第一章-特殊平行四边形-教案

合集下载

九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

第一章特殊平行四边形1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)[来源:21世纪教育网学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.[来源:学*科*网Z*X*问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等。

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

第一章《特殊平行四边形》《菱形的性质与判定》(第2课时)【教学目标】1.知识与技能(1).经历菱形判定定理的探索过程,进一步发展合情推理能力.(2).能够用综合法证明菱形的判定定理,进一步发展演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。

3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形判定定理的发现与证明.【教学难点】菱形判定定理的应用.【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习引入(1)菱形的定义;(2)菱形的特征;(3)菱形的性质;提出问题引入新课:想一想我们可以怎样判定一个四边形是菱形?二、探究新知1.菱形的判定1:定义法(有一组邻边相等的平行四边形叫做菱形)数学语言:∵四边形ABCD是平行四边形且AB=AD∴四边形ABCD是菱形2.菱形的判定2的探究:对角线互相垂直的平行四边形是菱形活动内容1:根据菱形的定义,有一组邻边相等的平行四边形是菱形,除此之外,你认为还有什么条件可以判断一个平行四边形是菱形,先想一想,再与同伴交流.处理方式:先由学生独立思考,尝试解答,再采取小组合作的方式,交流讨论,进而得到结论:对角线互相垂直的平行四边形是菱形.活动内容2:通过思考、交流,我们可以发现,对角线互相垂直的平行四边形是菱形,你能证明这个命题吗?处理方式:鼓励学生积极探索,大胆猜想,在此基础上再进行严格地证明.证明过程中,学生可能会有一定的困难,教师要及时予以指导和规范.此处可安排学生板演证明过程.但是要帮助引导学生写出已知、求证,并以本题为例,规范证明命题的一般步骤,即:先将命题改写为“如果···,那么···.”的形式,分析命题的条件和结论,再根据条件和结论画出图形,写出已知、求证,最后再规范证明.同时,本题可能会有学生用证明△AOB ≌△COB 的方法证明BA=BC ,对此,教师可引导学生思考,AC 和BD 的关系,即互相垂直平分,因而可以利用线段垂直平分线定理来证明BA=BC.并对两种方法进行比较.已知: ABCD 中,对角线AC 与BD 相交于点O,AC ⊥BD. 求证: ABCD 是菱形证明:∵四边形ABCD 是平行四边形, ∴AO =CO 又∵AC ⊥BD∴BD 是线段AC 的垂直平分线.∴BA =BC (线段垂直平分线上的点到线段两个端点的距离相等) ∴四边形ABCD 是菱形(菱形的定义).设计意图:由于要判定的是一个平行四边形,因此,若要考虑边,则容易想到定义,若要考虑对角线,则可能受到性质的启发,想到对角线互相垂直的平行四边形是菱形,进而对这一命题进行严格证明,得到结论.3.菱形的判定3的探究:四边相等的四边形是菱形活动内容1:已知线段AC ,你能用尺规作图的方法作一个菱形ABCD ,使AC 为菱形的一条对角线吗?你是怎么做的?思考并独立完成后,与同伴交流.处理方式:学生独立完成作图后可与课本作法进行对比,通过思考作法的正确性,探索得到菱形的另一种判定方法:四条边都相等的四边形是菱形.并对这一判定方法加以证明. 这里可能会有一个问题:对于作图要求,学生可能会不太明确,教师要及时点拨,作图要求是要使已知线段为对角线,因而可以借助菱形的对角线互相垂直且平分这一性质,通过作线段AC 的垂直平分线来完成作图.如还是无法完成,可借鉴课本作法.活动内容2:你所做的四边形是菱形吗?你能得到怎样的结论?你能证明这个结论吗? 处理方式:根据作图过程,学生能猜想出所在在四边形为菱形,进而猜想出菱形的另一种判定方法:四条边都相等的四边形是菱形.对于学生作法的正确性的证明,可以先证明所做四边形为平行四边形,再利用定义,证明是菱形.由此得出结论:四条边都相等的四边形是菱形.AB DC O已知: 在四边形 ABCD 中,AB=BC=CD=AD 求证: 四边形 ABCD 是菱形 证明:∵AB=CD ,BC=AD∴四边形ABCD 是平行四边形 又∵AB=BC∴四边形 ABCD 是菱形归纳:菱形的三个判定:1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.有四条边相等的四边形是菱形. 三、例题讲解例1.下列条件中,不能判定四边形ABCD 为菱形的是( C )A. AC ⊥BD ,AC 与BD 互相平分 B. AB=BC=CD=DAC. AB=BC ,AD=CD ,且AC ⊥BD D. AB=CD ,AD=BC ,AC ⊥BD解析:根据菱形的三个判定可得C 是错误的.例2、如图, ABCD 的两条对角线AC 、BD 相交于点O ,AB=5,AC=8,DB=6, 求证:四边形ABCD 是菱形.证明:∵ 四边形ABCD 是平行四边形 ∴OA=OC=4 OB=OD=3 又∵AB=5∴222BO AO AB += ∴∠AOB=90° ∴AC ⊥BD又∵ 四边形ABCD 是平行四边形 ∴四边形ABCD 是菱形. 四、巩固练习:1.判断下列说法是否正确?为什么?(1)对角线互相垂直的四边形是菱形; ( ×)BCAD(2)对角线互相垂直平分的四边形是菱形;(√)(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(×)(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.(×)2.对角线互相垂直且平分的四边形是( C )A.矩形B.一般的平行四边形C.菱形D.以上都不对3.如图所示,在△ABC中,AB=AC,∠A<90°,边BC,CA,AB的中点分别是点D,E,F,则四边形AFDE是( A )A.菱形 B.正方形 C.平行四边形 D.梯形4.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( A )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°五.拓展提高1.如图,在平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形,求证:四边形ABCD是菱形。

第一章特殊的平行四边形(教案)

