2017新人教版七年级数学上册全册课件【新版】
新人教版七年级上册数学课件:加减混合运算
1.(2017长春期中)把7-(-3)+(-5)-(+2)写成省略加号和的形式为( )A
(A)7+3-5-2
(B)7-3-5-2
(C)7+3+5-2
(D)7+3-5+2
2.(2017南岸期中)有人用600元买了一匹马,又以700元的价钱卖了出去;然后,他
再用800元把它买回来,最后以900元的价钱卖出.在这桩马的交易中,他( )
4
4
6
6
4
4
6
6
=[(- 1 )+(+ 3 )]+[(- 1 )+(+ 5 )]+(-1)
4
4
6
6
= 1 + 2 +(-1)= 1 .
23
6
有理数加减混合运算的方法 (1)把加减混合运算统一为加法运算; (2)应用加法交换律和结合律来简化运算.
探究点二:有理数加减混合运算的应用
【例2】 某中学一超市一星期内收入和支出情况如下(收入为正,支出为负):
3-2-4-7,读作3,负2,
探究点一:有理数的加减混合运算 【例 1】 计算: (1)(-5.13)-(-4.62)+(-8.47)-(-2.38);
(2)(- 1 )+(+ 3 )+(- 1 )-(- 5 )-(+1).
4
4
6
6
【导学探究】 把减法转化为 加 法,再利用加法的 运算律 进行简便运算.
+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元.这一星期内该超市
新人教版七年级上册数学课件:乘法的运算律
99
(D)(-101- 1 )×99
99
2.计算(- 1 )×(-1 2 )×(-4)× 3 的结果是( B )
4
3
5
(A)1 (B)-1 (C)10 (D)-10
3.下列变形不正确的是( C )
(A)5×(-6)=(-6)×5
(B)( 1 - 1 )×(-12)=(-12)×( 1 - 1 )
72
=(100- 1 )×(-72)
72
=100×(-72)- 1 ×(-72)
72
=-7 200+1 =-7 199.
1.(2017 博兴期中)利用分配律计算(-100 98 )×99 时,正确的方案可以是( A )
99
(A)-(100+ 98 )×99
99
(B)-(100- 98 )×99
99
第2课时 乘法的运算律
有理数乘法的运算律
1.乘法交换律:两个数相乘,交换
因数的位置,积 不变.用字母表示为
ab= ba .
2.乘法结合律:三个数相乘,先把 前两个数相乘,或者先把 积 不变 . 用字母表示为:(ab)c= a(bc) .
3.分配律:一个数同两个数的和相乘,等于把这个数分别同
相加
积
.
ab+ac
用字母表示为:a(b+c)=
.
后两个数相乘, 这两个数相乘,再把
探究点一:乘法运算律 【例 1】 计算: (1)(-0.25)×(-0.125)×400×(-8);
(2)(-36)×(1- 4 + 5 - 7 ).
9 6 12
【导学探究】 1.题(1)应用乘法 2.题(2)应用乘法
【人教版】数学七年级上册全册完整优质课件
【人教版】数学七年级上册全册完整优质课件一、教学内容二、教学目标通过本节课学习,我希望学生能够:1. 熟练掌握有理数运算规则,提高解题能力。
2. 理解整式加减法则,并能应用于实际问题。
3. 学会一元一次方程解法,解决相关实际问题。
4. 认识基本图形,培养空间想象力。
5. 学会数据收集与表示方法,提高数据分析能力。
三、教学难点与重点教学难点:有理数混合运算、整式加减、一元一次方程应用、图形认识、数据整理与表示。
教学重点:有理数运算规则、整式加减法则、一元一次方程解法、基本图形性质、数据收集与表示方法。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:课本、练习本、文具。
五、教学过程1. 导入:通过实际情景引入,激发学生学习兴趣。
例如:讲解有理数时,引入购物找零例子;讲解整式加减时,引入装修房屋例子。
2. 讲解:详细讲解各章节知识点,结合例题进行讲解。
例如:讲解有理数运算时,通过例题讲解加减乘除运算规则;讲解整式加减时,通过例题讲解合并同类项方法。
3. 课堂练习:针对每个知识点设计随堂练习,巩固所学。
例如:讲解一元一次方程时,设计方程求解练习题;讲解图形认识时,设计识别和绘制图形练习题。
4. 互动:鼓励学生提问、讨论,解答学生疑问。
