第五章-相关分析作业(试题及答案)
中级宏观经济学试题-第五章分析题参考答案
第五章分析题参考答案
第1题
经济进入轻微的结构转变起会使自然失业率提高。
学校不放假只能暂时降低失业率,不会改变自然失业率下降。
利用互联网寻找工作虽然能使人们搜寻工作的时间减短,会使短期的失业率下降,但会改变人们求职成功率的预期,提高人们的等待时间,因此一般不会改变自然失业率。
增加社区服务只有短期就业效应,不会改变自然失业率。
设置找到工作的递减奖金的作用是双重的,一方面鼓励人们尽快找工作,能够降低自然失业率,另一方面提高了失业的总体补贴水平,延长了人们搜寻时间,提高了自然失业率。
第2题
利用L N U /1=-,题目中的公式可以写为L L
N N H H Y Y ⨯⨯⨯=。
对这个公式取自然对数,然后取增量形式,有 L
L L N L N N H N H H Y H Y Y Y ∆+∆+∆+∆=∆/)(/)(/)( 当失业率甚小时,失业率U 提高一个百分点,就业率N/L 大约降低一个百分点。
由奥肯定律可以得到:L N L N Y Y /)(3∆=∆。
代入上式消去L
N L N /)(∆后得到: L
L N H N H H Y H Y Y Y ∆⨯+∆⨯+∆⨯=∆23/)(23/)(23 其含义为:单位小时劳动产出率每提高一个百分点,或工人平均工作小时每提高一个百分点,或劳动大军增加一个百分点,GDP 对应增加1.5个百分点。
注:以上关系式只是一种现象之间的关系,全因套用奥肯定律而来,因此不包含任何因果联系。
人教版七年级生物下册第五章人体内废物的排出检测试题及答案解析
第五章人体内废物的排出一、选择题1.李大爷去医院检查,发现尿液中有蛋白质和血细胞,可能是他泌尿系统的哪个部位发生病变()A. 肾小体B. 肾小球C. 肾小管D. 肾小囊2.健康人每天形成的原尿约150升,而每天排出的尿液只有1.5升,这是由于()A. 肾小球的滤过作用B. 膀胱的贮尿作用C. 汗腺的排泄作用D. 肾小管的重吸收作用3.肾小囊中的液体里不含有的成分是()A. 大分子蛋白质B. 尿素C. 葡萄糖D. 无机盐4.泌尿系统的主要器官是()A. 肾脏B. 肾小球C. 膀胱D. 尿道5.如图为尿液形成过程示意图(序号表示结构),以下说法不正确的是()A. 与1中液体相比,2中液体不含大分子蛋白质、葡萄糖和血细胞B. 3处重吸收回去的物质是部分的水、无机盐和全部的葡萄糖C. 如果某病人的尿液中有血细胞,那么病变部位可能是1的通透性发生改变D. 如果在某人尿液中检测出有葡萄糖,可能是结构3的功能发生障碍,或者胰岛素分泌过少6.人体排出体内产生的废物的途径不包括()A. 呼气B. 排尿C. 排便D. 排汗7.下列关于肾单位的叙述中,正确的是()A. 肾单位是由肾小管和肾小囊组成的B. 肾单位是由肾小管和肾小球组成的C. 肾单位是由肾小球、肾小囊和肾小管组成的D. 肾单位是由肾小球和肾小囊组成的8.尿液排出体外的途径是()A. 肾盂-尿道-输尿管-膀胱-体外B. 肾盂-膀胱-尿道-输尿管-体外C. 肾盂-输尿管-膀胱-尿道-体外D. 膀胱-肾盂-输尿管-尿道-体外9.正常人尿液中没有的成分是()A. 尿素B. 无机盐C. 水D. 葡萄糖10.分析下表,该患者的肾脏可能发生病变的结构是()A. 肾小球B. 肾小囊C. 肾小管D. 肾髓质二、填空题11.下面是某医院提供的几个样本的原尿和尿液的化验数据,请分析并回答有关问题:(注:表中“-”表示很少或无,“+”表示较多,“++”表示很多)请据表回答:(1)原尿是样本______ ,因为其中含有______ .(2)正常的尿液是样本______ ,因为其中只含有______ .(3)不正常尿液是样本______ ,据此推断可能是肾单位中______ 发生炎症造成的.三、识图作答题12.下图是人体某些生理活动示意图,请据图回答下列问题:(1)图中部位①处的血管的管壁由一层上皮细胞组成,该血管是(“动脉”、“静脉”或“毛细血管”)。
高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版
高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。
分析化学第五章试题及参考答案(供参考)
第五章思考题与习题1.写出下列各酸的共轭碱:H2O,H2C2O4,H2PO4-,HCO3-,C6H5OH,C6H5NH3+,HS-,Fe(H2O)63+,R-NH+CH2COOH.答:H2O的共轭碱为OH-;H2C2O4的共轭碱为HC2O4-;H2PO4-的共轭碱为HPO42-;HCO3-的共轭碱为CO32-;;C6H5OH的共轭碱为C6H5O-;C6H5NH3+的共轭碱为C6H5NH2;HS-的共轭碱为S2-;Fe(H2O)63+的共轭碱为Fe(H2O)5(OH)2+;R-NH2+CH2COOH的共轭碱为R-NHCH2COOH。
2. 写出下列各碱的共轭酸:H2O,NO3-,HSO4-,S2-,C6H5O-,C u(H2O)2(OH)2,(CH2)6N4,R—NHCH2COO-,COO-C O O-。
答:H2O的共轭酸为H+;NO3-的共轭酸为HNO3;HSO4-的共轭酸为H2SO4;S2的共轭酸为HS-;C6H5O-的共轭酸为C6H5OH C u(H2O)2(OH)2的共轭酸为Cu(H2O)3(OH)+;(CH2)6N4的共轭酸为(CH2)4N4H+;R—NHCH2COO-的共轭酸为R—NHCHCOOH,COO-C O O-的共轭酸为COO-C O O-H3.按照物料平衡和电荷平衡写出(1)(NH4)2CO3,(2)NH4HCO3溶液的PBE ,浓度为c (mol·L -1)。
答:(1)MBE :[NH 4+]+[NH 3]=2c; [H 2CO 3]+[HCO 3-]+[CO 32-]=cCBE :[NH 4+]+[H +]=[OH -]+[HCO 3-]+2[CO 32-]PBE :[H +]+2[H 2CO 3] +[HCO 3-]=[NH 3]+[OH -](2)MBE :[NH 4+]+[NH 3]=c; [H 2CO 3]+[HCO 3-]+[CO 32-]=cCBE :[NH 4+]+[H +]=[OH -]+[HCO 3-]+2[CO 32-]PBE :[H +]+[H 2CO 3]=[NH 3]+[OH -]+[CO 32-]4.写出下列酸碱组分的MBE 、CEB 和PBE (设定质子参考水准直接写出),浓度为 c (mol·L -1)。
故障分析第五章作业(答案)
a F a Fb 1 2 F c a
a a2 1 1 F c (1) 1 F c ( 2) 1 Fc ( 0)
a2 1 a
1 F b (1) 1 Fb ( 2) 1 Fb ( 0)
I BI
SB 100 0.5021kA 3U B 3 115
U B 2 1152 Z BI 132.25 SB 100
一、求参数:
SGN
PGN 100 125MVA cos 0.8
100 0.104 125 U % S 10.5 100 X T (0) k B 0.0875 100 STN 100 120
j 7.616 0.0753 j 0.5735( KA) 有名值I Ka (2)T2中性点的电压就是零序网图中CD节点的零序电压 I 12 ( 0 ) I K ( 0 ) X T 3( 0 ) X T 1( 0 ) X L ( 0 ) X T 3( 0) j 2.5387 0.105 j 0.77 0.2411 0.105
X
2 0.1604
0.0454
0.125 0.105 0.1604 2
T 1( 0 )
X L ( 0 ) X T 3 ( 0 )
X T 1( 0) X L ( 0) X T 3( 0)
0.2411 0.105 0.0731 0.2411 0.105
0.1604
补充内容:特殊相不是 A 相,怎么办?有两个方法: (1)直接法; (2)巧算。 (1) 直接法: 假设 B 相发生单相短路接地故障,则对称分量法的代表相也用 B 相,故障前正 常工作电压用 B 的。 边界条件Ufb = 0 ,Ifb = 0,Ifc = 0 Ufb = Ufb 1 + Ufb 2 + Ufb 0 = 0 Ufb 0 Ifb 1 = Ifb 2 = Ifb 0 = z (1)+ z (2)+ z (0) 画 B 相的复合序网,求 B 相的各序电流、电压相量,然后求出个相的电压电流量。
解析卷-沪粤版八年级物理上册第五章我们周围的物质章节测试试题(含答案解析)
八年级物理上册第五章我们周围的物质章节测试考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 15分)一、单选题(5小题,每小题3分,共计15分)1、下列物品具有导电属性的是()A.塑料学生尺B.擦字橡皮C.食用油D.铜钥匙2、下列测量方案中,合理的有()A.测小铁块密度:用天平测质量后,再用装有适量水的量筒测体积B.测小砖块密度:用天平测质量后,再用装有适量水的量筒测体积C.测小木块密度:用天平测质量后,再用装有适量水的量筒测体积D.测比赛用铅球密度:用天平测质量后,再用装有适量水的量筒测体积3、甲、乙两个圆柱体(ρ甲<ρ乙)分别置于水平地面上,底面积分别为S甲和和S乙,高度分别为h甲和h乙,若均沿水平方向,将两圆柱体截去相等的体积,使剩余部分的质量m甲>m乙,则甲、乙两个圆柱体被截去前的情况可能是图中的()A .h 甲=h 乙,S 甲<S 乙B .h 甲<h 乙,S 甲>S 乙C .h 甲=h 乙,S 甲=S 乙D .h 甲<h 乙,S 甲=S 乙4、将质量相等的水、盐水和食用油分别装在三个完全相同的容器中,密度关系为ρ盐水>ρ水>ρ食用油,则甲、乙、丙三个容器依次分别装的是( )A .食用油、盐水、水B .盐水、水、食用油C .盐水、食用油、水D .水、盐水、食用油5、作为国际通用测量语言的国际单位制,极大地方便了国际交流。
在国际单位制中,质量的单位是( )A .千克B .牛顿C .焦耳D .瓦特第Ⅱ卷(非选择题 85分)二、填空题(5小题,每小题4分,共计20分)1、2021年的最后一个周末,长沙冬天的第一场雪如约而至。
2022年最新京改版七年级数学下册第五章二元一次方程组必考点解析试题(含答案及详细解析)
