高中函数部分知识点及典型例题分析

合集下载

高一函数知识点总结及例题

高一函数知识点总结及例题

高一函数知识点总结及例题高一函数知识点总结及例题:1. 函数的定义与性质:- 函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。

- 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能的因变量值的集合。

- 奇偶性:奇函数的图像以原点对称,即满足$f(-x)=-f(x)$;偶函数的图像以y轴对称,即满足$f(-x)=f(x)$。

- 单调性:递增函数的图像从左到右逐渐升高;递减函数的图像从左到右逐渐降低。

例题:给定函数$f(x)=2x^2+3x-1$,求其定义域和值域。

解答:由于函数是多项式函数,所以定义域为全体实数。

接下来求值域,可以求出函数的导函数$f'(x)=4x+3$,根据导函数的单调性可以判断函数的增减性。

导函数的系数为正数4,所以原函数是递增函数。

考虑到函数是二次函数,开口向上,所以函数的最小值就是导数的零点,即$x=-\frac{3}{4}$。

将$x=-\frac{3}{4}$代入函数中,得到最小值为$f(-\frac{3}{4}) = -\frac{7}{8}$。

所以值域为$[-\frac{7}{8},+\infty)$。

2. 基本初等函数:- 线性函数:$f(x)=kx+b$,k为斜率,b为截距。

- 幂函数:$f(x)=x^a$,a为常数,当a>0时,函数递增;当a<0时,函数递减。

- 指数函数:$f(x)=a^x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 对数函数:$f(x)=\log_a x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 三角函数:正弦函数、余弦函数、正切函数等。