六、板书设计板书设计将采用结构清晰、层次分明方式,将每个章节知识点、重点、难点进行有序排列,方便学生记录和复习。
七、作业设计1. 作业题目:(1)有理数运算:计算下列各题,并说明运算规则。
例:(3) + 5 2 = ?(2)整式加减:计算下列各题,合并同类项。
例:3x^2 + 2x x^2 4x = ?(3)一元一次方程:求解下列方程。
例:2x 5 = 3x + 1(4)图形认识:绘制下列图形,并说明其特点。
例:正方形、长方形、三角形例:某班级学生身高、体重数据2. 答案:(1)3 + 5 2 = 0(2)3x^2 + 2x x^2 4x = 2x^2 2x(3)x = 6(4)见学生绘制图形及说明(5)见学生整理图表八、课后反思及拓展延伸1. 反思:针对本节课教学过程,及时反思教学方法、教学效果,调整教学策略。
人教版数学七年级上册全册优质课件【完整版】
走200米,记为
;向东走-200
米实际表示
。
说明:这是一个用正负数描述向指定方向变 化情况的例子, 通常向指定方向变化用正数 表示;向指定方向的相反方向变化用负数表 示。即负数表示向指定方向的相反方向变化。
探索 思考
例1:一个月内,小明体重增加2kg,小华 体重减少1kg,小强体重无变化,写出他们 这个月的体重增长值;
(3) 0既不是正数也不是负数。0是正负数的 分界。0具有确定的含义。
怎样理解具有相反意义的量 说明
在同一问题中,用正、负数表示具有相反意 义的量。收入300元和支出200元,零上6℃和零 下4℃,向东30米和向西50米等等,如果正数表 示某种意义,那么负数表示它的相反的意义,反 之亦然。
对于两个具有相反意义的量,把哪一种意 义规定为正,带有任意性,不过习惯上把向东、 上升、盈利、运进、增加、收入等规定为正, 把它们的相反量规定为负的。
第一课时
概念引入
这里出现了一种新数: -3 表示零下3摄氏度, -2 表示净输2球, -0.5 表示小于设计尺寸0.5mm
而: 3 表示零上3摄氏度, 2 表示净胜2球, +0.5 表示大于设计尺寸0.5mm
概念引入
我们把大于零的数叫做正数。有时
在正数前面也加上“+”(正)号。 如+0.5、+3、 +1/2……“+”号可以省略。
它们以什么 为基准?
10℃表示白天温度为零上10℃,-5℃表示晚上温度为零下5℃。
0只表示没有吗?
1.空罐中的金币数量; 2.温度中的0℃; 3.海平面的高度; 4.标准水位; 5.身高比较的基准; 6.正数和负数的界点;
……引入正负数后,0不再简简单单的只表示没有. 它具有丰富的意义,是正负数的基准。
新人教版七年级上册数学课件:收费问题及其他问题
2.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0
元,通话费每分钟0.15元)两种,则当月通话时间为
3分00钟时,A,B两种套餐收费
一样.
3.为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果
不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度
(2)会出现两种移动电话计费方式收费一样的情况吗?在怎样的情况下会省钱?
【导学探究】 设通话x分钟,则按方式一计费 的式子表示).
(50+0.3x) 元,按方式二计费
(10+0.5元x)(用含x
解:(1)当通话时间为150分钟时, 方式一:50+0.3×150=95(元). 方式二:10+0.5×150=85(元). 当通话时间为300分钟时, 方式一:50+0.3×300=140(元), 方式二:10+0.5×300=160(元).
第3课时 收费问题及其他问题
一、分段计费问题 现实生活中,像“阶梯水费”“阶梯电费”“出租车计费”这样的特殊计费问题, 由于其不同区间的计费标准各不相同,需要分段计费再汇总,称为分段计费问题. 二、方案选择问题 方案选择问题可通过列方程或列式计算求解,再通过分类讨论或比较选择出最优 方案.
探究点一:分段计费问题 【例1】 某城市收取每月天然气费实行分段计费的办法,具体收费标准如下:
分段计费问题
(1)找准每个分段点以及每段计费区间的费率; (2)弄清实际计费时属于哪一段; (3)按分段计费案选择问题 【例2】 根据下列两种移动电话计费方式表,考虑下列问题.