京改版七年级数学下册第五章二元一次方程组必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?()A.1个B.2个C.3个D.4个2、我们在解二元一次方程组2102x yx y+=⎧⎨=⎩时,可将第二个方程代入第一个方程消去x得410y y+=从而求解,这种解法体现的数学思想是()A.转化思想B.分类讨论思想C.数形结合思想D.公理化思想3、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买().A.11支B.9支C.7支D.5支4、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为()A.48 B.52 C.58 D.645、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元6、一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x海里/时,水流速度为y海里/时,则下列方程组中正确的是().A.33903.6 3.690x yx y+=⎧⎨+=⎩B.3 3.6903.6390x yy x+=⎧⎨+=⎩C.3()903()90x yx y+=⎧⎨-=⎩D.33903.6 3.690x yx y+=⎧⎨-=⎩7、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个x元,包子每个y元,依题意可列方程组为()A.5317211533.30.9x yx y+=+⎧⎨+=⨯⎩B.5317211533.30.9x yx y+=+⎧⎨+=÷⎩C.5317211533.30.9x yx y+=-⎧⎨+=⨯⎩D.5317211533.30.9x yx y+=-⎧⎨+=÷⎩8、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是()A.15 B.17 C.19 D.219、若关于x,y的二元一次方程组32129x y kx y+=+⎧⎨-=⎩的解互为相反数,则k的值是()A.4 B.3 C.2 D.1 10、下列各组数值是二元一次方程2x﹣y=5的解是()A.21xy=-⎧⎨=⎩B.5xy=⎧⎨=⎩C.15xy=⎧⎨=⎩D.31xy=⎧⎨=⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.2、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.3、已知2234x y y z x z +++===-,则2x y z ++=________. 4、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x 枚,0.8元的邮票y 枚,则根据题意可列出方程组为__________.5、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%,则甲种粗粮中每袋成本价为 ___元;若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 ___.三、解答题(5小题,每小题10分,共计50分)1、已知关于x ,y 的方程组5139x y a x y a -=+⎧⎨+=+⎩的解是正数,化简|45||4|a a +-- 2、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.3、解方程(组)(1)10+2(x ﹣12)=7(x ﹣2);(2)1.7210.30.2x x +-=-; (3)34(2)521x x y x y --=⎧⎨-=⎩. 4、若关于x ,y 的方程组326ax by x y -=⎧⎨-=⎩与63bx ay x y +=⎧⎨+=⎩的解相同,求a ,b 的值;5、为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?---------参考答案-----------一、单选题1、C【分析】设这对夫妇的年龄的和为x ,子女现在的年龄和为y ,这对夫妇共有z 个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.【详解】设现在这对夫妇的年龄和为x 岁,子女现在的年龄和为y 岁,这对夫妇共有z 个子女,则,()()6,22102,2636,x y x y z x y z ⎧=⎪-⨯=-⎨⎪+⨯=+⎩解得84,14,3.x y z =⎧⎪=⎨⎪=⎩∴这对夫妇共有3个子女.故选C .【点睛】本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.2、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组2102x yx y+=⎧⎨=⎩时,将第一个方程代入第二个方程消去x得2⨯2y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.3、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得45660 34548x y zx y z++=⎧⎨++=⎩①②①×4-②×5得0x z-=,所以x z=,将z x =代入①,得45660x y x ++=.即212y x +=.∵0y >,∴6x <,∴x 为小于6的正整数,四个选项中只有D 符合题意;故选D .【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.4、B【分析】设小长方形的宽为a ,长为b ,根据图形列出二元一次方程组求出a 、b 的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为a ,长为b ,由图可得:31626a b b a +=⎧⎨-=⎩①②, ①-②得:2a =,把2a =代入①得:10b =,∴大长方形的宽为:3632612a +=⨯+=,∴大长方形的面积为:1612192⨯=,7个小长方形的面积为:77210140ab =⨯⨯=,∴阴影部分的面积为:19214052-=.故选:B .【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出a 、b 的等量关系式是解题的关键.5、B【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得x y z ++的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据题意得:37 3.15482 4.2x y z x y z ++=⎧⎨++=⎩①②, ②–①可得: 1.05x y z ++=.故选:B .【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含x y z ++的等式.6、D【分析】根据等量关系“顺水时间×顺水速度=90、逆水时间×逆水速度=90”以及顺水、逆水速度与静水速度、水流速度的关系即可解答.【详解】解:根据题意可得,顺水速度=x +y ,逆水速度=x -y ,()()3903.690x y x y ⎧+=⎪⎨-=⎪⎩,化简得33903.6 3.690x y x y +=⎧⎨-=⎩. 故选:D .【点睛】考查主要考查了用二元一次方程组解决行程问题,掌握顺水路程及逆水路程的等量关系以及顺水速度=静水速度+水流速度、逆水速度=静水速度一水流速度是解答本题的关键.7、B【分析】设馒头每个x 元,包子每个y 元,根据李大爷买5个馒头、3个包子的钱数等于()172+元,张大妈买11个馒头、5个包子的钱数等于()33.30.9÷元列出二元一次方程组即可【详解】解:设馒头每个x 元,包子每个y 元,根据题意得5317211533.30.9x y x y +=+⎧⎨+=÷⎩ 故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于()33.30.9÷元是解题的关键.8、D【分析】根据题意列出两条等式,求出x ,y 的值即可.【详解】根据题意可得:31414y y x-+=+⎧⎨+=+⎩ , 解得85y x =⎧⎨=⎩, x +2y =5+2×8=5+16=21,故答案为:D .【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.9、C【分析】先根据“方程组的解互为相反数”可得0x y +=,再与方程29x y -=联立,利用消元法求出,x y 的值,然后代入方程321x y k +=+即可得.【详解】解:由题意得:0x y +=,联立029x y x y +=⎧⎨-=⎩①②, 由①-②得:39y =-,解得3y =-,将3y =-代入①得:30x -=,解得3x =,将3,3x y ==-代入方程321x y k +=+得:196k +=-,解得2k =,故选:C.【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.10、D【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把21xy=-⎧⎨=⎩代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把5xy=⎧⎨=⎩代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把15xy=⎧⎨=⎩代入方程2x﹣y=5,2-5=-3≠5,不满足题意;D. 把31xy=⎧⎨=⎩代入方程2x﹣y=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.二、填空题1、568【解析】【分析】设甲型巴士a 辆,乙型巴士b 辆,丙型巴士(11−a )辆,乙型巴士乘载量为x 人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a 辆,乙型巴士b 辆,丙型巴士(11−a )辆,乙型巴士乘载量为x 人,由题意可得:40(11)3762(1)2595xb a xa x b +-=⎧⎨+-=+⎩, 解得:x =3284021a a --, ∵1≤a ≤10,且a 为整数,∴424a x =⎧⎨=⎩, ∴b =4,∴总人数=4×48+4×24+40×7=568(人),故答案为:568.【点睛】本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.2、187##427【解析】【分析】根据“5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到两个等量关系,即可列出方程组.【详解】解:设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩, 上述两式相加可得,x +y =187. 故答案为:187. 【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.3、-10【解析】【分析】根据题目已知条件可得:4x y +=-,6y z +=-,8x z +=-,把2x y z ++变形为()()x y y z +++代值即可得出答案.【详解】2234x y y z x z +++===-, 222324x y y z x z +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩,即468x y y z x z +=-⎧⎪+=-⎨⎪+=-⎩, 2()()4(6)10x y z x y y z ∴++=+++=-+-=-,故答案为:-10.