例题:已知函数$f(x)=2^x-3$,求解方程$f(x)=0$的解。

解答:将$f(x)$置0得到方程$2^x-3=0$,移项得$2^x=3$。

由指数函数的性质可知,$x=\log_2 3$。

(完整版)函数的单调性知识点汇总及典型例题(高一必备),推荐文档

(完整版)函数的单调性知识点汇总及典型例题(高一必备),推荐文档

第二讲:函数的单调性一、定义:1.设函数的定义域为,如果对于定义域内的某个区间内的任意两)(x f y =I I D 个自变量的值,当时,都有那么就说在区间上21,x x 21x x <),()(21x f x f <)(x f D 是增函数.区间叫的单调增区间. D )(x f y =注意:增函数的等价式子:;0)()(0)]()()[(21212121>--⇔>--x x x f x f x f x f x x 难点突破:(1)所有函数都具有单调性吗?(2)函数单调性的定义中有三个核心①②③ 函数为21x x <)()(21x f x f <)(x f 增函数,那么①②③中任意两个作为条件,能不能推出第三个?2.设函数的定义域为,如果对于定义域内的某个区间内的任意两)(x f y =I I D 个自变量的值,当时,都有那么就说在区间上21,x x 21x x <),()(21x f x f >)(x f D 是减函数.区间叫的单调减区间.D )(x f y =注意:(1)减函数的等价式子:;0)()(0)]()()[(21212121<--⇔<--x x x f x f x f x f x x (2)若函数为增函数,且.)(x f )()(,2121x f x f x x <<则题型一:函数单调性的判断与证明例1.已知函数的定义域为,如果对于属于定义域内某个区间上的任意)(x f R I 两个不同的自变量都有则( )21,x x .0)()(2121>--x x x f x f A.在这个区间上为增函数 B.在这个区间上为减函数 )(x f )(x f C.在这个区间上的增减性不变 D.在这个区间上为常函数)(x f )(x f变式训练:定义在上的函数对任意都有,且R )(x f 120x x <<1)()(2121<--x x x f x f 函数的图象关于原点对称,若则不等式的解集为)(x f y =,2)2(=f 0)(>-x x f ___.例3.证明:函数在上是增函数.x x x f +=3)(R 变式训练:讨论的单调性.并作出当时函数的图象.)0()(>+=a xax x f 1=a 变式训练:已知并用上的单调性,在判断函数)1,0()()(,2)1(2xx f x g x x x f =-=+定义证明.题型二:函数的单调区间难点突破:(1)函数在某个区间上是单调函数,那么它在整个定义域上也是单调函数吗?(2)函数的单调减区间是上吗?xx f 1)(=),0()0,(+∞-∞ 例1.(图像法)求下列函数的单调区间(1). (2).|2||1|)(-++=x x x f 3||2)(2++-=x x x f (3).|54|)(2+--=x x x f 例2.(直接法)求函数的单调区间.xxx f +-=11)(例3.(复合函数)(2017全国二)函数 的单调递增区间2()ln(28)f x x x =--是( )A. B. C. D. )2,(--∞)1,(--∞),1(+∞),4(+∞变式训练:求下列函数的单调区间.(1) (2)312+-=x x y 652+-=x x y (3)22311x x y ---=题型三:抽象函数的单调性问题例1.设函数是实数集上的增函数,令.)(x f R )2()()(x f x f x F --=(1)证明:是上的增函数;)(x F R (2)若求证:.,0)()(21>+x F x F 221>+x x 例2定义在上的函数满足下面三个条件:),0(+∞)(x f ①对任意正数,都有;b a ,)()()(ab f b f a f =+②当时,;1>x 0)(<x f ③.1)2(-=f (1)求的值;)1(f (2)使用单调性的定义证明:函数在上是减函数;)(x f ),0(+∞(3)求满足的的取值集合.2)13(>+x f x 题型四:函数单调性的应用(1)利用函数的单调性比较大小在解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上.①正向应用:②逆向应用:例1.在上单调递减,那么与的大小关系是__________.()x f ()+∞,0()12+-a a f ⎪⎭⎫⎝⎛43f 变式训练:已知函数且对任意的,有),1()1()(x f x f x f -=+满足)(1,2121x x x x ≠>设则的大小关系_________..0)()(2121>--x x x f x f ),3(),2(),21(f c f b f a ==-=c b a ,,(2)利用函数的单调性解不等式例2.设是定义在上的增函数,且成立,求的取值)(x f ]1,1[-)1()2(x f x f -<-x范围.变式训练.①设是定义在上的偶函数,当时,单调递减,)(x f ]3,3[-30≤≤x )(x f 若成立,求的取值范围.)()21(m f m f <-m ②(2015全国二)设函数成立的)12()(,11)1ln()(2->+-+=x f x f xx x f 则使得的取值范围是( )x A. B. C. D. )1,31(),1(31,(+∞-∞ )31,31(-),31()31,(+∞--∞ ③(2018全国一)设函数,则满足的x 的取值范围()201 0x x f x x -⎧=⎨>⎩,≤,()()12f x f x +<是( )A .B .C .D .(]1-∞-,()0+∞,()10-,()0-∞,(3)根据函数的单调性求参数的取值范围例1.如果函数在区间上是增函数,则实数的取1)1(42)(2+--=x a x x f ),3[+∞a 值范围是( )A.(1,2)B.(0,2)C.(0,1)D.[)+∞-,2变式训练:如果函数在区间上是减函数,求实数2)1(2)(2+--=x a x x f )4,[-∞的取值范围.a例2.若函数在上为增函数,则实数的取值范围⎩⎨⎧≤-+->-+-=0,)2(,0,1)12()(2x x b x x b x b x f R b 是__________.例3.若函数在区间上是减函数,求实数的取值范围.||a x y -=]4,(-∞a 第三节:函数的奇偶性一、知识梳理1.函数的奇偶性例1(2014全国二)偶函数的图象关于直线对称,,则)(x f y =2=x 3)3(=f ___________.=-)1(f 例2(2017全国二) 已知函数是定义在R 上的奇函数,当时,()f x (,0)x ∈-∞,则__________.32()2f x x x =+(2)f =例3(2012全国二)设函数的最大值为,最小值为,1sin )1()(22+++=x xx x f M m 奇偶性定 义图象特点备注奇函数★★设函数的定义域为,如果)(x f y =D 对内的任意一个,都有∈D ,且 D x x -,则这个函数叫做奇函数 ()()x f x f -=-关于原点中心对称函数是奇函)(x f 数且在处有0=x 定义,则0)0(=f 偶函数设函数的定义域为,如果对)(x f y =D 内的任意一个,都有,且D x D x ∈-,则这个函数叫做偶函数()()x f x f =-★关于轴对称y则+=______.M m 2.函数的图象(1)平移变换:“上加下减,左加右减”例4(2010全国二)设偶函数满足,则)(x f )0(42)(≥-=x x f x ( )=>-}0)2(|{x f x A. B.}42|{>-<x x x 或}40|{><x x x 或C. D.}22|{>-<x x x 或}42|{>-<x x x 或(2)对称变换①;)()(x f y x f y x -=−−−−→−=轴对称关于②;)()(x f y x f y y -=−−−−→−=轴对称关于③;)()(x f y x f y --=−−−−→−=关于原点对称④;)10(log )10(≠>=−−−−→−≠>==a a x y a a a y a x y x 且且对称关于⑤奇函数的图象关于坐标原点对称;偶函数的额图象关于轴对称.y (3)翻折变换★★①.|)(|)(x f y x f y x x =−−−−−−−−−−−→−=轴下方图象翻折上去轴上方图象,将保留例5(2010全国二)已知函数,若均不相等,且⎪⎩⎪⎨⎧+-≤<=621100|,lg |)(x x x x f c b a ,,则的取值范围是( )),()()(c f b f a f ==c b a ⋅⋅A. B. C D.)10,1()6,5()12,10()24,20(例6(2011全国二)已知函数的周期为2,当时,()y f x =[1,1]x ∈-2()f x x =那么函数的图象与函数的图象的交点共有( )()y f x =|lg |y x =A .10个 B .9个 C .8个D .1个★★★②.)||()()(x f y x f y y x f y y =−−−−−−−−−−−−−−−−−−−→−=轴左侧的图象)在轴对称的图象(去掉原于轴右边图象,并作其关保留例7(2011全国二)下列函数中,既是偶函数又在单调递增的函数是((0,)+∞)A.B .C .D .3y x =||1y x =+21y x =-+||2x y -=例8(2010大纲)直线与曲线有四个交点,则的取值范围1=y a x x y +-=||2a 是____________.(4)函数图象的几种对称关系★①满足图象关于直线为轴对称;R x x f ∈),()()()(x f y x a f x a f =⇔-=+a x =例9(2018全国二)已知是定义域为的奇函数,满足)(x f ),(+∞-∞,若=2,则( ))1()1(x f x f +=-)1(f =++++)50(...)3()2()1(f f f f A .﹣50 B .0 C .2 D .50②图象关于为轴对称;)()()(x f x b f x a f ⇔-=+2ba x +=③函数与函数的图象关于直线对称.)(x a f y +=)(x b f y -=2ab x -= 如:和的图象,关于直线为轴对称.)(x f y =)1(x f y -=21=x 例10(2015全国二)已知函数则),的图像过点(4,1-2)(3x ax x f -==________.a 二、真题演练1.(2014全国一)设函数的定义域为,且是奇函数,是)(),(x g x f R )(x f )(x g 偶函数,则下列结论中正确的是( )A. 是偶函数B. 是奇函数)()(x g x f )(|)(|x g x f C. 是奇函数 D. 是奇函数|)(|)(x g x f |)()(|x g x f 2.(2015全国一)已知函数,且,则⎩⎨⎧>+-≤-=-1),1(log 1,22)(21x x x x f x 3)(-=a f =( ))6(a f -A.- B.- C.- D.-745434143.(2015全国一)设函数的图像关于直线对称,且)(x f y =x y -=,则( )1)4()2(=-+-f f =a A.-1 B.1 C.2 D.44.(2017全国一)函数的部分图像大致为( )xxy cos 12sin -=5.(2017全国一)已知函数,则( ))2ln(ln )(x x x f -+=A. B.)单调递增在(2,0)(x f )单调递减在(2,0)(x f C. D.对称的图像关于直线1)(==x x f y )对称的图像关于点(0,1)(x f y =6.(2017全国三)函数的部分图像大致为( )2sin 1xy x x=++A .B .C .D .二、课后作业1.若奇函数在上是增函数且最大值为5,那么在上是( ))(x f []7,3)(x f []3,7--A.增函数且最小值是 B.增函数且最大值是5-5-C.减函数且最大值是 D.减函数且最小值是5-5-2.若是偶函数,则在上( )32)1()(2++-=mx x m x f )(x f ()1,4--A.是增函数 B.是减函数 C.不具有单调性 D.单调性由的值确定m 3.已知函数若为奇函数,则________.()1,21x f x a =-+()f x a =4.函数是定义在上的奇函数,且,求函数的21xb ax x f ++=)()1,1(-5221=)(f )(x f 解析式___________.第四节:函数的零点一、知识梳理★零点:方程的解;函数图象与轴交点的横坐标.0)(=x f )(x f x 函数的零点是函数与函数图象交点的横坐标.)()()(x g x f x F -=)(x f )(x g 零点存在定理:函数在定义域上连续,若,则在)(x f []b a ,0)()(<⋅b f a f )(x f 定义域上一定存在零点.[]b a ,例(2011全国二)在下列区间中,函数的零点所在的区间为()43x f x e x =+-( )A . B . C . D .1(,0)4-1(0,)411(,4213(,242、真题演练1.(2017全国三)已知函数有唯一零点,则=( 211()2()x x f x x x a e e --+=-++a)A .B .C .D .112-13122.(2018全国一)已知函数,,若存在⎩⎨⎧>≤=0,ln 0,)(x x x e x f x a x x f x g ++=)()()(x g 两个零点,则的取值范围是__________.a 三、课后作业1.关于的方程的根所在大致区间为( )x 015=--x x A. B. C. D.)1,0()2,1()4,3()5,4(2.已知,若)为常数(其中)(R x c b cx bx x x f ∈-++=,,735,)(102=-f 则=________.)(2f。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