方式一
最新人教版七年级数学上册《第2课时 有理数的加减混合运算》优质教学课件
答:第一天最高价与最低价的差为0.5元,第 二天最高价与最低价的差为0.3元,第三天最高价 与最低价的差为0.13元;差的平均值是0.31元.
课堂小结
归纳 引入相反数后,加减混合运算可以统一为
加法运算.
a+b-c=a+b+ (-c)
课堂小结
通过本节课的学习,你有什么收获?
课堂总结
学完这课,你收获了什么?有什么样 的感悟?与同学相互交流讨论。
解: 3 7 ( 1) ( 2) 1 42 6 3
=3 7 1 2 1 4263
= 7 1 1 3 2 = 13 .
26 43
4
基础巩固
随堂演练
1.把18-(+33)+(-21)-(-42)写成 省略括号的和是( B )
A.18+(-33)+(-21)+42
B.18-33-21+42
大胆探究: 在符号简写这个 环节,有什么小 窍门么?
有理数加减法混合运算常用方法:
(1)正负数归类法; (2)相反数结合法; (3)凑整数; (4)同分母分数结合法等.
探究 在数轴上,点 A,B 分别表示 a,b.利用有
理数减法,分别计算下列情况下点 A,B 之间的 距离;
a=2,b=6;a=0,b=6;a=2,b=-6; a=-2,b=-6. 你能发现点 A, B 之间的距离与数 a,b 之 间的关系吗?
C.18-33-21-42
D.18+33-21-42
综合应用 2.计算:-1+2-3+4-5+6-7+8-9+…
+ 2016-2017.
解:原式=(-1+2)+(-3+4)+…+(- 2015+2016)-2017
=1+1+…+1-2017 =1008-2017 =-1009.
人教版七年级数学上册全套ppt课件
=104×0.5
=52
所以这天下午汽车共耗油52L.
4
有理数分类 有理数定义: 有限小数和无限循环小数统称有理数. 无理数定义: 无限不循环小数统称有理数.如π
有理数按定义分类: 正整数 整数 0 负整数 正分数 分数 负分数 正整数 正有理数 正分数 有理数按性质分类 0 负整数 负有理数 负分数
21
1.2 有理数
数轴 相反数
22
0
1
画一条水平直线,在直线上取一点0(叫原点),选取一定长度作为单位长度,
规定直线上向右的方向为正方向,就得到了数轴。
例1.讨论下列数轴画得对错?
原点 数轴三要素 单位长度 正方向
23
数轴上的点表示的数有以下特征:
⑴右边的点表示的数比左边的大。
毫米.
(3)如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分 +2,+7,-3 和80分应分别记作__________________ (4)甲冷库的温度是-120C,乙冷库的温度比甲冷库低50C,则乙冷库的温度是-170C .
3
例3.出租车司机小李某天的运营全是在东西走向的人民大街进行的,如果规定 向东为正,向西为负,他这天下午的行车里程如下(单位:km) +10、-3、-8、+11、-10、+12、+4、-15、-16、+15 (1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是多少? (2)若汽车的耗油量为0.5L/㎞,那么这天下午汽车共耗油多少? (1)解:(+10)+(-3)+(-8)+(+11)+(-10)+(+12)+(+4)+(-15)+(-16)+(+15) =0 所以小李又回到了原点. (2)解:〔(+10)+(+3)+(+8)+(+11)+(+10)+(+12)+(+4)+(+15)+(+16)+(+15)〕×0.5
人教版七年级数学上册PPT课件
多做练习
通过大量的练习,提高 解题能力和思维水平, 培养数学素养。
建立错题本
将做错的题目记录下来 ,分析错误原因,避免 重复犯错。
02 有理数及其运算
有理数的概念与性质
有理数的定义
可以表示为两个整数之比 的数,形如 a/b(b≠0) 。
有理数的分类
正有理数、零、负有理数 。
有理数的性质
具有顺序性、稠密性、可 数性等。
整式的分类
单项式和多项式,其中多项式是 由一个或多个单项式组成的整式
。
整式的次数