【点睛】本题考查三元一次方程组,解题关键是根据题意得到已知与待求式之间的关系.4、90.50.8 6.3x y x y +=⎧⎨+=⎩ 【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x 枚,0.8元的邮票y 枚,由题意得90.50.8 6.3x y x y +=⎧⎨+=⎩, 故答案为:90.50.8 6.3x y x y +=⎧⎨+=⎩. 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.5、 45 89或8:9##8:9或89【解析】【分析】 先用10058.5130⨯求出甲中粗粮的成本价,再求出1千克B 粗粮成本价+1千克C 粗粮成本价,得出乙种粗粮每袋售价,然后设该电商销售甲种袋装粗粮x 袋,乙种袋装粗粮y 袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程求出比例关系.【详解】解:∵甲种粗粮每袋售价为58.5元,利润率为30%,∴甲种粗粮中每袋成本价为10058.5=45130⨯元,∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,∴1千克B粗粮成本价+1千克C粗粮成本价=45-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为乙种粗粮每袋成本价为6+2×27=60(元),60×(1+20%)=72(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,即89xy=,故答案为:45,89.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.三、解答题1、5a+1【分析】先求出方程组的解,然后根据方程组的解是正数可知4a+5是正数,a-4的取值范围,再根据绝对值的意义化简即可.【详解】解:5139x y ax y a-=+⎧⎨+=+⎩①②,①+②,得2x=8a+10,∴x =4a +5,把x =4a +5代入②,得4a +5+y =3a +9,∴y =-a +4,∴454x a y a =+⎧⎨=-+⎩, ∵方程组的解是正数,∴45040a a +>⎧⎨-+>⎩,即4a +5是正数,a -4是负数 ∴454a a +--=[]45(4)51a a a +---=+.【点睛】本题考查了二元一次方程组的解法,以及化简绝对值,求出方程组的解集是解答本题的关键.2、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.3、(1)x =235;(2)x =﹣4;(3)31x y =⎧⎨=⎩. 【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x ﹣12)=7(x ﹣2),去括号、得10+2x ﹣1=7x ﹣14,移项、得2x ﹣7x =1﹣10﹣14,合并同类项、得﹣5x =﹣23, 系数化为1,得x =235; (2)1.720.3x +﹣10.2x =-,整理、得1720513xx+-=-,去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得85?21?x yx y-+=⎧⎨-=⎩①②,①+②,得6y=6,解得y=1,把y=1代入②,得x﹣2=1,解得x=3,故方程组的解为31xy=⎧⎨=⎩.【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.4、12a b==,【分析】由题意可先解方程组326x yx y+=⎧⎨-=⎩,求出x、y后代入含a、b的两个方程,进一步即可求出结果;【详解】解:解方程组326x yx y+=⎧⎨-=⎩,得3xy=⎧⎨=⎩,代入36ax bybx ay-=⎧⎨+=⎩,得3336ab=⎧⎨=⎩,解得12a b==,【点睛】本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.5、(1)第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)小军家4月份的电费为94.4元,5月份的电费为138.2元.【分析】(1)设第一档的电价为x元/度,第二档的电价为y元/度,根据2月分的电费及3月份的电费可列出关于x与y的方程组,解方程组即可;(2)按照阶梯电价的计算方法计算,4月份按第一档计算电费,5月份按第二档计算电费即可.【详解】(1)设第一档的电价为x元/度,第二档的电价为y元/度,依题意,得:()() 180200180119 180210180125.4 x yx y⎧+-=⎪⎨+-=⎪⎩,解得:0.590.64xy=⎧⎨=⎩.即第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)0.59×160=94.4(元),0.59×180+0.64×(230﹣180)=138.2(元).所以小军家4月份的电费为94.4元,5月份的电费为138.2元.【点睛】本题考查了二元一次方程组解决分段问题的应用,关键是理解题意,找到等量关系并正确列出方程组.。
第五章相关分析作业试题及答案
第五章相关分析一、判断题二、1.若变量X的值增加时,变量Y的值也增加,说明X与Y之间存在正相关关系;若变量X的值减少时,Y变量的值也减少,说明X与Y之间存在负相关关系。
()三、2.回归系数和相关系数都可以用来判断现象之间相关的密切程度()四、3.回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()五、4.计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()六、5.完全相关即是函数关系,其相关系数为±1。
()1、×2、×3、×4、×5、√.七、单项选择题1.当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
2. A.相关关系 B.函数关系 C.回归关系 D.随机关系3.现象之间的相互关系可以归纳为两种类型,即()。
4. A.相关关系和函数关系 B.相关关系和因果关系 C.相关关系和随机关系 D.函数关系和因果关系5.在相关分析中,要求相关的两变量()。
6. A.都是随机的 B.都不是随机变量 C.因变量是随机变量 D.自变量是随机变量7.现象之间线性依存关系的程度越低,则相关系数( ) 。
8. A.越接近于-1 B. 越接近于1 C. 越接近于0 D. 在0.5和0.8之间9.若物价上涨,商品的需求量相应减少,则物价与商品需求量之间的关系为( )。
10. A.不相关 B. 负相关 C. 正相关 D. 复相关11.能够测定变量之间相关关系密切程度的主要方法是( ) 。
12. A.相关表 B.相关图 C.相关系数 D.定性分析13.下列哪两个变量之间的相关程度高()。
14. A.商品销售额和商品销售量的相关系数是0.915. B.商品销售额与商业利润率的相关系数是0.8416. C.平均流通费用率与商业利润率的相关系数是-0.9417. D.商品销售价格与销售量的相关系数是-0.9118.回归分析中的两个变量()。
第五章 相关分析作业(试题及答案)
第五章相关分析一、判断题二、1.若变量X的值增加时,变量Y的值也增加,说明X与Y之间存在正相关关系;若变量X的值减少时,Y变量的值也减少,说明X与Y之间存在负相关关系。
()三、2.回归系数和相关系数都可以用来判断现象之间相关的密切程度()四、3.回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()五、4.计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()六、5.完全相关即是函数关系,其相关系数为±1。
()1七、1.2.3.4.5.6.7.8.9.22. A.r=0 B.|r|=1C.-1<r<1 D.0<r<123.每一吨铸铁成本(元)倚铸件废品率(%)变动的回归方程为:y c=56+8x,这意味着()24. A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8%25. C.废品率每增加1%,成本每吨增加8元 D.废品率每增加1%,则每吨成本为561、B2、A3、A4、C5、B6、C7、C8、D9、B10、C.八、多项选择题1.测定现象之间有无相关关系的方法有()2.A、对现象做定性分析B、编制相关表C、绘制相关图D.计算相关系数E、计算估计标准3.下列属于负相关的现象有()4.A、商品流转的规模愈大,流通费用水平越低B、流通费用率随商品销售额的增加而减少5.C、国内生产总值随投资额的增加而增长D、生产单位产品所耗工时随劳动生产率的提高而减少E、产品产量随工人劳动生产率的提高而增加6.变量x值按一定数量增加时,变量y也按一定数量随之增加,反之亦然,则x和y之间存在()7.A、正相关关系B、直线相关关系C、负相关关系D、曲线相关关系8.E、非线性相关关系9.直线回归方程y c=a+bx中的b称为回归系数,回归系数的作用是()10.A、确定两变量之间因果的数量关系B、确定两变量的相关方向C、确定两变量相关的密切程度D、确定因变量的实际值与估计值的变异程度11.E确定当自变量增加一个单位时,因变量的平均增加量12.设产品的单位成本(元)对产量(百件)的直线回归方程为y c=76-1.85x,这表示()1九、1.2.3.4.5.6.7.8.1、1≤r<06、十、1.一种不完全的依存关系。
2022年必考点解析沪教版(上海)六年级数学第二学期第五章有理数章节练习试题(含答案及详细解析)
沪教版(上海)六年级数学第二学期第五章有理数章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是( )A .0.809精确到个位为1B .3584用科学记数法表示为3.584×103C .5.4万精确到十分位D .6.27×104的原数为627002、2020年12月17 日凌晨,探月工程嫦娥五号返回器成功着陆,标志着我国首次月球采样返回任务圆满完成。