高中数学必修一基本初等函数知识点与典型例题总结

高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间

高等数学第一章函数部分的知识点及例题

高等数学第一章函数部分的知识点及例题


2 −1
(6)lim 2
→1 2 −−1
3
2 +1
− 1 > 0
(8) = ቐ 2 +2+1
3 +1
1
→∞ 2
(9) lim
+
2
2
≤0
+⋯

2
,求在0处的极限
五、两个重要极限
sin
lim
→0
一般形式:当 →
=1
sin
0时

,求k=
−3
→3
2 +1
(6) lim
→∞ +1
− + = 0,求a,b。
七、无穷小的比较
设和都是同一过程的无穷小

→0
= 0,则是的高阶无穷小 = 0
若 lim

→0
= ≠ 0,则是的同阶无穷小

若 lim
→0
= 1,则是的等价无穷小~
重点:利用函数连续性求极限
若()为初等函数且在有定义
则 lim = 0
→0
若()是连续的
则 lim
→0
= lim
→0
例题、求下列函数的极限
(1)lim ln
x→0
(4)
sin x
x
2x+3 x+1
lim
x→∞ 2x+1
(2)x→0
lim 1 + 2x
结论:
除0以外,无穷小于无穷大互为导数
无穷小与常数的乘积为无穷小
无穷小与有界函数的乘积为无穷小
例题、求下列函数的极限

函数连续性判定方法例题和知识点总结

函数连续性判定方法例题和知识点总结

函数连续性判定方法例题和知识点总结在数学分析中,函数的连续性是一个重要的概念。

它不仅在理论研究中具有重要地位,而且在实际问题的解决中也有着广泛的应用。

本文将通过一些例题来详细讲解函数连续性的判定方法,并对相关知识点进行总结。

一、函数连续性的定义设函数$f(x)$在点$x_0$ 的某个邻域内有定义,如果当自变量的增量$\Delta x$ 趋近于零时,函数的增量$\Delta y = f(x_0 +\Delta x) f(x_0)$也趋近于零,那么就称函数$f(x)$在点$x_0$ 处连续。

用数学语言表示为:$\lim_{\Delta x \to 0} \Delta y =\lim_{\Delta x \to 0}f(x_0 +\Delta x) f(x_0) = 0$或者$\lim_{x \to x_0} f(x) = f(x_0)$如果函数在区间内的每一点都连续,就称函数在该区间上连续。

二、函数连续性的判定方法1、利用定义判定直接根据连续性的定义,计算函数在某点的极限是否等于该点的函数值。

例 1:判断函数$f(x) = x^2$ 在$x = 1$ 处的连续性。

解:$\lim_{x \to 1} f(x) =\lim_{x \to 1} x^2 = 1^2 = 1$,而$f(1) = 1^2 = 1$,因为$\lim_{x \to 1} f(x) = f(1)$,所以函数$f(x) = x^2$ 在$x = 1$ 处连续。

2、左右极限相等且等于该点函数值如果函数在某点的左极限和右极限都存在且相等,并且等于该点的函数值,则函数在该点连续。

例 2:判断函数$f(x) =\begin{cases} x + 1, & x < 1 \\ 3, &x = 1 \\ x 1, & x > 1 \end{cases}$在$x = 1$ 处的连续性。

解:左极限$\lim_{x \to 1^} f(x) =\lim_{x \to 1^}(x +1) = 2$,右极限$\lim_{x \to 1^+} f(x) =\lim_{x \to 1^+}(x 1) = 0$,因为左极限和右极限不相等,所以函数$f(x)$在$x= 1$ 处不连续。

函数知识点及例题(有答案)

函数知识点及例题(有答案)

集合与函数1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}C B A x y y x C x y y B x y x A 、、,,,如:集合lg |),(lg |lg |====== 中元素各表示什么?A 表示函数y=lgx 的定义域,B 表示的是值域,而C 表示的却是函数上的点的轨迹2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况,注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。

故B 只能是-1或者3。

根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。

3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。

同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n个子集。

当然,我们也要注意到,这2n种情况之中,包含了这n 个元素全部在和全部不在的情况,故真子集个数为21n-,非空真子集个数为22n-()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax 2+bx+c(a>0) 在(,1)-∞上单调递减,在(1,)+∞上单调递增,就应该马上知道函数对称轴是x=1. 5、熟悉命题的几种形式、()()().∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

函数的连续性知识点及例题解析

函数的连续性知识点及例题解析

函数的连续性知识点及例题解析1. 函数的连续性概念在数学中,函数的连续性指的是当自变量的值变化时,函数值的变化趋势和自变量的变化趋势相一致。

如果在某个区间内,函数在该区间的任意一点都存在极限,并且极限与该点的函数值相等,则称该函数在该区间内连续。

2. 函数的连续性条件函数f(x)在点x=a处连续的条件是:- 函数在点x=a处存在- 函数在点x=a处的左极限等于右极限- 函数在点x=a处的极限与函数在该点的函数值相等3. 函数的连续性的判定方法3.1 图像法:通过观察函数的图像来确定函数是否连续。

如果函数的图像没有跳跃、断裂或间断现象,那么该函数在相应区间内是连续的。

3.2 极限法:通过计算函数的极限来判定函数是否连续。

如果函数在某个点的极限存在并与函数在该点的函数值相等,则该函数在该点连续。

4. 函数的连续性例题解析例题1:考虑函数:\[ f(x) = \begin{cases} x+1, & \text{if } x \leq 0 \\ x-1, & \text{if } x > 0 \end{cases} \]问:函数f(x)在点x=0是否连续?解析:根据函数的定义可知,函数在x=0处存在极限,即\(\lim_{x\to0^-}f(x) = 0+1 = 1\)和\(\lim_{x\to0^+}f(x) = 0-1 = -1\)。

由于左极限和右极限不相等,所以函数在x=0处不连续。

例题2:考虑函数:\[ g(x) = \begin{cases} \sin(x), & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases} \]问:函数g(x)在点x=0是否连续?解析:根据函数的定义可知,函数在x=0处存在极限,即\(\lim_{x\to0}g(x) = \lim_{x\to0}\sin(x) = \sin(0) = 0\)。