整式中次数最高的项的次数,如 $2x^2 + 3x + 4$ 的次数为 $2$
。
整式的加减运算
整式的加法
整式的加减混合运算
同类项合并,不同类项直接相加,如 $(2x^2 + 3x + 4) + (x^2 - 2x + 1) = 3x^2 + x + 5$。
D
谢谢聆听
用于表示各部分在总体中所占的比例。
02
直方图
用于表示数据分布情况,反映数据的集中趋 势和离散程度。
04
03
01
数据的分析与应用
平均数
反映一组数据的平均水 平,用于比较不同组数 据的差异。
中位数
将一组数据按大小顺序 排列后,位于中间位置 的数,用于描述数据的 集中趋势。
众数
一组数据中出现次数最 多的数,用于描述数据 的集中趋势。
有理数的四则运算
加法运算
减法运算
同号相加,取相同的符号,并把绝对值相 加;异号相加,取绝对值较大的数的符号 ,并用较大的绝对值减去较小的绝对值。
减去一个数等于加上这个数的相反数。
【人教版】数学七年级上册全册完整课件范例
3.掌握一元一次方程的解法:通过讲解典型例题,让学生掌握方程的求解方法,并能够解决实际问题。教学中,注重启发式教学,引导学生主动探究,提高解决问题的能力。
【人教版】数学七年级上册全册完整课件
一、教学内容
本课件基于人教版数学七年级上册全册教材,详细内容包括:
1.有理数及其运算
-第一章:有理数
-第一节:正数与负数
-第二节:有理数的加法和减法
-第三节:有理数的乘法和除法
2.整式的加减
-第二章:整式的加减
-第一节:整式
-第二节:整式的加法和减法
3.一元一次方程
-第三章:一元一次方程
-第一节:方程
-第二节:一元一次方程的解法
-第三节:一元一次方程的应用
二、教学目标
1.理解并掌握有理数的概念及其运算规律。
2.学会整式的加减运算,并能解决实际问题。
3.掌握一元一次方程的解法,并能应用于实际问题的求解。
三、教学难点与重点
1.教学难点:有理数的乘除法运算,一元一次方程的解法。
4.知识拓展:引入整式的加减,讲解相关概念和运算方法。
5.例题讲解:讲解整式加减的例题,学生跟随解题步骤。
6.课堂练习:设计整式加减的练习题,学生独立完成,教师辅导。
7.一元一次方程的引入:通过实际问题,引导学生认识方程。
8.解方程:讲解一元一次方程的解法,通过例题讲解,巩固知识。
9.课堂练习:设计一元一次方程的练习题,学生独立完成,教师辅导。
2.一元一次方程的解法:此部分内容是学生求解实际问题的关键。教学中应重点讲解方程的求解步骤,强调移项、合并同类项等基本技能。通过典型例题的讲解,让学生熟练掌握解方程的方法。
最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文
1.什么是负数?
我们将前面带有“-”的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?.
*
中国男蓝在雅典奥运会上: 58:83负于西班牙 69:62战胜新西兰 57:82负于阿根廷 52:89负于意大利 积分:5分 67:66战胜塞黑
*
比标准重量多出5克
比标准重量少出5克
*
1.2.1有理数
*
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的 量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差;
*
1、粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮 食重量如下:52千克,49千克,49.8千克,如果超重部分 用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的 超重数和不足数;
*
“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?
答案肯定是不对的,还有0的存在.
*
在生活中,我们将海平面高度计为0米,根据图的标识,你能说出我国的最高峰珠穆朗玛峰和吐鲁番盆地的海拔高度吗?
8848
-155
类似题中0可以都有怎样的意义?