月球表面的温度,中午大约是101℃,半夜大约是-153℃,中午比半夜高多少度?( )A .52℃B .-52℃C .254℃D .-254℃3、下列说法正确的是( )A .0是正数B .0是负数C .0是整数D .0不是自然数4、下列运算结果为正数的是( )A .﹣52B .﹣5÷3C .0×2021D .﹣2﹣(﹣3)5、袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活80000000人.将80000000用科学记数法表示为()A .68010⨯B .7810⨯C .80.810⨯D .90.810⨯6、在下列分数中,不能化成有限小数的是( )A .916B .425C .224D .45307、若2(1)|3|0++-=x y ,则x ,y 的值分别为()A .1,3B .1,3-C .1-,3D .1-,3- 8、已知有理数n 、m 满足()2980n m ++-=,则()2022n m +=() A .1- B .1 C .2022- D .20229、某县城一天5时的气温是﹣5℃,过了7h 气温上升了8℃,又过了7h 气温又下降了5℃,这天晚上7点时的气温是( )A .﹣2℃B .2℃C .8℃D .18℃10、截止北京时间10月29日22时40分,全球新冠肺炎确诊病例约为245 370 000人,245 370 000用科学记数法表示为()A .24537×104B .24.527×106C .2.4537×107D .2.4537×108第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在数轴上,点A 到原点O 的距离为4,则线段OA 的中点所表示的数为______.2、矿井下A ,B ,C 三处的高度分别是37-m ,129-m ,71.3-m ,那么最高处比最低处高______m .3、六(1)班共有学生40人参加某次数学小测验,其中有5人不及格,那么这次测验的及格率为_____%.4、比较两数大小: -67_____ -76(用“<”,或“>”,或“=”填空)5、计算:()()2016323193-+⨯--÷-的结果为______.三、解答题(5小题,每小题10分,共计50分)1、计算:321243⎛⎫-⨯- ⎪⎝⎭.2、化简符号:(1)173--; (2)233-+; (3)-(-3);(4)-(+9).3、某公司去年第一季度平均每月亏损1.5万元,第二季度平均每月盈利2万元,第三季度平均每月盈利1.7万元,第四季度平均每月亏损2.1万元,问这个公司去年总的盈亏情况如何?4、计算:(1572612+-)÷(﹣136). 5、计算:2108(2)(4)(3)-+÷---⨯-.-参考答案-一、单选题1、C【详解】解:A 、0.809精确到个位为1,正确,故本选项不符合题意;B 、3584用科学记数法表示为3.584×103,正确,故本选项不符合题意;C 、5.4万精确到千位,故本选项错误,符合题意;D 、6.27×104的原数为62700,正确,故本选项不符合题意;故选:C .【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.2、C【分析】根据温差=高温度-低温度,即可求解.【详解】解:∵温差=高温度-低温度,∴101-(-153)=254℃ .故选:C【点睛】本题主要考查了有理数减法的应用,明确题意,准确得到数量关系是解题的关键.3、C【分析】根据0的性质逐一判断即可.【详解】解:A.0是正数,说法错误,故选项不符合题意;B.0是负数,说法错误,故选项不符合题意;C.0是整数,说法正确,故选项符合题意;D.0不是自然数,说法错误,故选项不符合题意;故选:C.【点睛】本题考查了有理数,掌握有理数的定义是解题的关键.4、D【分析】根据有理数的加减乘除以及乘方运算,对选项逐个计算求解即可.【详解】解:A 、﹣52=﹣25,不为正数,故A 不符合题意;B 、5533-÷=-,不为正数,故B 不符合题意;C 、0×2021=0,不为正数,故C 不符合题意;D 、2(3)231---=-+=,为正数,故D 符合题意.故选:D .【点睛】此题考查了有理数的加减乘除以及乘方运算,解题的关键是掌握有理数的有关运算法则.5、B【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:780000000810=⨯故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.6、C【分析】首先,要看分数是否是最简分数,先把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.据此逐项分析后再选择.【详解】解:A .916是最简分数,分母中只含有质因数2,能化成有限小数,故本选项不合题意; B .425是最简分数,分母中只含有质因数5,能化成有限小数,故本选项不合题意; C .212412=,112是最简分数,分母中含有质因数3,不能化成有限小数,故本选项合题意; D .453032=,32是最简分数,分母中只含有质因数2,能化成有限小数,故本选项不符合题意. 故选:C .【点睛】此题主要考查分数的性质,解题的关键是熟知分母中含有质因数3,不能化成有限小数.7、C【分析】由平方和绝对值的非负性,即可求出x ,y 的值.【详解】解:∵2(1)|3|0++-=x y ,∴10x +=,30y -=,∴1x =-,3y =,故选:C .【点睛】本题考查了非负性的应用,解题的关键是掌握绝对值的非负性,从而进行计算.【分析】根据()2980n m ++-=,可以求得m 、n 的值,从而代入计算.【详解】解:∵()2980n m ++-=,∴n +9=0,m -8=0,∴n =-9,m =8,∴()()20222022198n m +=-+=,故选B .【点睛】此题主要考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.9、A【分析】利用上升记作“+”,下降记作“-”进行运算即可得出结论.【详解】解:5852C ︒-+-=-,∴晚上7点时的气温是2C ︒-.故选:A .【点睛】本题主要考查了有理数的加减混合运算,解题的关键是正确利用上升记作“+”,下降记作“-”.【分析】根据科学计数法就是“把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数)”把245370000表示出来,即可选择.【详解】245370000用科学记数法表示为:82.453710⨯.故选:D.【点睛】本题考查用科学记数法表示较大的数.掌握科学计数法就是“把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数)”,并正确的确定a和n的值是解答本题的关键.二、填空题1、2或-2【分析】首先根据点A到原点O的距离为4,则点A对应的数可能是4,也可能是-4,再求得线段OA的中点所表示的数即可.【详解】解:∵点A到原点O的距离为4,∴点A对应的数是4±,当点A对应的数是+4时,则线段OA的中点所表示的数为422=;当点A对应的数是−4时,则线段OA的中点所表示的数为422-=-.故答案为:2或-2.【点睛】本题考查的是数轴,分情况讨论是解答此题的关键.2、故答案为:(2)1210100%20% 2-⨯=.故答案为:20%.【点睛】本题考查有理数混合运算的实际应用.根据题意正确列出算式是解答本题的关键.70.92【分析】先确定最高处和最低处,根据有理数的减法,可得两地的相对高度.【详解】解:∵最高处:-37m,最低处:-129m,最高处比最低处高:-37-(-129)=92m,故答案为:92.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3、87.5【分析】根据及格人数除以总人数解答即可.【详解】解:这次测验的及格率为405100%87.5% 40-⨯=,故答案为:87.5.【点睛】本题考查有理数的除法,解题的关键是根据题意得出有理数除法算式解答.4、>【分析】根据负数比较大小的方法求解即可.两个负数比较大小,绝对值大的反而小.【详解】 解:∵66=<177-,77=166->, ∴67<76-- ∴67->76-.故答案为:>.【点睛】此题考查了比较负数大小,解题的关键是熟练掌握负数比较大小的方法.两个负数比较大小,绝对值大的反而小.5、-2【分析】根据有理数混合运算法则先计算乘方,再算乘除,最后加减即可.【详解】解:()()2016323193-+⨯--÷-=()8313-+⨯--=833-++三、解答题1、-172.【详解】 解:321243⎛⎫-⨯- ⎪⎝⎭ 33212443=-⨯+⨯ 129=-+ =-172. 【点睛】本题考查了有理数四则混合运算,有理数四则混合运算顺序:先算乘除,再算加减;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 2、(1)173- (2)233-(3)3(4)-9【分析】(1)(2)直接根据绝对值的性质得出答案;(3)(4)直接根据相反数的意义得出答案.(1) 解:173--=173-; (2)解:233-+=233-;(3)解:-(-3)=3;(4)解:-(+9)=-9.【点睛】本题考查了绝对值以及相反数的知识,属于基础题,注意掌握去括号时,若括号前面是“-”则括号里面各项需变号.3、盈利0.3万元【分析】首先用这个公司去年每个季度的盈亏额乘3,求出每个季度的盈亏额分别是多少;然后把它们相加,求出这个公司去年总的盈亏情况如何即可.【详解】解:( 1.5)323 1.73( 2.1)3-⨯+⨯+⨯+-⨯,( 4.5)6 5.1( 6.3)=-+++-,0.3=(万元),答:该公司去年全年盈利0.3万元.【点睛】本题主要考查了有理数的混合运算,解题的关键是求出每个季度的盈亏额分别是多少.4、27-.【详解】解:原式157()(36)2612=+-⨯-157(36)(36)(36)=⨯-+⨯--⨯-2612=--+18302127=-.【点睛】本题考查了有理数的四则混合运算和乘法分配律,熟练掌握运算法则和运算律是解题关键.5、-20【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.。
生物药物分析第五章作业答案
单选题1、下列不属于酶分析法要求的条件是1/79A.待测物质应是酶的底物B.待测物质是酶的抑制剂C.待测物质是活化剂D.待测物质是酶底物复合物正确答案:D试题解析:底物复合物是酶与底物相结合产生的中间产物。
所以答案为D。
2、酶终点法测量样品中待测物质的含量不可以通过间接测量哪类物质的含量来获得2/79A.产物的含量B.底物复合物的含量C.底物残余量D.物的产量正确答案:B试题解析:终点法的原理:利用酶的生物催化反应,使待测物质发生转化,然后测定产物产量或底物产量或底物残余量,通过定量分析,从而明确待测物质的含量。
所以答案为B。
3、下列不属于终点法进行药物分析的注意事项是3/79A.反应产物的促进性B.酶促反应的平衡性C.反应液中加入的酶量和酶促反应时间D.酶对底物的特异性正确答案:A试题解析:采用终点法进行生物药物分析的注意事项:(1)酶对底物的特异性;(2)酶促反应的平衡性;(3)反应液中加入的酶量和酶促反应时间;(4)反应产物的抑制。
所以答案为A。
4、下列属于酶免疫测定法中常用的标记物是4/79A.胰蛋白酶B.甲状腺素C.辣根过氧化物酶D.H2O2-邻联甲苯胺正确答案:C试题解析:在酶免疫测定法中最常用的标记物:辣根过氧化物酶(HRP),碱性磷酸酶(AP)。
所以答案为C。
5、单酶反应测定法无须测量下列哪种物质的含量5/79A.底物B.产物C.辅酶D.中间产物正确答案:D试题解析:单酶反应定量法需测量底物减少量、产物增加量和辅酶变化量。
所以答案为D。
6、还原性辅酶I和还原性辅酶II的特征性吸收峰为6/79A.360nmC.340nmD.260nm正确答案:C试题解析:还原型辅酶I(NADH)和还原型辅酶II(NADPH)在340nm处有特征性吸收峰。