第一章特殊的平行四边形(教案)
2.增强学生的逻辑推理能力,通过分析、归纳特殊平行四边形的特征,学会运用严谨的逻辑推理解决问题,提升数学思维能力。
3.提高学生的数学建模能力,将矩形、菱形、正方形的知识应用于解决实际问题,培养学生的数学应用意识和创新意识。
4.培养学生的数据分析能力,通过对特殊平行四边形数据的收集、整理和分析,让学生掌握科学的数据处理方法,形成数据驱动的决策思维。
五、教学反思
在今天的教学中,我发现学生们对特殊的平行四边形的概念和性质掌握得还不错,但在具体的判定方法和应用上,部分学生还存在一定的困难。这让我意识到,在接下来的教学中,我需要更加注重让学生通过实际操作和案例来解决这些问题。
在讲授新课的过程中,我尝试通过日常生活中的实例来引导学生,发现他们对此很感兴趣,这有助于提高学生的学习积极性。然而,我也发现,在理论介绍部分,可能还需要更直观的教具或多媒体辅助,以便让学生更形象地理解矩形、菱形和正方形的性质。
此外,我还发现部分学生在解决综合应用问题时,对面积和周长的计算还不够熟练,容易忽视单位转换和精确计算。针对这个问题,我计划在接下来的课程中增加一些计算练习,帮助学生巩固这方面的知识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“特殊平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-面积和周长计算的细节处理:在计算过程中,学生可能会忽视某些细节,如单位的转换、精确计算等,导致最终答案错误。
举例说明:

北师大版九年级上册数学教案 1

北师大版九年级上册数学教案 1

第一章特殊平行四边形1.1 菱形的性质与判定1.1.1 菱形的判定1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力;2.经历菱形的判定方法的探索过程,在活动中发展合情推理的意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力.3.通过设置问题情境,丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识.菱形的判定方法.菱形的判定方法的综合运用.复习引入:1.菱形的定义:有一组邻边相等的平行四边形叫作菱形.2.菱形的特殊性质:(1)菱形是轴对称图形;(2)菱形的四条边相等;(3)菱形的对角线互相垂直.今天我们就来研究一下如何判定一个四边形是菱形.思考(1):除了运用菱形的定义,你还能找出判断一个平行四边形是菱形的其他方法吗?猜想1:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:如图1-1-5,在平行四边形ABCD中,对角线AC,BD互相垂直且交于点O. 求证:四边形ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线相互平分).又∵AC⊥BD,∴BD所在直线是线段AC的垂直平分线,∴AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理1对角线互相垂直的平行四边形是菱形.·议一议已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?小刚做法:如图1-1-7,分别以A,C为圆心,以大于12AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD看上去是菱形.你认为小刚的做法正确吗?你是怎样做的?图1-1-8学生:小刚的做法正确.还可以作AC的垂直平分线MN,交AC于点O,在MN上取OB=OD,依次连接A,B,C,D,四边形ABCD是菱形,思考(2):除了运用对角线,你还有其他判定菱形的方法吗?猜想2:四边相等的四边形是菱形.已知:如图1-1-9,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理2四边相等的四边形是菱形.思考:这里的条件能否再减少一些呢?能否有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画.学生:动手操作,得到有三条边相等的四边形不一定是菱形.·做一做你能用折纸等办法得到一个菱形吗?动手试一试.你能说说小颖这样做的道理吗?学生:小颖这样做的道理,四边相等的四边形是菱形.例题讲解图1-1-6例2如图1-1-6,已知平行四边形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F,求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴AE∥FC(平行四边形的对边平行),∴∠1=∠2.∵EF垂直平分AC,∴AO=OC,∠AOE=∠COF=90°.∴△AOE≌△COF(ASA),∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).·例题讲解图1-1-10例3已知:如图1-1-10,在ABCD中,对角线AC与BD相交于点O,AB=5,OA=2,OB=1.求证:ABCD是菱形.证明:在△AOB中,∵AB=5,OA=2,OB=1,∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴ABCD是菱形(对角线互相垂直的平行四边形是菱形).图1-1-11例4如图1-1-11,四边形ABCD是边长为13 cm的菱形,其中对角线BD 为10 cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,AC与BD相交于点E,∴∠AED=90°(菱形的对角线互相垂直),DE=12BD=12×10=5(cm)(菱形的对角线互相平分).∴AE=AD2-DE2=132-52=12(cm).∴AC=2AE=2×12=24(cm)(菱形的对角线互相平分).(2)S菱形ABCD=S△ABD+S△CBD=2S△ABD=2×12×BD×AE=2×12×10×12=120(cm2).·做一做图1-1-12如图1-1-12,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?解:重叠部分ABCD是菱形.理由如下:过点A作AH⊥BC交BC于点H,过点C作CQ⊥AB交AB于点Q.∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵S ABCD=BC·AH=AB·CQ,且两张纸条等宽,∴AH=CQ,∴AB=BC.∴四边形ABCD是菱形.【巩固练习】1.用两个边长为a的等边三角形纸片拼成的四边形是 ( ).A.等腰梯形B.正方形C.矩形D.菱形2.下列说法中正确的是( ).A.有两边相等的平行四边形是菱形B.两条对角线互相垂直平分的四边形是菱形C.两条对角线相等且互相平分的四边形是菱形D.四个角相等的四边形是菱形本节课应掌握:菱形的判定方法:(1)对角线互相垂直的平行四边形是菱形;(2)四边相等的四边形是菱形.课本习题1.2,1.3。