高中数学必修第一册三角函数正弦、余弦函数的图象知识点+例题+习题+解析

高中数学必修第一册三角函数正弦、余弦函数的图象知识点+例题+习题+解析

正弦函数、余弦函数的图象知识点正弦函数、余弦函数的图象五点法五点法思考为什么把正弦、余弦曲线向左、右平移2π的整数倍个单位长度后图象形状不变?答案由诱导公式一知sin(x+2kπ)=sin x,cos(x+2kπ)=cos x,k∈Z可得.【基础演练】【基础演练】1.函数y=sin(-x),x∈[0,2π]的简图是()解析y=sin(-x)=-sin x,y=-sin x与y=sin x的图象关于x轴对称,故选B.2.用“五点法”画函数y=1+12sin x的图象时,首先应描出五点的横坐标是() A.0,π4,π2,3π4,π B.0,π2,π,3π2,2πC.0,π,2π,3π,4π D.0,π6,π3,π2,2π3解析 所描出的五点的横坐标与函数y =sin x 的五点的横坐标相同,即0,π2,π,3π2,2π,故选B.3.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合 B .形状相同,位置不同 C .关于y 轴对称 D .形状不同,位置不同答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同. 4.在[0,2π]内,不等式sin x <-32的解集是( ) A .(0,π) B.⎝⎛⎭⎫π3,4π3 C.⎝⎛⎭⎫4π3,5π3 D.⎝⎛⎭⎫5π3,2π 解析 画出y =sin x ,x ∈[0,2π]的草图如下.当sin x =-32时,x =4π3或x =5π3, 可知不等式sin x <-32在[0,2π]上的解集是⎝⎛⎭⎫4π3,5π3.故选C. 5.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.解析 由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0,当x ∈[0,2π]时,x =π2或3π2,∴交点坐标为⎝⎛⎭⎫π2,4,⎝⎛⎭⎫3π2,4.【典型例题】考点一:正弦函数、余弦函数图象的初步认识 例1 (1)下列叙述正确的个数为( )①y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; ②y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称;③正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围. A .0 B .1 C .2 D .3解析 分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象(略)观察可知①②③均正确.答案 D(2)函数y =sin |x |的图象是( )答案 B解析 y =sin |x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,结合选项可知选B.反思感悟 解决正弦、余弦函数图象的注意点对于正弦、余弦函数的图象问题,要画出正确的正弦曲线、余弦曲线,掌握两者的形状相同,只是在坐标系中的位置不同,可以通过相互平移得到.跟踪训练1 下列关于正弦函数、余弦函数的图象的描述,不正确的是( ) A .都可由[0,2π]内的图象向上、向下无限延展得到 B .都是对称图形 C .都与x 轴有无数个交点D .y =sin(-x )的图象与y =sin x 的图象关于x 轴对称 答案 A解析 由正弦、余弦函数图象知,B ,C ,D 正确.考点二:用“五点法”作三角函数的图象 例2 用“五点法”作出下列函数的简图: (1)y =sin x -1,x ∈[0,2π]; (2)y =-2cos x +3,x ∈[0,2π]. 解 (1)列表:描点并将它们用光滑的曲线连接起来,如图.(2)列表:描点、连线得出函数y=-2cos x+3,x∈[0,2π]的图象.反思感悟作形如y=a sin x+b(或y=a cos x+b),x∈[0,2π]的图象的三个步骤跟踪训练2利用“五点法”作出函数y=2+cos x(0≤x≤2π)的简图.解列表:描点并将它们用光滑的曲线连接起来,如图.考点三:正弦函数、余弦函数图象的应用 例3 不等式2sin x -1≥0,x ∈[0,2π]解集为( ) A.⎣⎡⎦⎤0,π6 B.⎣⎡⎦⎤0,π4 C.⎣⎡⎦⎤π6,π D.⎣⎡⎦⎤π6,5π6答案 D解析 因为2sin x -1≥0,所以sin x ≥12.在同一直角坐标系下,作函数y =sin x ,x ∈[0,2π]以及直线y =12的图象.由函数的图象知,sin π6=sin 5π6=12.所以根据图象可知,sin x ≥12的解集为⎣⎡⎦⎤π6,5π6. 延伸探究1.在本例中把“x ∈[0,2π]”改为“x ∈R ”,求不等式2sin x -1≥0的解集. 解 在x ∈[0,2π]上的解集为⎣⎡⎦⎤π6,5π6.所以x ∈R 时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z . 2.试求关于x 的不等式12<sin x ≤32.解 作出正弦函数y =sin x 在[0,2π]上的图象,作出直线y =12和y =32,如图所示.由图可知,在[0,2π]上当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z . 反思感悟 利用三角函数图象解三角不等式sin x >a (cos x >a )的步骤 (1)作出相应的正弦函数或余弦函数在[0,2π]上的图象. (2)确定在[0,2π]上sin x =a (cos x =a )的x 值. (3)写出不等式在区间[0,2π]上的解集. (4)根据公式一写出定义域内的解集.跟踪训练3 求函数y =1-2cos x 的定义域. 解 依题意有1-2cos x ≥0,即cos x ≤12.作出余弦函数y =cos x ,x ∈[0,2π]以及直线y =12的图象,如图所示,由图象可以得到满足条件的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪π3+2k π≤x ≤5π3+2k π,k ∈Z .根据函数图象求范围典例 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________. 答案 (1,3)解析 f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π.图象如图所示.结合图象可知1<k <3.[素养提升] 关于方程根的个数问题,往往运用数形结合的方法构造函数,转化为函数图象交点的个数问题来解决,体现了直观想象的核心素养.1.(多选)用五点法画y =3sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,32 B.⎝⎛⎭⎫π2,3 C .(π,0) D .(2π,3) 答案 AD解析 五个关键点的横坐标依次是0,π2,π,3π2,2π.代入计算得B ,C 是关键点.2.已知函数f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则f (x )的图象( ) A .与g (x )的图象相同 B .与g (x )的图象关于y 轴对称C .向左平移π2个单位长度,得g (x )的图象D .向右平移π2个单位长度,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , f (x )的图象向右平移π2个单位长度得到g (x )的图象.3.在[0,2π]上,函数y =2sin x -2的定义域是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,3π4 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤3π4,π解析 依题意得2sin x -2≥0,即sin x ≥22.作出y =sin x 在[0,2π]上的图象及直线y =22,如图所示.由图象可知,满足sin x ≥22的x 的取值范围是⎣⎡⎦⎤π4,3π4,故选B. 4.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =12交点的个数是( )A .0B .1C .2D .3 答案 C解析 由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =12有2个交点.5.函数f (x )=sin x -1,x ∈[0,2π]的零点为________. 答案 π2解析 令f (x )=0,∴sin x =1,∴又x ∈[0,2π],∴x =π2.6.已知函数f (x )=2cos x +1,若f (x )的图象过点⎝⎛⎭⎫π2,m ,则m =________;若f (x )<0,则x 的取值集合为________.答案 1 ⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z 解析 当x =π2时,f (x )=2cos π2+1=1,∴m =1.f (x )<0,即cos x <-12,作出y =cos x 在x ∈[0,2π]上的图象,如图所示.由图知x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z . 7.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3.8.(多选)函数y =sin x -1,x ∈[0,2π]与y =a 有一个交点,则a 的值为( ) A .-1 B .0 C .1 D .-2 答案 BD解析 画出y =sin x -1的图象.如图.依题意a =0或a =-2.9.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.10.函数f (x )=lg cos x +25-x 2的定义域为________________. 答案 ⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧ cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.11.函数y =2cos x ,x ∈[0,2π]的图象和直线y =2围成的一个封闭的平面图形的面积是________. 答案 4π解析 如图所示,将余弦函数的图象在x 轴下方的部分补到x 轴的上方,可得一个矩形,其面积为2π×2=4π.12.若方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根,求a 的取值范围. 解 在同一直角坐标系中作出y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象,y =1-a2的图象,由图象可知,当32≤1-a2<1,即当-1<a ≤1-3时,y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根.。