所以答案为C。
7、下列不可用作酶指示剂的是7/79A.NADB.NADPC.氧化型色素DD.氧化型色素H正确答案:D试题解析:除NAD或NADP为辅酶的脱氢酶类被广泛用作指示剂以外,还有些酶可用作指示剂。
2022年初级统计基础知识章节试题及答案之第五章时间序列分析含答案
2022年初级统计基础知识章节试题及答案之第五章时间序列分析含答案2022年初级统计基础学问章节试题及答案之第五章时光序列分析含答案第五章时光序列分析一、单项挑选题1.构成时光数列的两个基本要素是(C) (2022年1月)A.主词和宾词B.变量和次数C.现象所属的时光及其统计指标数值D.时光和次数2.某地区历年诞生人口数是一个(B) (2022年10月)A.时期数列B.时点数列C.分配数列D.平均数数列3.某商场销售洗衣机,2022年共销售6000台,年底库存50台,这两个指标是( C ) (2022年10)A.时期指标B.时点指标C.前者是时期指标,后者是时点指标D.前者是时点指标,后者是时期指标4.累计增长量( A ) (2022年10)A.等于逐期增长量之和B.等于逐期增长量之积C.等于逐期增长量之差D.与逐期增长量没有关系5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业其次季度的平均存款余额为( C )(2022年10)A.140万元B.150万元C.160万元D.170万元6.下列指标中属于时点指标的是( A ) (2022年10)A.商品库存量B.商品销售量C.平均每人销售额D.商品销售额7.时光数列中,各项指标数值可以相加的是( A ) (2022年10)A.时期数列B.相对数时光数列C.平均数时光数列D.时点数列8.时期数列中各项指标数值( A )(2022年1月)A.可以相加B.不行以相加C.绝大部分可以相加D.绝大部分不行以相加10.某校同学人数2022年比2022年增长了8%,2022年比2022年增长了15%,2022年比2022年增长了18%,则2022-2022年同学人数共增长了( D )(2022年10月)A.8%+15%+18%B.8%×15%×18%C.(108%+115%+118%)-1D.108%×115%×118%-1二、多项挑选题1.将不同时期的进展水平加以平均而得到的平均数称为(ABD) (2022年1月)A.序时平均数B.动态平均数C.静态平均数D.平均进展水平E.普通平均数2.定基进展速度和环比进展速度的关系是(BD) (2022年10月)A.相邻两个环比进展速度之商等于相应的定基进展速度B.环比进展速度的连乘积等于定基进展速度C.定基进展速度的连乘积等于环比进展速度D.相邻两个定基进展速度之商等于相应的环比进展速度E.以上都对3.常用的测定与分析长久趋势的办法有( ABC ) (2022年1月)A.时距扩大法B.移动平均法C.最小平办法D.几何平均法E.首末折半法4.时点数列的特点有( BCD ) (2022年10)A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次记下取得的D.指标数值的大小与时期长短没有直接的联系E.指标数值是通过延续不断的记下取得的5.增长1%的肯定值等于( AC )(2022年1)A.增强一个百分点所增强的肯定量B.增强一个百分点所增强的相对量C.前期水平除以100D.后期水平乘以1%E.环比增长量除以100再除以环比进展速度6.计算平均进展速度常用的办法有( AC )(2022年10)A.几何平均法(水平法)B.调和平均法C.方程式法(累计法)D.容易算术平均法E.加权算术平均法7.增长速度( ADE )(2022年1月)A.等于增长量与基期水平之比B.逐期增长量与报告期水平之比C.累计增长量与前一期水平之比D.等于进展速度-1E.包括环比增长速度和定基增长速度8.序时平均数是( CE )(2022年10月)A.反映总体各单位标志值的普通水平B.按照同一时期标志总量和单位总量计算C.说明某一现象的数值在不同时光上的普通水平D.由变量数列计算E.由动态数列计算三、推断题1.职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
微经第五章答案(市场结构分析)-(1)
第五章思考题1、当( B )时,厂商提供利润最大化的产量A、边际收益等于价格B、边际收益等于边际成本C、降价利润等于零D、会计利润等于零E、沉没成本等于固定成本2、追加生产一单位产量所耗费的追加成本被称为(A )A、边际成本B、固定成本C、经营成本D、沉没成本E、边际收益3、只要(A或D ),厂商就应该退出市场。
A、厂商不能获得至少与它的不可收回成本相等的收益B、价格小于边际成本C、价格小于平均成本的最小值D、价格小于平均可变成本曲线的最小值E、上述各项都是4、厂商的经济成本包括(E )A、经理的时间机会成本B、厂商的资本投资的替代收益C、业主的资本投资的收益D、公司的厂房、设备的贬值E、上述各项5、下列行业中那个更接近于完全竞争模式(C )A、飞机B、卷烟C、大米D、汽车6、垄断竞争厂商在短期均衡时(D )A、一定能获得超额利润B、一定不能获得超额利润C、只能得到正常利润D、取得超额利润、发生亏损及获得正常利润三种情况都有可能发生7、当垄断竞争厂商处在长期均衡点时,长期平均成本曲线处于(C )A、上升阶段B、水平阶段C、下降阶段D、以上三种都不是8、完全竞争与完全垄断有一个重要区别是(A )A、参与竞争的厂商数目多少B、产品是否有差别C、长期中厂商获得的利润大小D、资源转移的灵活程度9、寡头垄断厂商的产品是(C )。
A、同质的B、有差异的C、既可以是同质的,又可以是有差异的D、以上都不对10、在拐折需求曲线模型中,拐点左右两边的需求弹性是(A )。
A、左边弹性大,右边弹性小B、左边弹性小,右边弹性大C、左右两边弹性一样大D、以上都不对11、当发生下列哪种情况下,厂商将会倾向进入一个行业(D )。
A、该行业存在超额利润B、规模经济不构成一个主要的进入壁垒C、该行业的主要生产资源不被现存厂商所控制D、以上全对二、问答题1、垄断厂商一定能保证获得垄断利润吗?如果在最优产量处亏损,他在短期内会继续生产吗?在长期内又会怎样?答:垄断厂商并不保证一定能获得超额利润,能否获得超额利润主要取决于社会需求。
综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形必考点解析试题(含答案及详细解析)
六年级数学下册第五章基本平面图形必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,点C 为线段AB 的中点,点D 在直线AB 上,并且满足2AD BD =,若6CD =cm ,则线段AB 的长为( )A .4cmB .36cmC .4cm 或36cmD .4cm 或2cm2、如图,延长线段AB 到点C ,使2BC AB =,D 是AC 的中点,若6AB =,则BD 的长为( )A .2B .2.5C .3D .3.53、如果A 、B 、C 三点在同一直线上,且线段AB =6cm ,BC =4cm ,那么线段AC 的长为( )A .10cmB .2cmC .10或2cmD .无法确定4、如图,OM 平分AOB ∠,2MON BON ∠=∠,72AON BON ∠-∠=︒,则AOB ∠=( )A .96°B .108°C .120°D .144°5、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm6、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .1407、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°8、如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC =12∠AOB ,则下列结论成立的是()A .AOC BOC ∠=∠B .AOC AOB ∠<∠C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠9、延长线段AB 至点C ,分别取AC 、BC 的中点D 、E .若8cm AB =,则DE 的长度() A .等于2cm B .等于4cm C .等于8cm D .无法确定10、若α∠的补角是130︒,则α∠的余角是( )A .30B .40︒C .120︒D .150︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠α=7038︒',则∠α的余角的度数是_____.2、已知3728A '∠=︒,则它的余角是______.3、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.4、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.5、钟表4点36分时,时针与分针所成的角为______度.三、解答题(5小题,每小题10分,共计50分)1、已知∠AOD =160°,OB 为∠AOD 内部的一条射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD ,求∠MON 的度数为 ;(2)如图2,∠BOC 在∠AOD 内部(∠AOC >∠AOB ),且∠BOC =20°,OF 平分∠AOC ,OG 平分∠BOD (射线OG 在射线OC 左侧),求∠FOG 的度数;(3)在(2)的条件下,∠BOC 绕点O 运动过程中,若∠BOF =8°,求∠GOC 的度数.2、如图,已知线段a ,b .(尺规作图,保留作图痕迹,不写作法)求作:线段2AB a b =-.3、如图,已知∠AOB =120°,OC 是∠AOB 内的一条射线,且∠AOC :∠BOC =1:2.(1)求∠AOC ,∠BOC 的度数;(2)作射线OM 平分∠AOC ,在∠BOC 内作射线ON ,使得∠CON :∠BON =1:3,求∠MON 的度数;(3)过点O 作射线OD ,若2∠AOD =3∠BOD ,求∠COD 的度数.4、点M ,N 是数轴上的两点(点M 在点N 的左侧),当数轴上的点P 满足PM =2PN 时,称点P 为线段MN 的“和谐点”.已知,点O ,A ,B 在数轴上表示的数分别为0,a ,b ,回答下面的问题:(1)当a =﹣1,b =5时,求线段AB 的“和谐点”所表示的数;(2)当b =a +6且a <0时,如果O ,A ,B 三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a 的值.5、如图1,在数轴上点A 表示数a ,点B 表示数b ,O 为原点,AB 表示点A 和点B 之间的距离,且a ,b 满足()2520a b a +++=.(1)若T 为线段AB 上靠近点B 的三等分点,求线段OT 的长度;(2)如图2,若Q 为线段AB 上一点,C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),运动的时间为t s .