北师大版九年级数学全册教案

北师大版九年级数学全册教案

结论 : 菱形判定定理 1: 四边都相等的四边形是菱 形 . (板书) 三、探究新知
例 1: 已知:如图,在 ABCD 中, BD ⊥ AC,O 为垂 足 . 求证:四边形 ABCD 是菱形 .
4. 通过运用菱形知识解决具体问题,提高分析能力
和观察能力 , 并根据平行四边形、矩形、菱形的从属关
系,向学生渗透几何思想 .
法,是本节的教学难点 . 【教学过程】 一、复习引入
观察以下由火柴棒摆成的图形,议一议:
(2) 与图一相比,图二与图三有什么共同的特点?
目的是让学生经历菱形的概念,性质的发现过程,
并让学生注意以下几点:
( 1)要使学生明确图二、图三都为平行四边形;
( 2)引导学生找出图二、图三与图一在边方面的差
异.
【活动方略】
问题 2:既然它具有平行四边形的所有性质 ,那么
矩形是否具有它独特的性质呢?(教师提问) 学生活动 :由平行四边形对边平行以及刚才 α 变为
90°, 可以得到 α的补角也是 90°从而得到 : 矩形的四个
教师活动 : 板书例 1,分析例 1 的思路,教会学生解
题分析法,然后板书解题过程 ( 课本 P13). 学生活动 : 参与教师讲例,总结几何分析思路 .
( 菱形的性质定理 ) ,二个结论 ( 菱形是轴对称图形,又是 中心对称图形 ).
六、布置作业 教材 P4~5 习题 1. 1
第 2 课时
【教学目标】 1. 经历菱形的判定定理的发现过程 . 2. 掌握菱形的判定定理“四边相等的四边形是菱
形” . 3. 掌握菱形的判定定理“对角线互相垂直的平行
四边形是菱形” .
分析 : 本题是菱形的性质定理 2 的应用,由 ∠ BAC= 30° , 得出 Δ ABD 为等边三角形 ,就抓住了问题解决的关 键.

北师大版九年级数学上册全册教案

北师大版九年级数学上册全册教案

第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。

第一章 特殊平行四边形教案

第一章  特殊平行四边形教案

第一章特殊平行四边形1.菱形的性质与判定(一)教学目标:经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力教学过程:本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。

第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。

2、教师准备菱形纸片,上课前发给学生上课时使用。

第二环节设置情境,提出课题【教学内容】学生:观察衣服、衣帽架和窗户等实物图片。

教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形。

教师:请同学们观察,彩图中的平行四边形与相比较,还有不同点吗?学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。

教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。

【教学目的】通过这个环节,培养了学生的观察和对比分析能力。

上课时让学生观察图形,从直观上把握菱形的特点,从而给出菱形的定义,让学生明确菱形不但是平行四边形,而且有其特点“一组邻边相等”。

同时,要让学生体会数学来源于生活,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣。

【注意事项】学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。

第三环节猜想、探究与证明【教学内容】1、想一想①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。

2022年九年级数学上册第一章特殊平行四边形1.2矩形的性质与判定第2课时矩形的判定教案新版北师大版

2022年九年级数学上册第一章特殊平行四边形1.2矩形的性质与判定第2课时矩形的判定教案新版北师大版

1.2矩形的性质与判定第2课时矩形的判定教学目标【知识与能力】熟练运用矩形的定义和判定定理判定四边形是矩形.【过程与方法】经历探索、猜想、证明的过程,进一步发展推理论证的能力.【情感态度价值观】通过学生独立完成证明的过程,体会数学是严谨的科学,增强学生严谨的治学态度,从而养成良好的习惯.教学重难点【教学重点】能够用综合法证明矩形的判定定理并利用定义和定理进行证明.【教学难点】灵活运用矩形的性质和判定定理及其相关结论解决问题.课前准备多媒体课件、三角板.教学过程学生:定义,符合定义就是,不符合就不是.教师:说得非常好,我们来看一看下面的四边形是否符合矩形的定义.(课件展示)图1-2-441.已知:如图1-2-44,在ABCD中,AC=BD.求证:四边形ABCD是矩形,注意:学生思考、交流后,教师可以适当地引导:给出的条件与矩形的定义相比,少了哪个条件?怎么办?教师:分析后课件展示过程.证明:∵AB=DC,CA=BD,BC=CB,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB.在ABCD中,∵AB∥CD,∴∠ABC+∠DCB=180°,∴2∠ABC=180°,即∠ABC=90°,∴四边形ABCD是矩形.教师:在菱形中,对角线互相垂直,而对角线互相垂直的平行四边形是菱形.类似地,在矩形中,对角线相等,反过来,对角线相等的平行四边形是矩形.我们判定的着手点就是看看图形“特殊”的地方,比如菱形的边也比较特殊,四条边都相等,所以四条边都相等的四边形是菱形.那么矩形有没有比较特殊的地方呢?学生:矩形的角特殊,四个角都是直角.教师:如果一个四边形的四个角都是直角,那么这个四边形是不是矩形呢?我们来试一试(课件展示):2. 如图1-2-45,已知∠A=∠B=∠C=∠D=90°,则四边形ABCD是矩形吗?图1-2-45学生:思考、交流后尝试给出证明过程.教师:学生展示过程后点评、规范相应的步骤.证明:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.教师:我怎么感觉有一个条件没有用到呢?学生:∠D=90°.。