高一数学函数知识总结及例题

高一数学函数知识总结及例题

高一数学函数知识总结及例题高一数学函数知识总结及例题第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)、已知f(x)的定义域,求fg(x)的定义域思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f 对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。

例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。

解析:函数f(u)的定义域为(0,1)即u(0,1),所以f 的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)1,则函数ff(x)的定义域为______________。

x11解析:先求f的作用范围,由f(x),知x1x1例2.若函数f(x)即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1f(x)1x1即1,解得x1且x21x1故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。

例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。

解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5 即函数f(x)的定义域为1,5x2例4.已知f(x4)lg2,则函数f(x)的定义域为______________。

x82x2x20解析:先求f的作用范围,由f(x4)lg2,知2x8x82解得x44,f的作用范围为(4,),又f对x作用,作用范围不变,所以2x(4,),即f(x)的定义域为(4,)(3)、已知fg(x)的定义域,求fh(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。

2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。

若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。

2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。

二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。

例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。

分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。

二)求解有关函数零点的个数(或方程根的个数)问题。

函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。

对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。

高中数学常用公式、重要结论及典型例题(函数与导数)

高中数学常用公式、重要结论及典型例题(函数与导数)

高中数学常用公式、重要结论及典型例题函数与导数(内部资料翻录必究)相关概念1. 函数的定义域:定义域是一个集合,要用集合或区间来表示,如果用区间表示,不能用“或”连接,要用U “”连接。

2. 如()f x 的定义域为[,]a b ,则复合函数(())f g x 的定义域由()a g x b ≤≤求出。

3. 任何一个定义域关于原点对称的函数)(x f ,都可以写成一个奇函数)(x h 与一个偶函数)(x g 之和的形式(事实上,这种表示还是唯一的,令()()()()12h x f x f x =--,()()()()12g x f x f x =+-即可)。

1) 凸函数(凹函数):设函数)(x f 在区间I 有定义,若对12,(0,1)x x I t ∀∈∈、,都有 )()1()())1((2121x f t x tf x t tx f -+≤-+(或)()1()())1((2121x f t x tf x t tx f -+≥-+),则称)(x f 为区间I 上的凸函数(或凹函数)。

2) 凸函数(凹函数)快速判断:如果函数)(x f 的二阶导数存在,则()0f x ''>时,)(x f 是凹函数(图像开口向上);()0f x ''<时,)(x f 是凸函数(图像开口向下)。

此性质往往可以用来快速判断函数图像类选填题。

3) 函数)(x f y =在0x 处可导,如果0()0f x '>,则)(x f 在0x 附近递增;如果0()0f x '<,则)(x f 在0x 附近递减。

此性质往往可以用来速解某些函导混合类选填题难题。

4. 方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k ⋅< 5. 闭区间上二次函数的最值:)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处或区间的两端点处取得,具体如下: (1)当0a >时,若[]q p a bx ,2∈-=,则{}min max ()(),()max (),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = (2)当0a <时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = 6. 函数单调性的等价关系(1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数7. 单调性的典型应用:(1)利用单调性求函数值域(2)利用单调性解方程:例如,对于方程2332(2038)484152x x x x x -+=-+- 可将其变形为2323(2038)4(2038)4x x x x x x -++-+=+ 构造函数3()4f x x x =+,原方程变为2(2038)()f x x f x -+=考虑到()f x 为单调递增函数,故必有22038x x x -+=,解得2x =或19x =。

《函数的基本概念与表示》知识点及典型例题总结

《函数的基本概念与表示》知识点及典型例题总结

函数的基本概念与表示模块一、函数与映射要点一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A→B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。

要点二、函数1.定义:设A 、B 是 ,f :A→B 是从A 到B 的一个映射,则映射f :A→B 叫做A 到B 的 ,记作 。

2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。

3.函数的表示法有 、 、 。

要点三、函数相等只有当两个函数的 和 都分别相同时,这两个函数才是相等函数(或称为同一个函数)。

考点一、同一函数的判断 例1.下列各组函数中,表示同一函数的是( ).A. B. C. D. 变式训练1:下列函数中,与函数y=x 相同的函数是 ( )A.y= B.y=()2 C.y=lg10x D.y=考点二、已知函数解析式求函数值例2-1. 已知f(x)= 12−x (x ∈R,x≠2),g(x)=x+4(x ∈R).⑴求f (1),g (1)的值.⑵求f [g (1)],g [f (1)]的值.⑶求f [g (x)],g [f (x)]的表达式.例2-2. 设f (x )={1−√x ,x ≥0,2x ,x <0,则f(f (−2))=( ) A. -1 B. 14 C. 12 D. 32变式训练2:函数f (x )={x 2+2(x ≤2),2x (x >2)则f (−4)=( ),若f (x 0)=8,则x 0=( )。

1,x y y x==211,1y x x y x =-+=-33,y x y x ==2||,()y x y x ==x x 2x x 2log 2模块二、函数的三要素要点四、函数的定义域1. 函数的定义域就是使函数式 的集合.2.常见函数:使式子有意义(1)整式:定义域为R(2)一次函数:,定义域是R 。

函数知识点及典型例题

函数知识点及典型例题

函数知识点一.图像及性质 1.一次函数 ①图像:y=kx+b(k≠0) y=kx(k ≠0,b=0)①k>0 增 k<0 减 ②b ≠0一次函数,b=0正比例函数 2.二次函数 ①图像:②a>0 开口向上,a<0开口向下 ③a>0最小值,a<0最大值 ④X 对称=-b2a⑤顶点坐标:(-b2a,244ac a b -)⑥三种表达形式222(1)(2)4()24y a x x x x b ac b y a x a a y ax bx c =--⎧⎫⎪⎪-⎪⎪=++⎨⎬⎪⎪⎪⎪=++⎩⎭两点式顶点式一般式3指数函数①图像:y=x a (a>0且a ≠1)②0<a<1 增函数,a 越小越靠近y 轴,a>1 减函数,a 越大越靠近y 轴,0a =1(a ≠0)③必过(0,1)④y>04对数函数①图像:y=lo x a g (a>0且a ≠1)②0<a<1 增函数,a 越小越靠近x 轴,a>1 减函数,a 越大越靠近x 轴 ③必过(1,0)④x>0 5幂函数①图像:y=a x (a ∈R )②a<0 减函数,a>0 增函数 ③0<a<1下凸,a>1上凸 ④必过(1,1)6对勾函数①图像:y=x+ px(p>0)②顶点坐标-二.定义域1.给定解析式(1)12x-(2)2()x xy-=(3)cosl xy g=2.已知f(x)定义域,求f(g(x))定义域(1)已知f(x)定义域为[-12,12],求y=f(2x-x-12)定义域3.已知f(g(x))的定义域。