若C 、D 运动到任意时刻时,总有2QD AC =,请求出AQ 的长;(3)如图3,E 、F 为线段OB 上的两点,且满足2BF EF =,4OE =,动点M 从A 点、动点N 从F 点同时出发,分别以3个单位/s ,1个单位/s 的速度沿直线AB 向右运动,是否存在某个时刻使得EM BN AE +=成立?若存在,求此时MN 的长度;若不存在,说明理由.-参考答案-一、单选题1、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵2AD BD=,∴AB=BD,∵点C为线段AB的中点,∴BC=1122AB BD=,∵6CD=,∴162BD BD+=,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵2AD BD =,∴AD =23AB , ∵点C 为线段AB 的中点,∴AC =BC =12AB , ∵6CD =, ∴23AB -12AB =6, ∴AB =36cm ,故选C .【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.2、C【解析】【分析】由2BC AB =,6AB =,求出AC ,根据D 是AC 的中点,求出AD ,计算即可得到答案.【详解】解:∵2BC AB =,6AB =,∴BC =12,∴AC=AB+BC =18,∵D 是AC 的中点, ∴192AD AC ==, ∴BD=AD-AB=9-6=3,【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.3、C【解析】【分析】分AC =AB +BC 和AC =AB -BC ,两种情况求解.【详解】∵A 、B 、C 三点在同一直线上,且线段AB =6cm ,BC =4cm ,当AC =AB +BC 时,AC =6+4=10;当AC =AB -BC 时,AC =6-4=2;∴AC 的长为10或2cm故选C .【点睛】本题考查了线段的和差计算,分AB ,BC 同向和逆向两种情形是解题的关键.4、B【解析】【分析】设BON x ∠=,利用关系式2MON BON ∠=∠,72AON BON ∠-∠=︒,以及图中角的和差关系,得到3MOB x ∠=、722AOB x ∠=︒+,再利用OM 平分AOB ∠,列方程得到18x =︒,即可求出AOB ∠的值.解:设BON x ∠=,∵2MON BON ∠=∠,∴2MON x ∠=,∴23MOB MON BON x x x ∠=∠+∠=+=.∵72AON BON ∠-∠=︒,∴72AON x ∠=︒+,∴72722AOB AON BON x x x ∠=∠+∠=︒++=︒+.∵OM 平分AOB ∠, ∴12MOB AOB ∠=∠, ∴()137222x x =︒+,解得18x =︒. 72272218108AOB x ∠=︒+=︒+⨯︒=︒.故选:B .【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.5、B【解析】【分析】根据中点的定义求出AE 和AD ,相减即可得到DE .【详解】解:∵D 是线段AB 的中点,AB =6cm ,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.6、C【解析】【分析】若两个角的和为180,︒则这两个角互为补角,根据互补的含义直接计算即可.【详解】解:50∠=,A∴∠A的补角为:18050130,故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.7、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A.【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.8、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.9、B【解析】【分析】由题意知111=()222AD AC BE BC AC AB==⨯-,,如图分两种情况讨论①DE DB BE=+②DE BE BD=-;用已知线段表示求解即可.【详解】解:由题意知111=() 222AD AC BE BC AC AB ==⨯-,①如图1∵DE DB BE=+,12 DB AB AC =-∴18==42222AC AB AB DE AB AC cm -=-+=; ②如图2∵DE BE BD =-,12BD AC AB =- ∴18()42222AC AB AB DE AC AB cm -=--===; 综上所述,4DE cm =故选B .【点睛】本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.10、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B .【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.二、填空题1、1922︒'【解析】【分析】根据90度减去7038︒'即可求解.【详解】解:∠α=7038︒',则∠α的余角的度数是907038896070381922''''︒-︒=︒-︒=︒故答案为:1922'︒【点睛】本题考查了角度的计算,求一个角的余角,掌握角度的计算是解题的关键.2、'5232︒【解析】【分析】根据余角的定义求即可.【详解】解:∵3728A '∠=︒,∴它的余角是90°-3728'︒='5232︒,故答案为:'5232︒.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、54.5【解析】【分析】根据90°-∠α即可求得β∠的值.【详解】解:∵∠α与∠β互余,且∠α=35°30′,∴∠β903530'=︒-︒896035305430'''=︒-︒=︒ 30300.560'==︒ 54.5β∴∠=︒故答案为:54.5【点睛】本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.4、67.5【解析】【分析】6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.【详解】解:∵6点45分时,分针指向9,时针在指向6与7之间,∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.故答案为:67.5.【点睛】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°. 5、78【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),所以钟表上4时36分时,时针与分针的夹角可以看成:时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.故在14时36分,时针和分针的夹角为78°.故答案为:78.【点睛】本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.三、解答题1、(1)80°;(2)70°(3)42°或58°.【解析】【分析】(1)根据角平分线的性质证得∠BOM=12∠AOB,∠BON=12∠BOD,即可得到答案;(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=12∠BOD=70°−x,即可求出∠FOG的度数;(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF 平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.(1)解:∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12∠AOD=80°;故答案为:80°;(2)解:设∠BOF=x,∵∠BOC=20°,∴∠COF=20°+x,∵OF平分∠AOC,∴∠AOC=2∠COF=40°+2x,∴∠COD=∠AOD-∠AOC=140°-2x,∵OG平分∠BOD,∴∠BOG=12∠BOD=70°−x,∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;(3)解:当OF在OB右侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=28°,∵OF平分∠AOC,∴∠AOC=2∠COF=56°,∴∠COD=∠AOD-∠AOC=104°,∴∠BOD=124°,∵OG平分∠BOD,∠BOD=62°,∴∠BOG=12∴∠GOC=∠BOG−∠BOC=62°−20°=42°.当OF在OB左侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=12°,∵OF平分∠AOC,∴∠AOC=2∠COF=24°,∴∠COD=∠AOD-∠AOC=136°,∴∠BOD=156°,∵OG平分∠BOD,∠BOD=78°,∴∠BOG=12∴∠GOC=∠BOG−∠BOC=78°−20°=58°.∴∠GOC的度数为42°或58°.【点睛】此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.2、见解析【解析】【分析】作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.【详解】.解:如图,线段AB即为所求作的线段2a b【点睛】本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.3、(1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=13∠AOB=13×120°=40°,∠BOC=23∠AOB=23×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=12∠AOC=12×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=14∠BOC=14×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=32x︒,∵∠AOB=120°,∴x+32x=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=32y︒,∵∠AOB=120°,∴32y +y +120°=360°解得:y =96°,∴∠COD =∠BOD +∠BOC=96°+80°=176°,综上所述,∠COD 的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.4、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可. (2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b =a +6,解得a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),解得:a =-9,点B 在点O 的右边,6=2(a +6),解得:a =-3,综合a 的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.5、 (1)5(2)5(3)存在,9或0【解析】【分析】(1)根据绝对值的非负性及偶次方的非负性求出a =-5,b =10,得到AB =10-(-5)=15,由T 为线段AB 上靠近点B 的三等分点,得到BT =5,根据OT=OB-BT 求出结果;(2)由运动速度得到BD =2QC ,由C 、D 运动到任意时刻时,总有2QD AC =,得到BQ =2AQ ,即可求出AQ ;(3)先求出BF=4,EF =2,AE =9.