北师大版2023-2023学年九年级数学上册教案及教学反思-图文

北师大版2023-2023学年九年级数学上册教案及教学反思-图文

第一章特殊平行四边形1.掌握菱形、矩形、正方形的概念,以及它们之间的关系.2.理解菱形、矩形、正方形的性质定理与判定定理,并能证明其他相关结论.3.掌握直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.1.经历探索菱形、矩形、正方形的概念、性质与判定的猜想与证明的过程,丰富数学活动经验,进一步发展合情推理和演绎推理的能力.2.理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系,进一步体会从一般到特殊的思考问题的方法,提高发现问题和解决问题的能力.3.在参与观察、试验、猜想、证明等数学活动中,有意识地渗透试验论证、逆向思维的思想,提高学生的能力.1.积极参与数学学习活动,对数学有好奇心和求知欲.2.经历图形的分类、性质探讨的过程,掌握图形与几何的基础知识和基本技能.通过“猜想,总结,证明,应用”的数学活动提升科学素养.3.提高自主探究的能力和增强与他人合作交流的意识、方法.四边形是人们日常生活中应用较为广泛的一种几何图形,尤其是平行四边形、菱形、矩形、正方形等特殊四边形的用处更多.因此,四边形既是几何中的基本图形,也是“空间与图形”领域中主要研究对象之一.本章是在已经学过的多边形、平行线、三角形、平行四边形的基础上对菱形、矩形、正方形的有关性质与常用的判定方法的证明与扩充.它们的探索方法也都与平行四边形的性质和判定的探索方法一脉相承.本章的学习有助于深化对平行四边形的理解,以及对识图、画图等操作技能的掌握,丰富学生的数学活动经验和体验,促进其良好数学观的形成.本章主要渗透归纳、类比、转化等数学思想,注重通过引导探索过程来渗透与展现证明的思路.此外还要注意引导学生探索证明的不同思路与方法,并进行适当的比较和讨论,提高分析、寻求证明思路的能力.【重点】菱形、矩形、正方形的定义、性质与判定.本章教学时间约需8课时,具体分配如下:1菱形的性质与判定2矩形的性质与判定3正方形的性质与判定3课时3课时2课时1菱形的性质与判定理解菱形的概念,了解它与平行四边形之间的关系.1.经历菱形的性质定理与判定定理的探索过程,进一步发展合情推理能力.2.能够用综合法证明菱形的性质定理与判定定理,进一步发展演绎推理能力.体会探索与证明过程中所蕴含的抽象、推理等数学现象.【重点】1.菱形的概念和性质.2.探索菱形的判定方法【难点】菱形的概念和性质在生活中的应用.第课时探索并掌握菱形的概念和菱形所具有的特殊性质,会进行简单的推理和运算.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步让学生养成用数学知识说理的习惯,并要求学生能熟练地按规范的推理格式书写.从学生已有的知识出发,通过欣赏、观察、动手操作等活动让学生感受身边的数学图形的和谐美与对称美,激发他们学习数学的兴趣,树立学好数学的信心,体会学习数学的快乐.培养学生主动探究、自主学习和合作交流的意识.【重点】菱形的概念和性质.【难点】菱形性质的灵活应用.【教师准备】1.教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片.2.多媒体课件.3.教师准备菱形纸片,上课前发给学生上课时使用.【学生准备】复习平行四边形的性质导入一:请同学们观察投影图片中的四边形并回答下列问题:(1)投影图片中有平行四边形吗?(2)这些平行四边形具有哪些特征?其中哪个特征不是平行四边形的性质?【师生活动】复习平行四边形的定义及性质.导入二:。

九年级数学上册第一章特殊平行四边形1.2.1矩形的性质与判定教案新版北师大版

九年级数学上册第一章特殊平行四边形1.2.1矩形的性质与判定教案新版北师大版
关于该定理的证明放到课下做。
5.矩形性质的应用
例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长。
证明:∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等)
OA=OC= AC,OB=OD= BD,
∴OA=OD。
∵∠AOD=120°,
∴∠ODA=∠OAD= (180°-120°)= 30°。
C.对角线相等D.对角线互相平分



4.在矩形内探究直角三角形斜边中线的性质.
(1)如图,矩形ABCD的对角线AC与BD交于点O,那么
(1)BO是直角三角形ABC中一条怎样的特殊线段?
(2)BO与AC有什么大小关系?
(3)你能得到什么结论呢?
(2)教师板书推论及推理语言:直角三角形斜边上的中线等于斜边的一半。
矩形的四个角都是直角(角)
矩形的对角线相等
矩形既是轴对称图形又是中心对称图形
教学反思:
本节课依据新课标的要求,设计的每个环节都是以学生为主体,在学生已有的知识经验的基础上,让学生自己动手探究完成,以便提高学生的探索创新思维和创造能力。首先,从矩形的定义和平行四边形的性质引入,提出问题,让学生猜想矩形应具有的性质,调动学生的思维积极性,激发探究欲望;教学过程中充分利用学生手中的矩形实物:如书本,课桌等,让学生通过观察、测量和思考讨论等活动,得出矩形性质,在解决问题的过程中发展了学生的合情推理意识;再引导学生进行推理证明及应用,通过探索证明,开拓学生的思路,发展了学生的思维能力,帮助他们在自主探索和合作交流过程中真正理解和掌握矩形性质定理,体验数学学习过程中的探索性和挑战性以及推理的严谨性。
有一个角是直角的平行四边形叫做矩形(板书)

最新北师大版数学九年级上册全册教案

最新北师大版数学九年级上册全册教案

最新北师大版数学九年级上册全册教案- 1 - 第一章特殊的平行四边形1.1 菱形的性质与判定第一课时性质学习过程:一、自主预习(10分钟)自学课本例题以上的内容,完成下列问题:如何从一个平行四边形中剪出一个菱形来的四边形叫做菱形,生活中的菱形有。

按探究步骤剪下一个四边形。

①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形?有对称轴。

图中相等的线段有:图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。

性质:证明:二、合作解疑(20分钟)菱形性质的应用1.菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。

2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60°沿菱形的两条对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。