求f(x)的定义域(1)若f(2x)的定义域为[-1,1],求f(x)的定义域(一)求函数定义域例:(21)f x-的定义域为[]0,1,求(13)f x-的定义域1.求下列函数定义域①xxxy--+=2)1(2②)45(log)1(xxy-=+2.已知6lg)3(222-=-xxxf,则()f x的定义域是3.(2013陕西理1)设全集为R,函数21)(xxf-=的定义域为M,则MCR为( ).A]1,1[-.B)1,1(-.C),1[]1,(+∞--∞.D),1()1,(+∞--∞4.(2013江西理2)函数)1ln(xxy-=的定义域为( ).A)1,0(.B)1,0[.C ]1,0( .D ]1,0[5.(2013山东文5)函数3121)(++-=x x f x的定义域为( ).A ]0,3(-.B ]1,3(-.C ]0,3()3,(---∞ .D ]1,3()3,(---∞6.(2013重庆文3)函数)2(log 12-=x y 的定义域为( ).A )2,(-∞ .B ),2(+∞ .C ),3()3,2(+∞ .D ),4()4,2(+∞7.(2013安徽文11)函数1l n (11y x=++的定义域为_____________.(二)利用定义域求参数范围例.)1lg(2++=ax x y 的定义域为R ,求a 的范围?练1.82)(2--=x x x f 的定义域为A ,mx x g --=11)(的定义域为B ,Φ=⋂B A ,求m 的取值范围?练2.341)(2++=ax ax x f 的定义域为R ,求a 的范围练3.2(1),1()41x x f x x +<⎧⎪=⎨≥⎪⎩ ;使1)(≥x f 的x取值范围?三.求函数的解析式1.拼凑法:例1.已知f(x+1x )=3x +31x ,求f(x)例2:2(1)()f x x f x -=,求例3:,求2换元法:例1:已知f (2x+1)=lgx,求f(x)的解析式564)12(2+-=+x x x f )(x f例2:2)1(x x f =-,求f (x )例3:,求例4:x x x f 2)1(-=-3.待定系数法:例1:已知二次函数f(x)满足f (2+x )=f(2-x),且f(x)=0的两实根平方和为10,f(x)的图像过点(0,3),求f(x)例2:若()[]12-=x x f f ,则一次函数=例3:二次函数满足,且。

《函数的单调性》知识点及典型例题总结

《函数的单调性》知识点及典型例题总结

函数的单调性要点一、函数单调性的定义(1)增函数与减函数增函数减函数定义一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于区间D 内的任意两个值x 1,x 2当x1<x2时,都有 f(x 1)<f(x 2) ,那么就说函数f(x)在区间I 上是单调增函数当x 1<x 2时,都有f(x 1)>f(x 2) ,那么就说函数f(x)在区间I 上是单调减函数 图 象 描 述自左向右看图象是_上升的__自左向右看图象是__下降的___(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则称函数f (x )在这一区间具有单调性,区间D 叫做y =f (x )的单调区间.要点二、与函数单调性有关的几个常见结论(1)函数y=af (x )与函数y=f (x )的单调性的关系:(2)若函数y=f (x )的值恒为正或恒为负时,函数y =1f (x )和函数y=f (x )的单调性 。

(3)若函数y=f (x )≥0,则函数y=√f (x )与y =f 2(x )的单调性与y=f (x ) (4)函数y=f (x )+g (x )与f (x )和g (x )的单调性的关系: (5)复合函数的单调性:(6)奇函数在关于原点对称的区间上单调性 ;偶函数在关于原点对称的区间上单调性 。

要点三、函数单调性的代数特征(1)若函数满足对任意,x 1≠x 2有()()()()()1212121200f x f x x x f x f x x x --->⇔>⎡⎤⎣⎦- 在[a,b ]上是增函数; (2)若函数满足对任意,x 1≠x 2有()()()()()1212121200f x f x x x f x f x x x ---<⇔<⎡⎤⎣⎦-在[a,b ]上是减函数。

()f x D x x ∈21,()f x ()f x D x x ∈21,()f x要点四、函数单调性的判断(1)定义法:①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方、分母有理化等);④判断的正负符号;⑤根据函数单调性的定义下结论。

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

1 函数与方程【知识梳理】1、函数零点的定义(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

(2)方程0)(=x f 有实根Û函数()y f x =的图像与x 轴有交点Û函数()y f x =有零点。

因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。

函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点(3)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。