当03m ≤≤时,得到9-3m +4-m =9,当34m <≤时,得到3m-9+4-m =9;当m >4时,得到3m-9+m-4=9,解方程即可.(1) 解:∵()2520a b a +++=,∴a +5=0,b +2a =0,∴a =-5,b =10,∴点A 表示数-5,点B 表示数10,∴AB =10-(-5)=15,∵T 为线段AB 上靠近点B 的三等分点,∴BT =5,∴OT=OB-BT =5;(2)解:∵C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),∴BD =2QC ,∵C 、D 运动到任意时刻时,总有2QD AC =,∴BQ =2AQ ,∵BQ +AQ =15,∴AQ =5;(3)解:∵2BF EF =,4OE =,∴BF=4,EF =2,AE =9,设点M 运动ms ,当03m ≤≤时,如图,∵EM=9-3m ,BN =4-m ,EM BN AE +=,∴9-3m +4-m =9,解得m =1,∴MN =9-3m +2+m =9;当34m <≤时,如图,∵EM=3m-9,BN =4-m ,EM BN AE +=,∴3m-9+4-m =9,解得m =7(舍去);当m >4时,如图,∵EM=3m-9,BN =m-4,EM BN AE +=,∴3m-9+m-4=9,解得m =112; ∴MN =15-3m +m-4=0;综上,存在,此时MN 的长度为9或0.【点睛】此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.。
2022-2023学年苏科版八年级物理上册第五章物体的运动重点解析试题(含答案解析)
八年级物理上册第五章物体的运动重点解析考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 15分)一、单选题(5小题,每小题3分,共计15分)1、甲、乙两物体从同一位置沿同一方向做直线运动,其s t-图像如图所示,其中甲的图线为直线,下列分析正确的是()A.甲乙两物体是从同一地点同时出发的B.以乙物体为参照物,甲物体一直在运动C.第4s~第19s甲和乙的平均速度相等D.整个过程中甲的速度总是大于乙的速度2、图是甲、乙两车在同一平直公路上行驶的s t-图像。
下列说法正确的是()A .甲、乙两车都做匀速直线运动,且v v 甲乙B .由图像得,甲、乙两车速度之比为4:9C .若它们相对地面均向东行驶,以甲车为参照物,乙车向东行驶D .甲车2小时行驶的路程,乙车需行驶3小时3、下列有关误差的说法中,正确的是( )A .多次测量取平均值可以消除误差B .误差是不遵守仪器的使用规则产生的C .只要认真测量,就可以避免误差D .选用精密仪器测量可以减小误差4、以下是一位中学生对自身情况的估测,其中合理的是( )A .体温约为26℃B .眨一次眼约用1minC .质量约为50kgD .手掌宽度约为50cm5、如图所示,两列火车并排停在站台上,小明坐在车厢中向另一列车厢观望。
突然,他觉得自己的列车开始缓缓地前进了,但是,“驶过”了旁边的列车的车尾才发现,实际上他乘坐的列车还停在站台上。
下列说法正确的是( )A.小明发现自己乘坐的列车还停在站台上是以旁边列车的车尾为参照物B.小明感觉自己乘坐的列车前进了是以站台为参照物C.以站台为参照物,小明感觉旁边的列车向相反方向开去了D.小明选择相同的参照物可以造成先后不同的感觉第Ⅱ卷(非选择题 85分)二、填空题(5小题,每小题4分,共计20分)1、甲图中铅笔的长度是 _____cm,乙图中停表秒针盘的分度值是 _____s,停表读数是 _____s。
分析化学作业03参考答案(第五章)
5-1 写出下列物质水溶液中的质子平衡式。
(1)32CO Na ;(2)()424HPO NH 解:(1)零水准:O H 2;-23CO质子平衡式:[][][][]--+=++OH CO H 2HCO H 323(2)零水准:O H 2;+4NH ;-24HPO质子平衡式:[][][][][][]---+++=+++3434342PO NH OH PO H 2PO H H5-2 已知H 3PO 4的pKa 1=2.12,pKa 2=7.20,pKa 3=12.36。
试求-34PO 的pKb 1和pKb 3。
解:pK b1=14.00- pKa 3=14.00-12.36=1.64;pK b3=14.00- pKa 1=14.00-2.12=11.885-3 已知HAc 的pK a =4.74,NH 3·H 2O 的pK b =4.74,计算下列各溶液的pH :(1)0.10 mol·L -1HAc ;(2)0.15 mol·L -1 NaAc ;(3)0.10 mol·L -1 NH 3·H 2O ;(4)0.15 mo1·L -1NH 4Cl 解:可直接采用最简式(1)()87.210.010lg c HAc K lg pH 74.4HAc a =⨯-=⋅-=- (2)()96.815.010lg 00.14c AcK lg 00.14pH )74.400.14(Acb =⨯-=⋅-=----(3)()13.1110.010lg 00.14c O H NH K lg 00.14pH 74.4O H NH 23b 23=⨯-=⋅⋅-=-⋅(4)()04.515.010lg c NH K lg pH )74.400.14(NH 4a 4=⨯-=⋅-=----5-4. 今有0.20 mol ⋅L -1的二元弱酸H 2B 溶液30 mL ,加入0.20 mol ⋅L -1 NaOH 溶液15 mL 时的pH=4.70;当加入NaOH 溶液30 mL 时达到第一化学计量点,此时pH=7.20,计算H 2B 的pKa 2。
分析化学第五章试题及参考答案(供参考)
第五章思考题与习题1.写出下列各酸的共轭碱:H2O,H2C2O4,H2PO4-,HCO3-,C6H5OH,C6H5NH3+,HS-,Fe(H2O)63+,R-NH+CH2COOH.答:H2O的共轭碱为OH-;H2C2O4的共轭碱为HC2O4-;H2PO4-的共轭碱为HPO42-;HCO3-的共轭碱为CO32-;;C6H5OH的共轭碱为C6H5O-;C6H5NH3+的共轭碱为C6H5NH2;HS-的共轭碱为S2-;Fe(H2O)63+的共轭碱为Fe(H2O)5(OH)2+;R-NH2+CH2COOH的共轭碱为R-NHCH2COOH。
2. 写出下列各碱的共轭酸:H2O,NO3-,HSO4-,S2-,C6H5O-,C u(H2O)2(OH)2,(CH2)6N4,R—NHCH2COO-,COO-C O O-。
答:H2O的共轭酸为H+;NO3-的共轭酸为HNO3;HSO4-的共轭酸为H2SO4;S2的共轭酸为HS-;C6H5O-的共轭酸为C6H5OH C u(H2O)2(OH)2的共轭酸为Cu(H2O)3(OH)+;(CH2)6N4的共轭酸为(CH2)4N4H+;R—NHCH2COO-的共轭酸为R—NHCHCOOH,COO-C O O-的共轭酸为COO-C O O-H3.根据物料平衡和电荷平衡写出(1)(NH4)2CO3,(2)NH4HCO3溶液的PBE,浓度为c(mol·L-1)。
答:(1)MBE:[NH4+]+[NH3]=2c; [H2CO3]+[HCO3-]+[CO32-]=cCBE:[NH4+]+[H+]=[OH-]+[HCO3-]+2[CO32-]PBE:[H+]+2[H2CO3] +[HCO3-]=[NH3]+[OH-](2)MBE:[NH4+]+[NH3]=c; [H2CO3]+[HCO3-]+[CO32-]=cCBE:[NH4+]+[H+]=[OH-]+[HCO3-]+2[CO32-]PBE:[H+]+[H2CO3]=[NH3]+[OH-]+[CO32-]4.写出下列酸碱组分的MBE、CEB和PBE(设定质子参考水准直接写出),浓度为c (mol·L-1)。
第五章 控制系统的稳定性分析(含习题答案)
f1 g1
劳斯阵列
注意:如果劳斯阵列第一列元素的符号不全 相同,则该列元素符号变化的次数,就是特 征方程所含实部为正的根的数目。
劳斯判据使用说明: ( 1)用一个正数去乘或除劳斯阵的某一整行,不会改变稳定性的结论。
4 3 2 例5-1 设控制系统的特征方程式为:D s s 8s 17 s 16s 5 0
Bl e
l 1
sin l t l Dr t r e r t sin r t r
r 0
n4 1
n2重实根
s pk
n3对不同的共轭复数根 s l jl
结论:控制系统稳定的充分必要条件:系统特征方程式的根全部具 有负实部。
5. 2 系统稳定的充要条件
s3, 4 2 j
系统特征方程具有两对共轭虚根,系统处于临界稳定。(不稳定,对应的 暂态分量为等幅振荡。)
劳斯判据使用说明:
例 5-3 : 已知单位反馈控制系统的开环传递函数为:G s 试应用劳斯判据判断预使系统稳定的K的取值范围。 解:根据题意,可得系统的闭环传递函数为:
K s s 2 s 1 s 2
大范围稳定:系统稳定与否,与初始偏差的大小无关。 小偏差稳定:初始偏差不超过一定范围的情况下,系统是稳定的。
5. 2 系统稳定的充要条件
一、系统稳定条件分析
系统扰动输入到输出之间的传递函数:
Xo s G2 s b0 s m b1s m 1 bm 1s bm M s N s 1 G1 s G2 s H s a0 s n a1s n 1 an 1s an D s
C s D s
闭环传递函数的特征方程:D(s)=0,特征方程的根即系统传递函数的极点。
第五章 相关和回归分析
第五章相关分析和回归分析5.1有人研究了黏虫孵化历期平均温度(x,℃)与历期天数(y,d)之间关系,试验资料如下表,试求黏虫孵化历期平均温度(x,℃)与历期天数(y,d)的简单相关系数。
并建立孵化历期平均温度(x,℃)与历期天数(y,d)之间的一元线性回归方程(要求给出检验结果并描述)。
表5.1 黏虫孵化历期平均温度与历期天数资料5.2 下表为某县1960-1971年的1月份雨量(x1,mm)、3月上旬平均温度(x2,℃)、3月中旬平均温度(x3,℃)、2月份雨量(x4,mm)和第一代三化螟蛾高峰期(y,以4月30日为0)的测定结果。