3.如图是边长为16cm 的活动菱形衣帽架,若墙上钉子间的距离AB=BC=16cm ,则∠1= .4.如右图,在菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF.求证:①△ABE ≌△ADF ;②∠AEF=∠AFE.平行四边形菱形?1 C B A F ED C A B- 2 -综合应用拓展如图,在菱形ABCD 中,E 是AB 的中点,且D E ⊥AB ,AB =4.求:(1)∠ABC 的度数;(2)菱形ABCD 的面积.三、限时检测(10分钟)1.______________的平行四边形叫做菱形.2.按图示的虚线折纸,然后连接ABCD 可得菱形,由此可以得到_____________的四边形是菱形.3.木工做菱形窗棂时总要保持四条边框一样长,道理是__________________________________ .第3题图4.菱形的对角线长分别为6和8,则这个菱形的周长是_______,面积是______.5.下面性质中,菱形不一定具有的是()A .对角线相等B .是中心对称图形C .是轴对称图形D .对角线互相平分6.菱形的周长为20 cm ,两邻角的比为1:2,则较短对角线的长是_____________;一组对边的距离是____________.7.以菱形ABCD 的钝角顶点A 引BC 边的垂线,恰好平分BC ,则此菱形各角是____________.1.1 菱形的性质与判定第一课时判定学习过程:一、自主预习(10分钟)1.复习(1)菱形的定义:(2)菱形的性质1性质2(3)运用菱形的定义进行菱形的判定,应具备几个条件?2.要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 :注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 :二、合作解疑(20分钟))1.判断题,对的画“√”错的画“×”(1).对角线互相垂直的四边形是菱形()(2).一条对角线垂直另一条对角线的四边形是菱形()A BC D- 3 - (3)..对角线互相垂直且平分的四边形是菱形()(4).对角线相等的四边形是菱形()2.已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.3.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?求证:(1)四边形ABCD 是平行四边形(2) 过A 作AE ⊥BC 于E 点, 过A 作AF ⊥CD 于F.用等积法说明BC=CD.(3) 求证:四边形ABCD 是菱形.综合应用拓展如图,在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点.求证:MN 与PQ 互相垂直平分.三、限时检测(10分钟)1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是;(3)对角线相等且互相平分的四边形是;(4)两组对边分别平行,且对角线的四边形是菱形.2.下列条件中,能判定四边形是菱形的是().(A )两条对角线相等(B )两条对角线互相垂直(C )两条对角线相等且互相垂直(D )两条对角线互相垂直平分.3.如图,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,DE 和CE 相交于E ,求证:四边形OCED 是菱形。

特殊的平行四边形教案

特殊的平行四边形教案

长分别为 cm , cm , cm , cm . 2.(选择)(1)下列说法错误的是( ).(A )矩形的对角线互相平分 (B )矩形的对角线相等(C )有一个角是直角的四边形是矩形 (D )有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有( ). (A )2对 (B )4对 (C )6对 (D )8对 3.已知:如图,O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°,求∠AEO 的度数.课 后 作 业七、课后练习 1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( ).(A)12cm (B)10cm (C)7.5cm (D)5cm 2.在直角三角形ABC 中,∠C=90°,AB=2AC ,求∠A 、∠B 的度数.3.已知:矩形ABCD 中,BC=2AB ,E 是BC 的中点,求证:EA ⊥ED .4.如图,矩形ABCD 中,AB=2BC ,且AB=AE ,求证:∠CBE 的度数.已知:如图,E 为矩形ABCD 内一点,且EB =EC 。

求证:EA =ED .ABC DE:1.如图,矩形纸片ABCD ,且AB =6cm ,宽BC =8cm ,将纸片沿EF 折叠,使点B 与点D 重合,求折痕EF 的长。

FEDCB A2.已知矩形ABCD 中,对角线交于点O ,AB =6cm ,BC =8cm ,P 是AD 上一动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 的值是多少?这个值会随点P 的移动(不与A 、D 重合)而改变吗?请说明理由.ABC DE FP3.已知:如图,矩形ABCD 的两条对角线AC 、BD 相交于点O ,∠BOC =120°,AB =4cm 。

求矩形对角线的长。

ODC BA附:板书设计18.2.1 矩形(二)教学目标:理解并掌握矩形的判定方法.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力重点、难点重点:矩形的判定.难点:矩形的判定及性质的综合应用.教学过程一、温故知新:1.矩形是轴对称图形,它有______条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,•则△ABO的周长为________.3.想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.1、矩形是特殊的平行四边形,怎样判定一个平行四边形是矩形呢?请说出最基本的方法:矩形具有平行四边形不具有的性质是:思考:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?(得到矩形的一个判定)2.做一做:按照画“边―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由. (探索得到矩形的另一个判定)总结:矩形的判定方法.矩形判定方法1:______________________________矩形判定方法2:_______________________________(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)3.议一议:下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形.( )三、例题学习。

北师大版九年级数学上册教学设计:第一章《特殊的平行四边形》回顾与复习

北师大版九年级数学上册教学设计:第一章《特殊的平行四边形》回顾与复习
二、学情分析
九年级学生在学习《特殊的平行四边形》之前,已经具备了平行四边形的基本概念和性质,以及四边形的有关知识。在此基础上,他们对特殊的平行四边形(矩形、菱形、正方形)的学习具备了一定的基础。但在实际应用中,学生可能对特殊平行四边形的判定方法、性质运用及实际问题解决等方面存在一定的困难。因此,在本章节的教学中,应注意以下学情:
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如积极参与、合作交流、问题解决等,给予及时的鼓励和反馈。
(2)总结性评价:通过课后作业、阶段测试等方式,了解学生对特殊平行四边形性质及应用的掌握程度。
4.教学策略:
(1)关注学生的个体差异,因材施教,提高每个学生的学习效果。
(2)注重情感教育,激发学生的学习兴趣,增强学生的自信心。
(2)对作业中的疑问及时请教同学或老师,提高问题解决能力。
(3)按时提交作业,养成良好的学习习惯。
(1)阅读教材附录中的相关阅读材料,了解特殊平行四边形在实际生活中的应用。
(2)思考并讨论:矩形、菱形、正方形之间的联系与区别。
4.思考题:
(1)特殊平行四边形除了教材中提到的性质外,还有哪些性质?
(2)如何运用特殊平行四边形的性质解决一些复杂的几何问题?
5.作业要求:
(1)认真完成作业,保持字迹清晰、卷面整洁。
北师大版九年级数学上册教学设计:第一章《特殊的平行四边形》回顾与复习
一、教学目标
(一)知识与技能
在本章节《特殊的平行四边形》回顾与复习中,使学生掌握以下知识与技能:
1.理解并掌握平行四边形的基本性质,如对边平行且相等、对角线互相平分等。
2.熟练运用特殊的平行四边形(矩形、菱形、正方形)的性质进行计算和解决问题。

九年级数学上册第1章《特殊平行四边形》教学设计(北师大版)

九年级数学上册第1章《特殊平行四边形》教学设计(北师大版)

第一章特殊平行四边形回顾与思考一、学生知识状况分析“特殊的平行四边形”是学生继学习了平行四边形之后的一个学习内容,学生已经学习了平行四边形的有关知识,对平行四边形的性质和判定已有一定的认识,学生在小学也接触过矩形,菱形,正方形的一些简单应用。