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、国际乒联在正式比赛中采用打球,对大球的直径有严格的标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个4,7,142,-12,0,-37, 中,负整数共有( ) A.3个 B.2个 C.1 个 D.0个
2017年秋季学期新版新人教版七年级数学上学期2.1、整式课件127
首页
典例精析
1.判断下列各代数式是否是单项式。如不是,请说 明理由;如是,请指出它的系数和次数。 1 3 2 2 ①x+1; ② ; ③πr ; ④- a b。 2 x 答:①不是,因为原代数式中出现了加法运算;
② 不是,因为原代数式是1与x的商; ③是,它的系数是π,次数是2;
3 ④是,它的系数是- ,次数是3。 2
2
(4)小明从每月的零花钱中贮存x元捐给希望工程,一年 12 x 元. 下来小明共捐款_______
首页
二、合作探究
探究点一 单项式的概念及表示方法 观察下列代数式,它们有
m
12 x
上面这些代数式都是有数字与字母的乘积组 成的 如:abc、–mn、12xy 、r² 等都是单项式。
首页
首页
2.下面各题的判断是否正确。 ①-7xy2的系数是7;(× )
②-x2y3与x3没有系数;( × )
③-ab3c2的次数是0+3+2;( × ) ④-a3的系数是-1; ( √ ) ⑤-32x2y3的次数是7;( × ) ⑥
1 1 2h的系数是 。( × ) πr 3 3
首页
3.填空:
- 5 ,次数是_____ (1)单项式-5y的系数是_____ 1
首页
知识要点
数与字母或字母与字母乘积 组成的代数式叫做单项式
其中: 系数
2 3 -3x y
指数和称次数
首页
剖析单项式 -3x2y3 系数
指数和称次数
• 单项式中的数字因数叫做这个单项式的系数。
-3 ,-ab的系数是_____ -1 如-3x的系数是_____
3 3ab 如 的系数是_____ 2 , 2 • 一个单项式中的所有字母的指数的和叫做这个单项式的次数。 1 ,ab的次数是_____ 2 如-3x的次数是_____
新人教版七年级数学上册全册ppt课件【2017新版】
新人教版七年级数学上册
1
课件PPT
第1章 有理数
• 一、地位和作用:
• 1.本章是九年制义务教育第三学段“数与代数”的 起始内容,是初等数学的重要基础.
• 2.有理数是“数与代数”领域中的重要内容之一, 在现实生活中有广泛的应用,是继续学习实数、 代数式、方程、不等式、直角坐标系、函数、统 计等数学内容以及相关学科知识的基础.
数学思考:1.用数形结合的思想方法得出有理
数加法法则. 2.正确进行有理数的加法运算.
有理数
正有理数
零
负有理数
正分数 负整数 负分数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的.
2.0既不是正数也不是负数,而是整数.
3.有限小数和百分数都可以转化成分数 ,因此把它们都看成分数.
4.有理数可以按不同标准分类,标准不 同,分类也不同,不论采用哪种分类方 法,都要做到不重不漏.
• 3.分数的概念:把(单位“1)” 平均分成若干份,表 示这样的一份或几份的数,叫做(分数).
一、相反意义的量
在日常生活中我们会遇到这样一些量:
前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
它们都是具有相反意义。前进和后退、收入和支出;零上和零下 。像这样具有相反意义的还有
上升和(下降 )、向右和( 向左)、向东和(向西 )。
相反意义的量包含两个要素:一是它们的意义相反,如 向东与向西,收人与支出;二是它们都是数量,而且是 同类的量.
二、正数和负数
课件PPT
你会读吗?
课件PPT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—4 ℃ 。 1、零下15℃,表示为____ —15 ℃ ,比O℃低4℃的温度是____ 向东 2、正表示向西,则负表示为________。 —6% 3、粮食产量增产11%,记作+11%,则减产6%应记作_______。 4、某天中午11时的温度是11℃,早晨6时气温比中午11时低7℃, 则早晨6时温度为_____℃,若早晨4时气温比中午11时低13℃, 4 则早晨4时温度为_______℃。 —2
冬季里的北京天安门
(2)某年,我国花生产量比上一年增长1.8%,油 菜籽产量比上一年增长―2.7%.“增长―2.7%”表示什么 意思?
课件PPT
课件PPT
(3)夏新同学通过捡、卖废品,既保护了环境, 又积攒了零花钱.下表是他某个月的部分收支情况.