②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。

③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、函数零点的判定(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ×<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x Î,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法①代数法:函数)(x f y =的零点Û0)(=x f 的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定0D >Û)(x f y =有2个零点Û0)(=x f 有两个不等实根;0D =Û)(x f y =有1个零点Û0)(=x f 有两个相等实根;0D <Û)(x f y =无零点Û0)(=x f 无实根;对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定. 1、二分法(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ×<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]a b ,验证()()0f a f b ×<,给定精确度e ; ②求区间(,)a b 的中点c ; ③计算()f c ; (ⅰ)若()0f c =,则c 就是函数的零点; (ⅱ) 若()()0f a f c ×<,则令b c =(此时零点0(,)x a c Î); (ⅲ) 若()()0f c f b ×<,则令a c =(此时零点0(,)x c b Î); ④判断是否达到精确度e ,即a b e -<,则得到零点近似值为a (或b );否则重复②至④步. 【经典例题】【经典例题】1.函数3()=2+2xf x x -在区间(0,1)内的零点个数是内的零点个数是 ( )A 、0 B 、1 C 、2 D 、3 2.函数.函数 f (x )=2x+3x 的零点所在的一个区间是的零点所在的一个区间是( ) A 、(-2,-1) B 、(-1,0) C 、(0,1) D 、(1,2) 3.若函数=)(x f xa x a -- (0a >且1a ¹)有两个零点,则实数a 的取值范围是的取值范围是. 4.设函数f (x )()x R Î满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x Î时,f (x )=x 3.又函数g (x )= |x cos ()x p |,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为上的零点个数为 ( )A 、5 B 、6 C 、7 D 、8 5.函数2()cos f x x x =在区间[0,4]上的零点个数为上的零点个数为 ( )A 、4 B 、5 C 、6 D 、7 6.函数()cos f x x x =-在[0,)+¥内 ( )A 、没有零点、没有零点B 、有且仅有一个零点、有且仅有一个零点C 、有且仅有两个零点、有且仅有两个零点D 、有无穷多个零点、有无穷多个零点7.对实数a 和b ,定义运算“⊗”:a ⊗b =îïíïìa ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是的取值范围是 ( )A 、(-∞,-2]∪èæøö-1,32B 、(-∞,-2]∪èæøö-1,-34C 、èæøö-1,14∪èæøö14,+∞D 、èæøö-1,-34∪ëéøö14,+∞8.已知函数f x ()=log (0a 1).a x x b a +-¹>,且当2<a <3<b <4时,函数f x ()的零点*(,1),,n=x n n n N Î+Î则 . 9.求下列函数的零点:.求下列函数的零点:(1)32()22f x x x x =--+; (2)4()f x x x=-. 10.判断函数y =x 3-x -1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1).【课堂练习】【课堂练习】1、在下列区间中,函数()43xf x e x =+-的零点所在的区间为的零点所在的区间为 ( )A 、1(,0)4-B 、1(0,)4C 、11(,)42D 、13(,)242、若0x 是方程lg 2x x +=的解,则0x 属于区间属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)3、下列函数中能用二分法求零点的是、下列函数中能用二分法求零点的是 ( ) ( )4、函数f ()x =2x+3x 的零点所在的一个区间是的零点所在的一个区间是 ( )A .(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是不存在零点的是( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4] 6、函数()x f =x -cos x 在[0,¥+﹚内﹚内 ( )A 、没有零点、没有零点B 、有且仅有一个零点、有且仅有一个零点C 、有且仅有两个零点、有且仅有两个零点D 、有无穷多个零点、有无穷多个零点 7、若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25,则()f x 可以是(可以是( )A 、()41f x x =-B 、2()(1)f x x =- C 、()1xf x e =- D 、1()ln()2f x x =-8、下列函数零点不宜用二分法的是、下列函数零点不宜用二分法的是 ( )( )A 、3()8f x x =- B 、()ln 3f x x =+ C 、2()222f x x x =++ D 、2()41f x x x =-++ 9、函数f(x)=log 2x+2x-1的零点必落在区间的零点必落在区间 ( )A 、÷øöçèæ41,81B 、÷øöçèæ21,41C 、÷øöçèæ1,21 D 、(1,2) 10、01lg =-xx 有解的区域是有解的区域是 ( )A 、(0,1]B 、(1,10]C 、(10,100] D 、(100,)+¥11、在下列区间中,函数()e 43xf x x =+-的零点所在的区间为的零点所在的区间为 ( ) A 、1(,0)4- B 、 1(0,)4 C 、11(,)42 D 、13(,)24 12、函数2()log f x x x p =+的零点所在区间为(的零点所在区间为( )A 、1[0,]8 B 、11[,]84 C 、11[,]42D 、1[,1]213、设()833-+=x x f x,用二分法求方程()2,10833Î=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间(则方程的根落在区间() A 、(1,1.25) B 、(1.25,1.5) C 、(1.5,2) D 、不能确定、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是(存在零点的是( ) A 、[]4,2-- B 、[]2,0- C 、[]0,2 D 、[]2,415、函数223,0()2ln ,0x x x f x x x ì+-£=í-+>î, 零点个数为(零点个数为( )A 、3 B 、2 C 、1 D 、0 16、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:的一个正数零点附近的函数值用二分法计算,其参考数据如下:f (1) = -2 f (1.5) = 0.625 f (1.25) = -0.984 f (1.375) = -0.260 f (1.4375) = 0.162 f (1.40625) = -0.054那么方程32220x x x +--=的一个近似根(精确到0.1)为)为 ( ) A 、1.2 B 、1.3 C 、1.4 D 、1.5 17、方程223xx -+=的实数解的个数为的实数解的个数为. 18、已知函数22()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。

高中数学必修一函数性质详解及知识点总结及题型详解

高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。

高中函数部分知识点及典型例题分析-1

高中函数部分知识点及典型例题分析-1

智立方教育高一函数知识点及典型例题一、函数的概念与表示1、映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A→B. 注意点:(1)对映射定义的理解.(2)判断一个对应是映射的方法.一对多不是映射,多对一是映射 2、函数构成函数概念的三要素 ①定义域;②对应法则;③值域. 两个函数是同一个函数的条件:三要素有两个相同 例1、例2、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( C )A 、 0个B 、 1个C 、 2个D 、3个由题意知:M={x|0≤x ≤2},N={y|0≤y ≤3},对于图①中,在集合M 中区间(1,2]内的元素没有象,比如f ( 3 2 )的值就不存在,所以图①不符合题意;对于图②中,对于M 中任意一个元素,N 中有唯一元素与之对应,符合函数的对应法则,故②正确; 对于图③中,对于M 中任意一个元素,N 中有唯一元素与之对应,且这种对应是一一对应,故③正确; 对于图④中,集合M 的一个元素对应N 中的两个元素.比如当x=1时,有两个y 值与之对应,不符合函数的定义,故④不正确xxxx1 2 1 1 1 2 2 2 11112 2 2 2 y y yy 3 OOOO二、函数的解析式与定义域1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;例1、y =函数的定义域为根号下的数必须为正数,又当底数为大于0小于1的数时,只有当真数大于0小于1时,才能保证根号下的数为正数。

所以让0<4X 的平方-3X<1,解0<4X 的平方-3X 得X<0或3/4<X,解4X 的平方-3X<1得-1/4<X<1,取交集得X 的范围是《-1/4<X<0或3/4<X<1》四.函数的奇偶性1.定义: 设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=,则称y=f(x)为偶函数.如果对于任意x ∈A ,都有()()f x f x -=-,则称y=f(x)为奇函数.2.性质:①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称, ②若函数f(x)的定义域关于原点对称,则f(0)=0 ③奇±奇=奇;偶±偶=偶;奇×奇=偶;偶×偶=偶;奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] 3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系例1.已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=, 则当),0(∞+∈x 时,=)(x f .当x ∈(0,+∞),f(x)=-x-x^4 解:当x ∈(0,+∞),-x ∈(-∞,0),因为当x<0时,f(x)=x-x^4,所以把-x 代入这个式子中得 f(-x)=-x-(-x)^4=-x-x^4,又因为f(x)是偶函数,所以f(-x)=f(x) 于是f(x)=-x-x^4例2、已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.(Ⅰ)因为 f(x)是奇函数,所以f(0)=0,即(b-1)/(a+2)=0 ==>b=1 f(x)=(1-2^x)/(a+2^(x+1)) 又由f (1)= -f (-1)知a=2 (Ⅱ)解由(Ⅰ)知f(x)=(1-2^x)/(2+2^(x+1))=-1/2+1/(2^x+1) ,易知f(x) 在 正负无穷上为减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、求函数定义域的主要依据: (1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
例1、y =
函数的定义域为
根号下的数必须为正数,又当底数为大于0小于1的数时,只有当真数大于0小于1时,才能保证根号下的数为正数。