本节主要复习三种特殊平行四边形的性质和判定,以及对他们的比较。

研究过程中以类比,归类为主要方法,同时,九年级学生已经具备比较强的归纳、总结能力,利用学生间相互评价、相互提问,使之参与课堂的热情提高。

二、教学任务分析本节是从三种特殊平行四边形的关系入手,使学生进一步认识矩形、菱形、正方形的内在关系:不仅要让学生了解三种特殊平行四边形的性质和判定,更重要的是让学生通过观察、比较、归类找出他们内在的转化方法。

通过自己动手经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。

本节共一个课时,已总结和简单练习为主。

1.知识目标:复习三种特殊平行四边形的性质及判定,及理解他们之间的关系。

2.能力目标:(1)经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.(2)经历课前准备总结,探索三种特殊平行四边形的关系,发展总结归纳能力和初步的演绎推理的能力;(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提高学生的能力。

3.情感与价值观要求(1)积极参与数学学习活动,对数学有好奇心和求知欲.(2)通过“猜想—总结—证明—应用”的数学活动提升科学素养.4. 教学重点(1) 三种特殊平行四边形性质和判定的复习.(2) 三种特殊平行四边形的关系.5.教学难点总结关系方法的多样性和系统性。

三、教学过程分析本节课设计了五个教学环节:第一环节:交流创意,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。

第一环节:交流创意,导入课题内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的关系图,课堂上先交流讨论。

八年级数学下册《特殊的平行四边形》教案、教学设计

八年级数学下册《特殊的平行四边形》教案、教学设计
1.基础题:完成课本第75页第1-6题,要求学生熟练掌握特殊平行四边形的性质和判定方法。
2.提高题:完成课本第76页第7-10题,旨在培养学生运用特殊平行四边形知识解决实际问题的能力。
3.拓展题:选择一道与特殊平行四边形相关的拓展题,要求学生在课后查阅资料、思考讨论,提高学生的自主学习能力。
4.小组作业:以小组为单位,共同完成一道特殊平行四边形的综合应用题,培养学生团队合作精神和解决问题的能力。
6.加强学习评价,关注学生的个体差异,提高教学质量。
-过程性评价:关注学生在课堂上的表现,如发言、讨论、作业等,给予及时的反馈和指导。
-总结性评价:通过测试、竞赛等形式,检验学生对特殊平行四边形知识的掌握程度,为后续教学提供依据。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中常见的特殊平行四边形实物,如窗户、桌面、魔方等,引发学生对特殊平行四边形的关注。
-讲解矩形、菱形、正方形的性质,如对边平行、对角相等、邻边垂直等。
-结合实例,讲解特殊平行四边形的判定方法。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,每组选择一种特殊平行四边形,探讨其性质和判定方法。
-小组内部分工合作,共同完成探讨任务。
2.教学目的:
-培养学生的合作意识和团队精神。
4.掌握特殊的平行四边形在实际生活中的应用,如建过观察、猜想、验证等环节,让学生自主探究特殊的平行四边形的性质,培养他们的观察力和动手操作能力。
2.利用小组合作、讨论交流等形式,引导学生发现并解决问题,提高合作意识和团队精神。
3.运用实际问题,激发学生的学习兴趣,让他们在解决问题的过程中,掌握数学思维方法,提高分析问题和解决问题的能力。

数学九年级上册《特殊的平行四边形-复习课》教案

数学九年级上册《特殊的平行四边形-复习课》教案

五、教学过程教学过程教师活动学生活动应对措施预测用时设计意图及资源准备程序1:导入提问:判断四边形的形状?猜想、交流回答老师问题:哪个是平行四边形? 哪个是矩形 ? 哪个是长方形?哪个是正方形?面对开放式的问题思考、交流、讨论引领思考教师对课堂生成问题采取相应措施3分钟从生活中简单的图形出发,激发学生学习兴趣。

改变问题的呈现方式,调动学生的思维。

激发学生思考讨论、交流,培养逆向思维程序2:自主学习主题1 从图形识别开始,怎样的四边形是平行四边形?它的性质和判别是什么?并结合图形用几何语言表述.观看屏幕明确学习内容积极回忆学生代表发言在学案上用几何语言写出平行四边形的性质和判定,交流点成绩中等学生发言,有鼓励+督促意图配合学生回答,点击投影,与学生交流3分钟导入课题,板书:《特殊的平行四边形》复习课用几何语言表述平行四边形的性质和判定,有利于学生更好的理解定理,并且提高熟练运用的能力(这是我在长期教学一线,得出的辅助几何定理学习的方法,对学困生帮助作用是很明显的)(1)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?不一定!(2) 有一组对边平行,并且另外一组对边相等的四边形一定是平行四边形吗?不一定!等腰梯形平行四边形❖平行四边形性质平行四边形对边相等且平行、对角相等、对角线互相平分❖平行四边形判别一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形对角线互相平分的四边形是平行四边形AB CDO平行四边形❖平行四边形性质∵□ABCD∴AB=DC AD=BCAB∥DC AD∥BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD❖平行四边形判别∵AB=DC且AB∥DC ∴□ABCD∵AB∥DC AD∥BC ∴□ABCD∵AB=DC AD=BC ∴□ABCD∵OA=OC OB=OD ∴□ABCDAB CDO、观察图形怎样的四边形是矩形?它的性质和判别是什么?并结合图形用几何语言表述.菱形❖菱形性质菱形对边平行且四边相等、对角相等、对角线互相垂直平分且每一条对角线平分一组对角❖菱形判别一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形A BCD O 菱形❖菱形性质∵菱形ABCD∴AB ∥DC AD ∥BC 且AB =DC =AD =BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD 且AC ⊥BD , ∠DAO=∠BAO 等❖菱形判别∵在□ABCD 中AB=AD ∴菱形ABCD ∵在□ABCD 中AC ⊥BD ∴菱形ABCD ∵四边形ABCD 中AB =DC =AD =BC ∴菱形ABCDA BCD O 矩形❖矩形性质∵矩形ABCD∴AB=DC AD=BC 且AB ∥DC AD ∥BC∠BAD=∠BCD=∠ABC=∠ADC= 90°AC=BD 且OA=OC OB=OD❖矩形判别∵在□ABCD 中∠ABC= 90°∴矩形ABCD ∵在□ABCD 中AC=BD ∴矩形ABCD在四边形ABCD 中∠BAD=∠BCD=∠ABC= 90°∴矩形ABCDADCBO矩形❖矩形性质矩形对边相等且平行、四个角相等且等于90度、对角线相等且互相平分❖矩形判别有一个角是直角的平行四边形是矩形对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形A DCBO正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形你能用恰当的方式表示平行四边形,菱形,矩形,正方形之间的关系吗?正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形ADCB O平行四边形要继续探索的问题?四边形两组对边分别平行平行四边形菱形矩形正方形11.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF.(1)AE 与BF 相等吗?为什么?(2)AE 与BF 是否垂直?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章特殊平行四边形1 菱形的性质与判定(1 )【教学目标】1.理解菱形的概念,了解它与平行四边形的关系。