收支情况表 年 月
日期 2日 8日 12日
收入(+)或支出(―) 3.5 ―4.5 ―5.2
分数(fraction)
整数与分数统称为有理数
按数系扩张的自然顺序
: 类 分 样 这 以 可 还 数 理 有
( (按认识有理数的先后顺序)
正整数 正分数 负整数 负分数
正有理数
有理数
零
负有理数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的. 2.0既不是正数也不是负数,而是整数. 3.有限小数和百分数都可以转化成分数 ,因此把它们都看成分数. 4.有理数可以按不同标准分类,标准不
3 习 练
1、一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表 示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺 寸______ 29.95毫米. 30.05毫米,最小不低于标准尺寸______ 比500克多5克 , 2、味精袋上标有“500±5克”字样中,+5表示_____________ 比500克少5克 . -5表示____________
1、如果全班某次数学测试的平均成绩为83分,某同学考 了85分,记作+2分,得90分应记作______,得 80分应 +7分 记作______ 。 —3分 2、若将28计为0,则可以将27计为-1,试猜想若将27计 为0,28应计为 。 +1 3.如果向东走12米记作+12米,则向西走120米记作______米。 —120 4.如果向东走12米记作—12米,则向西走120米记作___―1.2
注释 卖废品 买圆珠笔、铅笔芯 买科普书,同学代付
这里,“结余―1.2”是什么意思?怎么得到的?
将所有学过的数分类,并与同伴交流
正整数:如 1,2,3,… 整数(integer)
零
负整数:如-1,-2,-3,…
1 正分数:如, ,5.2,… 2 1 负分数:如, ,-3.5,… 2
1、正负数可以用现实生活中具有相反意义的量来解释。
支出6元 1、如果将+8元计为收入8元,则-6元表示 _______ 。 低于海平面789米 2、高出海平面789米计为+789米,则-789米表示__ ______ 。 增加80千克 3、减少60千克计为-60千克,则+80千克表示 ______ 。 公元前20年 4、把公元2008年记作+2008年,那么-20年表示 _______。
课件PPT
新人教版七年级数学上册
1
课件PPT
第1章
•
有理数
• 一、地位和作用:
1.本章是九年制义务教育第三学段“数与代数”的 起始内容,是初等数学的重要基础. • 2.有理数是“数与代数”领域中的重要内容之一, 在现实生活中有广泛的应用,是继续学习实数、 代数式、方程、不等式、直角坐标系、函数、统 计等数学内容以及相关学科知识的基础. • 3.有理数是客观世界中数量关系的反映,学习本 章可以使学生感受到数的扩充是生活和生产实践 及数学自身发展的需要,在学生认知结构的发展 和完善上占有重要的地位.
同,分类也不同,不论采用哪种分类方 法,都要做到不重不漏.
例 (1)一个月内,小明体重增加2 kg,小华体重 减少 1 kg ,小强体重无变化,写出他们这个月的体重 增长值;
一、相反意义的量
在日常生活中我们会遇到这样一些量: 前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
它们都是具有相反意义。前进和后退、收入和支出;零上和零下 。像这样具有相反意义的还有 上升和( 下降 )、向右和( 向左)、向东和(向西 )。
相反意义的量包含两个要素:一是它们的意义相反,如 向东与向西,收人与支出;二是它们都是数量,而且是 同类的量.
二、正数和负数
课件PPT
你会读吗?
课件PPT
(1)下降了0.4%记为: -0.4% 上升了0.6%记为:+0.6% (2)赢了4局记为: 输了3局记为: + 4局 - 3局
表示相反意义的 量用正负数表示
课件PPT
二、内容概览:
• 主要内容: • 1.有理数的有关概念,包括负数的概念、 有理数的分类、数轴、有理数在数轴上的 表示、有理数大小的比较、相反数及有理 数的绝对值等. • 2.本章注意渗透数形结合、分类和用字母 表示数等数学思想.
课件PPT
课件PPT
相关知识链接
• 1.自然数的认识:自然数起源于(整数 ),在数 物 体的时候,用来表示物体的个数,如0、1 、2、3、4……叫做自然数.( 0)是最小的自然数 没有 ,( )最大的自然数. 都是 • 2.自然数与整数的关系:自然数( )整数,但 整数( )自然数. 不都是 单位“1” • 3.分数的概念:把( )平均分成若干份,表 分数 示这样的一份或几份的数,叫做( ).
3、张大妈在超市买了一袋洗衣粉,发现包装袋上标有这样一段 字条:净重:800±5g.张大妈怎么也看不明白是什么意思. 你能给她解释清楚吗?
净重在795克和805克之间
课件PPT
在生活、生产和科研中,经常遇到数的表示和运 算等问题. 例如: (1)北京冬季里某一天的气温为―3℃~3℃. “―3”的含义是什么?这一天北京的温差是多少?