所以让0<4X 的平方-3X<1,解0<4X 的平方-3X 得X<0或3/4<X,解4X 的平方-3X<1得-1/4<X<1,取交集得X 的范围是《-1/4<X<0或3/4<X<1》
四.函数的奇偶性
1.定义: 设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=,则称y=f(x)为偶函数.
如果对于任意x ∈A ,都有()()f x f x -=-,则称y=f(x)为奇函数.
2.性质:
①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称, ②若函数f(x)的定义域关于原点对称,则f(0)=0 ③奇±奇=奇;偶±偶=偶;奇×奇=偶;偶×偶=偶;奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] 3.奇偶性的判断
①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系
例1.已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=, 则当),0(∞+∈x 时,=)(x f .
当x ∈(0,+∞),f(x)=-x-x^4 解:当x ∈(0,+∞),-x ∈(-∞,0),因为当x<0时,f(x)=x-x^4,所以把-x 代入这个式子中得 f(-x)=-x-(-x)^4=-x-x^4,又因为f(x)是偶函数,所以f(-x)=f(x) 于是f(x)=-x-x^4
例2、已知定义域为R 的函数12()2x x b
f x a
+-+=+是奇函数.
(Ⅰ)求,a b 的值;
(Ⅱ)若对任意的t R ∈,不等式2
2
(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.
(Ⅰ)因为 f(x)是奇函数,所以f(0)=0,即(b-1)/(a+2)=0 ==>b=1 f(x)=(1-2^x)/(a+2^(x+1)) 又由f (1)= -f (-1)知a=2 (Ⅱ)解由(Ⅰ)知f(x)=(1-2^x)/(2+2^(x+1))=-1/2+1/(2^x+1) ,易知f(x) 在 正负无穷上为减函数。

又因 f(x)是奇函数,从而不等式:f(t^2-2t)+f(2t^2-k)<0 等价于f(t^2-2t)<-f(2t^2-k)=f(k-2t^2) ,因f(x) 为减函数,由上式推得:t^2-2t>k-2t^2 .即对一切t ∈R 有:3t^2-2t-k>0 ,从而判别式=4+12k<0 ==>k<-1/3
六.函数的周期性:
1.(定义)偶函数:一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),则称函数f (x )为偶函数。

奇函数:一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数。

2.若)()(x f a x f -=+;)
(1)(x f a x f =
+;)(1)(x f a x f -=+;则)(x f 周期是2a
例5、设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+, 当]2,0[∈x 时2
2)(x x x f -=.
⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式.
(1)f(x)=-f(x+2)=-(-f(x+4))=f(x+4),所以f(x)是以4为周期的周期函数。

(2)根据奇函数性质f(x)=-f(-x),可知x ∈[-2,0]时,f(x)=-f(-x)=-(-2x-x ²)=2x+x ², 而f(x)是以4为周期的周期函数,当x ∈[2,4]时,f(x)=f(x-4)=2(x-4)+(x-4)²=x ²-6x+8 f(x)=-f(x+2)=-(-f(x+4))?
根据f(x+2)=-f(x)这条件...于是f(x+4)=-f(x+2),这个就是把x+2作为一个整体看作条件中的x ,带进去就是了
七.二次函数(涉及二次函数问题必画图分析)
1.二次函数f(x)=ax 2+bx+c(a≠0)的图象是一条抛物线,对称轴a
b x 2-=,顶点坐标)44,2(2
a
b a
c a b --
2.二次函数与一元二次方程关系
一元二次方程)0(02
≠=++a c bx ax 的根为二次函数f(x)=ax 2+bx+c(a≠0)0=y 的x 的取值. 一元二次不等式)0(02<>++c bx ax 的解集(a>0) 二次函数 △情况 一元二次不等式解集
y=ax 2+bx+c (a>0)
△=b 2-4ac ax 2+bx+c>0 (a>0)
ax 2+bx+c<0 (a>0)
图象 与解
△>0
{}2
1
x x x x x ><或
{}21
x x x
x <<
△=0
{}0
x x x ≠
Φ
△<0
R
Φ
例1、已知函数54)(2
+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是( )
(A )25)1(≥f (B) 25)1(=f (C) 25)1(≤f (D) 25)1(>f
例2、方程0122
=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是 二次函数解决。

设Y=X^2+2mX+1,抛物线开口向上, 与X 轴交点在1的左右两边, ∴在保证有交点的情况下(Δ>0), X=1时,Y<0。

∴Δ=4m^-4>0,得m>1或m<-1, 当X=1时,Y=2+2m<0,得m<-1, 综合得:m<-1。

九.指数函数与对数函数
x 名称 指数函数 对数函数 一般形式 Y=a x (a>0且a≠1)
y=log a x (a>0 , a≠1)
定义域 (-∞,+ ∞) (0,+ ∞) 值域 (0,+ ∞) (-∞,+ ∞) 过定点
(0,1)
(1,0)
图象
指数函数y=a x 与对数函数y=log a x (a>0 , a≠1)图象关于y=x 对称
单调性 a> 1,在(-∞,+ ∞)上为增函数 0<a<1, 在(-∞,+ ∞)上为减函数
a>1,在(0,+ ∞)上为增函数 0<a<1, 在(0,+ ∞)上为减函数
值分布
y>1 ? y<1?
y>0? y<0?
2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)
记住下列特殊值为底数的函数图象:
3.研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制
4.指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径. 例1、(1))35lg(lg x x y -+=
的定义域为_______________;
解答:
令 lgx ≥ 0, ∴ x ≥ 1 令 x > 0
令 5 - 3x > 0, ∴ x < 5/3
∴定义域为 1 ≤ x < 5/3
(2)3
1
2-=x y 的值域为_____________;
可以设t=1/(x-3),则t 的范围就是t ≠0 所以函数的值域为y>0且y ≠20 即值域为(0,1)∪(1,+∞)
(3))lg(2
x x y +-=的递增区间为___________,值域为___________. -x^2+x>0 0<x<1
y=lg(-x ²+x)的递增区间—(1/2,1)—值域为—(-无穷,-lg4]— 十.函数的图象变换
1、平移变换:(左+ 右- ,上+ 下- )即
k
x f y x f y h x f y x f y k k h h +=−−−−−→−=+=−−−−−→−=><><)()()
()(,0;,0,0;,0上移
下移左移
右移
1、 对称变换:(对称谁,谁不变,对称原点都要变)
)
()()()()
()()
()()
()()()(1
x f y x f y x f y x f y x f
y x f y x f y x f y x f y x f y x f y x f y x x y x
y y x =−−−−−−−−−→−==−−−−−−−−−−→−==−−→−=--=−−→−=-=−→−=-=−→−=-=轴下方图上翻轴上方图,将保留边部分的对称图轴右边不变,左边为右原点轴轴。

相关文档
最新文档