2.经历菱形性质定理的探索过程,进一步发展合情推理能力。

3.能运用菱形的性质解决与菱形有关的问题。

【教学重难点】重点:掌握菱形的性质。

难点:运用菱形的性质解决与菱形有关的问题。

【教学过程】一、回顾复习1.平行四边形的定义。

2.平行四边形的性质。

3.平行四边形的判定。

二、新课讲授1.出示生活中菱形的例子,引出这类特殊的平行四边形——菱形,并得出菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2.组织学生活动,通过折菱形纸片,得出以下结论:(1)菱形是轴对称图形;(2)菱形的四条边相等;(3)菱形的对角线互相垂直。

3.证明这些结论已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD 相交于点O。

求证:1)AB=BC=BC=AD;(2)AC⊥BD。

由此可以得到菱形的两条性质定理:菱形的四条边相等。

菱形的对角线互相平分。

4.总结菱形所有的性质:边:菱形的四条边相等;角:菱形的对角相等,领角互补;对角线:菱形的对角线互相垂直且平分。

对称性:菱形是轴对称图形(两条对称轴是对角线所在的直线)菱形也是中心对称图形(对称中心是两条对角线的交点)5.范例学习(P3)例1 如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC的长。

6、随堂练习,巩固新知1)已知菱形的周长是12cm,那么它的边长是_____ .2)菱形ABCD中∠BAD =60°,则∠ ABD=_____ .3)菱形的两条对角线长分别为6cm和8cm,则菱形的边长是()4)菱形ABCD中,O是两条对角线的交点,已知AB=5cm,AO=4cm,求两对角线AC、BD 的长。

5)“P4 随堂练习”1 菱形的性质与判定(2 )【教学目标】1.经历菱形判定定理的探索过程,进一步发展合情推理能力。

2.掌握菱形的判定定理及其证明,并能利用定理解决有关问题。

【教学重难点】重点:菱形的判断定理的掌握。

难点:菱形的判定定理的综合运用。

【教学过程】一、回顾与复习1.菱形的定义:2.菱形的性质:二、新课讲授1.思考(1):如果有一个平行四边形,它的的一组邻边相等,那么根据菱形的定义,我们可以判定这个就是菱形。

除此之外,还能找出什么条件可以判断一个平行四边形是菱形呢?猜想1:对角线互相垂直的平行四边形是菱形。

已知:如图,在□ABCD中,对角线AC与BD相交于点O,AC⊥BD。

求证:四边形ABCD 是菱形。

2.得出结论:判定定理1 对角线互相垂直的平行四边形是菱形。

3.思考(2):除了运用对角线,还有其他判定菱形的方法吗?猜想2:四边相等的四边形是菱形。

已知:如图,在四边形ABCD 中,AB=BC=BC=AD. 求证:四边形ABCD 是菱形。

得出结论:判定定理2 四边相等的四边形是菱形。

总结分析:三种判定方法是证明菱形的基础定理,条件对比(1)平行四边形+一组邻边相等;(2)平行四边形+对角线互相垂直;(3)四条边相等。

三条定理条件的共同特点:与角无关,即用角无法判定菱形。

5、范例学习(P6)例2 如图,在□ABCD 中,对角线AC 与BD 相交于点O,AB= 5 ,OA=2,OB=1.求证:□ABCD 是菱形三、随堂练习1.用两个边长为a 的等边三角形纸片拼成的四边形是()A.等腰梯形B.正方形C.矩形D.菱形2.下列说法中正确的是()A、有两边相等的平行四边形是菱形B、两条对角线互相垂直平分的四边形是菱形C、两条对角线相等且互相平分的四边形是菱形D、四个角相等的四边形是菱形3.画一个菱形,使它的两条对角线的长分别为4㎝和6 ㎝。

1 菱形的性质与判定(3 )【教学目标】1.巩固对菱形的性质定理与判定定理的理解;2.在解决问题的过程中认识菱形性质定理与判定定理的区别,正确应用有关定理。

【教学重难点】重点:菱形面积计算方法的推导。

难点:综合运用菱形的性质定理与判定定理解决菱形的相关题型。

【教学过程】一、回顾与复习1.菱形的定义:2.菱形的性质:3.菱形的判定:二、新课讲授1.范例学习(P8)例3 如图,四边形ABCD是边长为13 ㎝的菱形,其对角线BD 长10 ㎝。