试计算1月份雨量(x1,mm)、3月上旬平均温度(x2,℃)分别与第一代三化螟蛾高峰期(y)的偏相关系数。
5.3 下表为观测的七个不同高度的风速资料,试建立风速随高度变化的曲线方程。
并确定最合理的是什么样的曲线类型(要求写出曲线方程)。
表5.3 观测的不同高度的风速资料5.4根据多年的大豆分期播种资料,建立大豆产量(y)与生育期降水量(x i)之间的多元线性回归方程。
表5.4 大豆不同生育期降水量与产量数据产量(kg/ha)y生育期降水量(mm)播种-出苗x1出苗-第三叶x2第三叶-开花x3开花-结荚x4结荚-成熟x53982 52 132 180 219 206 3397 25 132 198 201 206 2915 29 170 149 190 202 2142 25 207 111 192 204 1874 43 167 188 111 205 1934 40 85 216 64 189 1692 4 107 192 64 194 1532 18 46 138 165 301 1203 15 49 149 153 299 1200 32 30 137 233 248 1168 7 112 168 158 225 1160 0 111 181 145 225 887 14 104 199 138 208 1124 22 34 26 50 156 927 22 35 25 50 156 870 9 33 25 50 154 979 16 28 22 50 156 924 32 12 37 30 154 1071 33 13 52 20 149 1056 29 15 50 20 149 1124 1 14 50 20 149 924 3 12 50 20 149 1374 11 34 30 8 1635.5根据表5.2的数据试应用逐步回归方法求预报第一代三化螟蛾高峰期的最优线性回归方程(要求给出方程和系数的检验结果)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相关分析一、判断题1.若变量X的值增加时,变量Y的值也增加,说明X与Y之间存在正相关关系;若变量X的值减少时,Y变量的值也减少,说明X与Y之间存在负相关关系。
()2.回归系数和相关系数都可以用来判断现象之间相关的密切程度()3.回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()4.计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()5.完全相关即是函数关系,其相关系数为±1。
()1、×2、×3、×4、×5、√.二、单项选择题1.当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系2.现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系3.在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量4.现象之间线性依存关系的程度越低,则相关系数( ) 。
A.越接近于-1B. 越接近于1C. 越接近于0D. 在0.5和0.8之间5.若物价上涨,商品的需求量相应减少,则物价与商品需求量之间的关系为( )。
A.不相关B. 负相关C. 正相关D. 复相关6.能够测定变量之间相关关系密切程度的主要方法是( ) 。
A.相关表B.相关图C.相关系数D.定性分析7.下列哪两个变量之间的相关程度高()。
A.商品销售额和商品销售量的相关系数是0.9B.商品销售额与商业利润率的相关系数是0.84C.平均流通费用率与商业利润率的相关系数是-0.94D.商品销售价格与销售量的相关系数是-0.918.回归分析中的两个变量()。
A、都是随机变量B、关系是对等的C、都是给定的量D、一个是自变量,一个是因变量9.当所有的观察值y都落在直线上时,则x与y之间的相关系数为( )。
A.r = 0B.| r | = 1C.-1<r<1D.0 < r < 110.每一吨铸铁成本(元)倚铸件废品率(%)变动的回归方程为:y c=56+8x, 这意味着( )A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.废品率每增加1%,则每吨成本为561、B2、A3、A4、C5、B6、C7、C8、D9、B 10、C.三、多项选择题1.测定现象之间有无相关关系的方法有()A、对现象做定性分析B、编制相关表C、绘制相关图 D.计算相关系数 E、计算估计标准2.下列属于负相关的现象有( )A、商品流转的规模愈大,流通费用水平越低B、流通费用率随商品销售额的增加而减少C、国内生产总值随投资额的增加而增长D、生产单位产品所耗工时随劳动生产率的提高而减少 E、产品产量随工人劳动生产率的提高而增加3.变量x值按一定数量增加时,变量y 也按一定数量随之增加,反之亦然,则x和y之间存在 ( )A、正相关关系B、直线相关关系C、负相关关系D、曲线相关关系E、非线性相关关系4.直线回归方程 y c=a+bx 中的b 称为回归系数,回归系数的作用是 ( )A、确定两变量之间因果的数量关系B、确定两变量的相关方向C、确定两变量相关的密切程度 D、确定因变量的实际值与估计值的变异程度E 确定当自变量增加一个单位时,因变量的平均增加量5.设产品的单位成本 (元) 对产量 (百件) 的直线回归方程为y c=76-1.85x,这表示 ( )A、产量每增加100件,单位成本平均下降1.85元B、产量每减少100件,单位成本平均下降1.85元 C、产量与单位成本按相反方向变动 D、产量与单位成本按相同方向变动 E、当产量为200件时,单位成本为72.3元1、ABCD2、ABD3、AB4、ABE5、ACE四、填空题1.相关分析研究的是()关系,它所使用的分析指标()。
2.从相关方向上看, 产品销售额与销售成本之间属于()相关关系,而产品销售额与销售利润之间属于()相关关系。
3.相关系数的取值范围是(),r为正值时则称()。
4.相关系数г=+1时称为()相关,г为负值时则称()。
5.正相关的取值范围是(),负相关的取值范围是()。
6.相关密切程度的判断标准中,0.5<|r|<0.8称为( ),0.8<|r|<1称为()7.回归直线参数a . b是用()计算的,其中b也称为()。
8.设回归方程y c=2+3x, 当x=5时,y c=(),当x每增加一个单位时,y c增加()。
1、相关相关系数2、负正3、11≤-r正相关4、完全正负相关5、0<r≤+1-1≤r<06、显≤著相关高度相关7、最小平方法回归系数8、17 3.五、简答题1.从现象总体数量依存关系来看,函数关系和相关关系又何区别?答:函数关系是:当因素标志的数量确定后,结果标志的数量也随之确定;相关关系是:作为因素标志的每个数值,都有可能有若干个结果标志的数值,是一种不完全的依存关系。
2、现象相关关系的种类划分主要有哪些?答:现象相关关系的种类划分主要有:1.按相关的程度不同,可分为完全相关.不完全相关和不相关。
2.按相关的方向,可分为正相关和负相关。
3.按相关的形式,可分为线性相关和非线性相关。
4.按影响因素的多少,可分为单相关复相关六、计算题1、某部门5个企业产品销售额和销售利润资料如下:试计算产品销售额与利润额的相关系数,并进行分析说明。
(要求列表计算所需数据资料,写出公式和计算过程,结果保留四位小数。
)2.某班40名学生,按某课程的学习时数每8人为一组进行分组,其对应的学习成绩如下表:试根据上述资料建立学习成绩(y)倚学习时间(x)的直线回归方程。
(要求列表计算所需数据资料,写出公式和计算过程,结果保留两位小数。
)企业编号月产量(千件)生产费用(万元)ABCDEFGH6.13.85.08.02.07.21.23.1132110115160861356280要求:(1)计算相关系数,测定月产量与生产费用之间的相关方向和程度;(2)确定自变量和因变量,并求出直线回归方程;(3)根据回归方程,指出当产量每增加1000件时,生产费用平均上升多少?4、某企业第二季度产品产量与单位成本资料如下:要求:(1)配合回归方程,指出产量每增加1000件时单位成本平均变动多少?(2)产量为8000件--10000件时,单位成本的区间是多少元?5、某地居民1983-1985年人均收入与商品销售额资料如下:要求建立以销售额为因变量的直线回归方程,并估计人均收入为40元时商品销售额为多少?(要求列表计算所需数据资料,写出公式和计算过程,结果保留两位小数。
)相关系数:9999.0]5.22125.116435][351027403005[5.22135101779805)(][)([222222=-⨯-⨯⨯-⨯=---=∑∑∑∑∑∑∑y y n x x n yx xy n r 从相关系数可以看出,产品销售额和利润额之间存在高度正相关关系。
89.11052617531010572905)(222=-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b31.22510589.15310=⨯-=-=-=∑∑nx b ny x b y a直线回归方程为: y c = 22.31+1.89x 3、参考答案:设月产量为x ,生产费用为y (1)高度正相关⇒≈∑∑∑∑∑∑∑=-⋅-⋅-97.02222)()(y y n x x n yx xy nr (6分)(2)令直线趋势方程为:x y⋅+=βαˆˆˆ 31.51ˆˆ,9.12ˆ22)(=⋅-=≈∑∑∑∑∑=-⋅-x y x x n y x xy n βαβ则Θ x y9.1231.51ˆ+=∴直线趋势方程为:(8分) (3)当月产量增加1个单位时,生产费用将增加12.9万元(1分)(1) 配合加归方程 y c = a + bx50.212503210128353)(222-=-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b 即产量每增加1000件时,单位成本平均下降2.50元。
80312)50.2(3210=⨯--=-=-=∑∑nx b ny x b y a故单位成本倚产量的直线回归方程为y c =80-2.5x (2)当产量为8000件时,即x=8,代入回归方程: y c = 80-2.5×8 = 60(元)当产量为10000件时,即x=10,代入回归方程: y c = 80-2.5×10 = 55(元)即产量为8000件~10000件时,单位成本的区间为60元~55元。
44.08625003408611623)(222=-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b 72.038644.0340=⨯-=-=-=∑∑nx b ny x b y a销售额与人均收入直线回归方程为:y c =0.72+0.44x将x=40代入直线回归方程:y c=0.72+0.44x=0.72+0.44×40=18.32(万元)即:当人均收入为40元时,销售额为18.32万元。