ADAMS仅保存最后一次的仿真分析结果 • 可以利用保存命令将所需的仿真结果存入数据库 • 或从数据库删除结果
仿真分析控制参数设置
• 设置对话框 • 控制仿真显示 • 设置ADAMS/View输出 • 改变仿真求解设置
9
7.4调试样机
仿真开始之前的样机调试
• 利用数据库管理的对象拓扑命令 • 表格编辑器检查所有的对象有关定义
在互交式仿真过程中调试样机-----仿真调试程序
• Setting菜单 → Solver项 → Debugging →调试程序对话框 • 选择Enable Debugger → 启动仿真调试程序 • 选择仿真调试程序跟踪的对象
在进行动力学分析之前,先进行静态分析,以排除系统 在启动状态下的一些瞬态响应。
4
7.3 样机仿真分析和试验
ADAMS/View自动地调用ADAMS/Solver求解程序,再由 ADAMS/Solver完成以下4种类型的仿真分析:
动力学分析---- Dynamic 运动学分析---- Kinematic 静态分析 ---- Static 装配分析 ---- Assemble
3
7.2 检验样机模型
利用模型自检工具,检查不恰当的连接和约束、没有约 束的构件、无质量构件、样机的自由度等。
Adams单摆建模与仿真分析

ADAMS对单摆的建模与仿真分析姓名:班级:学号:单摆作业:已知: 摆杆质量M1=0.002kg,小球质量M2=12kg, 摆杆长度l=40.0cm, g=9.8m/s² ,初始摆角α=30º, 结束时间(End time):5.0 , 步长(Steps ):500一.建立单摆模型1.设置参数(1)通过开始程序菜单运行 ADAMS,运行 ADAMS。
(2)选择Create a new model 。
(3)确认Gravity (重力)文本框中是Earth Normal (-Global Y),Units(单位)文本框中是MMKS-mm,kg,N,s,deg,单击OK按钮。
(4)在Setting下拉菜单中选择Working Grid,系统打开参数设置对话框,在Spacing栏,X和Y项都输入10mm2. 建立摆杆模型(1)选择View菜单选择Coordinate Windows 命令,打开坐标窗口,以便查看模型尺寸。
(2)在主工具箱右键单击Rigid Body 在弹出的级联图标中选择Rigid Body :link工具(3)用鼠标左键单击Rigid Body :link工具,系统打开参数设置对话框,确认在工具箱下方文本框中显示New Part。
选中Length 选项,输入40cm,即单摆的长度。
选中Width选项,输入2.0cm。
选中 Depth选项,输入2.0cm。
(4)单击View中的Coordinate Window键,鼠标单击(0,400,0)作为单摆的左侧起点,然后单击右侧水平方向的任一点,ADAMS自动生成摆臂3.设置摆臂位置(1)在工具箱中选择定位图标。
(2)打开参数设置对话框,在Angle栏输入30,此时摆臂高亮显示。
(3)点击2次顺时针箭头,摆臂转向与竖直方向成30度方向。
4.建立球模型(1)在主工具箱右键单击Rigid Body 在弹出的级联图标中选择Rigid Body :sphere工具(2)用鼠标左键单击Rigid Body:sphere 工具,系统打开参数设置对话框,确认在工具箱下方文本框中显示New Part(3 )单击View中的Coordinate Window键,鼠标单击摆杆右端点作为球的中心点,自动生成一个球5.设置摆臂和球的质量(1)鼠标右键单击摆臂Part 2,在打开的右键快捷菜单中选择Modify,弹出修改对话框(2)在Define Mass By栏选择User Input。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页/共10页
7.2 检验样机模型
利用模型自检工具,检查不恰当的连接和约束、没有约 束的构件、无质量构件、样机的自由度等。
• Tools菜单 → Model Verify命令 → 启动模型自检 • 程序显示自检结果表
进行装配分析,检查所有的约束是否被破坏或者被错误 定义,通过装配分析有助于纠正错误的约束
在进行动力学分析之前,先进行静态分析,以排除系统 在启动状态下的一些瞬态响应。
2
第2页/共10页
7.3 样机仿真分析和试验
ADAMS/View自动地调用ADAMS/Solver求解程序,再由 ADAMS/Solver完成以下4种类型的仿真分析: 动力学分析---- Dynamic 运动学分析---- Kinematic 静态分析 ---- Static 装配分析 ---- Assemble
3
第3页/共10页
7.3.1 仿真分析和试验工具
仿真 工具
仿 真 分 析 设 置
第4页/共10页
仿真分析设置
4
7.3.2 仿真分析和试验---互交式、
选择仿真类型
Default默认、Dynamic动力学、Kinematic运动学、Static静态
选择仿真分析时间的定义方法,输入仿真分析时间
• End Time ----定义停止的绝对时间 • Duration ---- 定义时间间隔
向前
向后
向前快速
向后快速
暂停
结束回放
回
放
回绕到起始位 置
对 话 框
向前一步
向后一步
9
第9页/共10页
谢谢大家观赏!
10
第10页/共10页
»Error --- 跟踪最有可能出错的对象 »Force --- 跟踪产生最大力的对象 »Change --- 跟踪变化最大的变量 »Acceleration --- 跟踪产生最大加速度的构件
• 选择展现跟踪结果信息的方式 • 选择显示ADAMS/Solver设置的轨迹图
8
第8页/共10页
7.5 再现仿真结果
• 步长太大,不能反映样机的高频响应 • 反之,步长过小会大大增长仿真分析时间,使得输出文件很大。 • 为了减小输出文件,可以采用仿真运算若干步再输出一步的方法。
6
第6页/共10页
7.3.4 管理仿真结果
管理仿真结果
• ADAMS仅保存最后一次的仿真分析结果 • 可以利用保存命令将所需的仿真结果存入数据库 • 或从数据库删除结果
仿真分析控制参数设置
• 设置对话框 • 控制仿真显示 • 设置ADAMS/View输出 • 改变仿真求解设置
7
第7页/共10页
7.4调试样机
仿真开始之前的样机调试
• 利用数据库管理的对象拓扑命令 • 表格编辑器检查所有的对象有关定义
在互交式仿真过程中调试样机-----仿真调试程序
• Setting菜单 → Solver项 → Debugging →调试程序对话框 • 选择Enable Debugger → 启动仿真调试程序 • 选择仿真调试程序跟踪的对象
设置仿真过程中输出仿真结果的频率
• Step Size ----输出的时间步长 • Steps ----总共输出的步数
开始仿真分析
中途停止分析
中途停止分析
5
第5页/共10页
ቤተ መጻሕፍቲ ባይዱ
7.3.3 注意问题
如果中途停止分析,然后再按快捷键开始分析,则 ADAMS/View将从上一次停止的位置接下去分析 如果希望从头开始分析,应该按快捷键,使仿真指针返 回到初始位置 如果希望从上一次分析结束的位置继续分析,采用 Duration定义仿真时间较为方便 在设置输出步长时应该注意:
设置仿真分析输出
设置输出要求
• 获得位移、速度、加速度和力等4种类型的仿真结果
• 定义其他的输出量: 压力、功、能、动量
可以使用三种方法定义感兴趣的输出
• 选择ADAMS/Solver已经定义的位移、速度、加速度和力的输出
组,并指定参考坐标系
• 使用用户自定义的若干函数表达式定义所需的输出 • 使用用户自定义的子程序REQSUB来定义非标准的输出