求:(1)对角线AC的长;(2)菱形ABCD的面积。

2.菱形的面积公式探究一:菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形的面积吗?公式为:S菱形底高探究二:计算菱形的面积除了上面的方法外,能利用对角线来计算菱形的面积?如图,菱形ABCD中,对角线AC与BD相交于点O,则菱形的面积 =底×高 =两条对角线长的乘积的一半 3. P8 做一做 如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 是菱形吗?为什么?三、随堂练习1、判断下列说法是否正确?为什么?1)对角线互相垂直的四边形是菱形;( ) 2)对角线互相垂直平分的四边形是菱形; ( ) 3)对角线互相垂直, 且有一组邻边相等的四边形是菱形; (3、已知菱形 ABCD 中,对角线 AC 与 BD 交于点 O ,∠BAD=120°,AC=4,则该菱形的面积是( )A 、163B 、16C 、83D 、84、菱形的周长为 4,一个内角为 60°,则较短的对角线长为( )A .2 B. 3 C .1 D .0.5S 菱形 ABCD S △ ABD S △ BCD1AC BD22、如图,在菱形 ABCD 中,CE ⊥ AB ,则 CECF , BE BF 。

5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A .3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD 中,AB=15 ,∠ ADC=120°,则B、D 两点之间的距离为()A.15 B.15 3 C.7.5 D.15 325.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是________ ㎝2 .6.如图,□ABCD 的两条对角线AC、BD 相交于点O,AB=5,AC=8,BD=6。

求证:四边形ABCD 是菱形。

2 矩形的性质与判定(1 )【教学目标】1.了解矩形的概念,了解它与平行四边形的关系。

2.理解并掌握矩形的有关性质,能运用矩形的性质解决有关问题。

【教学重难点】重点:掌握矩形的性质。

难点:运用矩形的性质解决与矩形有关的问题。

【教学过程】、回顾与复习1.平行四边形的性质:2.菱形的定义与性质:二、新课讲授1.矩形的定义出示生活中矩形的例子,引出这类特殊的平行四边形——矩形,并得出矩形的定义:有一个角是直角的平行四边形叫做矩形。

矩形的定义有两个条件:一是平行四边形,二是有一个角是直角。

矩形的定义既是矩形的性质定理也是矩形的判定定理。

2.矩形的性质矩形的性质可以从哪些方面分析?(类比菱形的性质)边:矩形的对边平行且相等;角:矩形的四个角都是直角;对角线:矩形的对角线相等并且互相平分;对称性:矩形是轴对称图形(对称轴是过对边中点的两条直线);矩形也是中心对称图形(对称中心是两条对角线的交点)。

3.证明矩形的性质已知:如右图,四边形ABCD 是矩形,∠ABC=90°,对角线AC 与BD 相交于点O。

求证:(1)∠ABC=∠BCD=∠CDA=∠ABC=90°;(2)AC=BD。

4.证明直角三角形的性质(P9 议一议)矩形ABCD的对角线AC与BD相交于点O,那么BO是Rt△ABC中一条怎样的特殊线段?它与AC 有什么大小关系?由此你能得到怎样的结论?定理直角三角形斜边上的中线等于斜边的一半已知:在Rt△ABC 中,∠ABC=90°,BO是AC上的中线。

求证:BO= 1 AC。

2证明:5.范例学习(P13)例3 如图,在矩形ABCD 中,两条对角线AC 与BD 相交于点O,∠AOD=120°,AB=2.5,求这个矩形对角线的长。

随堂练习1.在矩形ABCD中,两条对角线AC与BD相交于点O,已知AB=6,BC=8,则AC= ,BD= ,矩形ABCD 的周长是面积是。

2.矩形的短边长为3 ㎝,两对角线所成的钝角是120°,则它的对角线长是。

3.(P13 随堂练习)2 矩形的性质与判定(2 )【教学目标】1.理解并掌握矩形的判定方法。

2.能应用矩形定义、性质、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

【教学重难点】重点:矩形的判定定理难点:矩形的判定与性质的综合应用。

【教学过程】一、回顾与复习1.矩形的定义:2.矩形的性质:3.矩形性质与菱形性质的相同之处,不同之处:二、新课讲授1.矩形的判定定理(1)判定四边形是矩形的方法是什么?可以用定义,除了定义之外,还有其他的方法吗?P14 做一做猜想一:对角线相等的平行四边形是矩形。

已知:如图,在□ABCD 中,AC,BD 是它的两条对角线,AC=BD 求证:□ABCD 是矩形证明:定理1 对角线相等的平行四边形是矩形。

(2)我们知道,矩形的四个角都是直角。

反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?定理2 有三个角是直角的四边形是矩形。

总结矩形的判定方法:有一个角是直角的平行四边形是矩形。

对角线相等的平行四边形是矩形。

有三个角是直角的四边形是矩形。

2.P15 议一议1)如果仅仅有一根较长的绳子,你怎么判断一个四边形是平行四边形呢?2)如果仅仅有一根较长的绳子,你怎么判断一个四边形是菱形呢?3)如果仅仅有一根较长的绳子,你怎么判断一个四边形是矩形呢?3.范例学习(P15)例2 如图,在□ ABCD 中,两条对角线AC 与BD 相交于点O,△ ABO是等边三角形,AB=4,求□ABCD 的面积三、随堂练习1.下列各句判定矩形的说法是否正确?为什么?1)有一个角是直角的四边形是矩形;(×)2)有四个角是直角的四边形是矩形;(√)3)四个角都相等的四边形是矩形;(√)4)对角线相等的四边形是矩形;(×)5)对角线相等且互相垂直的四边形是矩形;(×)2.如图,EF是矩形ABCD的对角线的交点O且分别交AB、CD 于E、F,那么阴影部分的面积是矩形ABCD 的面积的()C.134 103.已知:如图,在□ABCD中,M是AD边的中点,且MB=MC求证:四边形ABCD 是矩形2 矩形的性质与判定(3 )教学目标】1.巩固对矩形的性质定理与判定定理的理解;2.在解决问题的过程中认识矩形性质定理与判定定理的区别,正确应用有关定理。

【教学重难点】重点:矩形判定定理的应用。

难点:综合运用矩形的性质定理与判定定理解决矩形的相关题型。

【教学过程】一、回顾与复习1.矩形是特殊的平行四边形,它具有哪些性质?分别是从哪几个方面阐述的?2.判定四边形是矩形的方法是什么?可用定义:有一个角是直角的平行四边形是矩形。

相关文档
最新文档