解三角形应用

合集下载

解三角形应用举例

解三角形应用举例

解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。

第四章 §4.10 解三角形应用举例

第四章 §4.10 解三角形应用举例

一、单项选择题1.如图,设A,B两点在河的两岸,在点A所在河岸边选一定点C,测量AC的距离为50 m,∠ACB=30°,∠CAB=105°,则A,B两点间的距离是()A.25 2 m B.50 2 mC.25 3 m D.50 3 m2.(2024·咸阳模拟)世界上最大的球形建筑物是位于瑞典斯德哥尔摩的爱立信球形体育馆(瑞典语:Ericsson Globe),在世界最大的瑞典太阳系模型中,由该体育场代表太阳的位置,其外形像一个大高尔夫球,可容纳16 000名观众观看表演和演唱会,或14 119名观众观看冰上曲棍球.如图,某数学兴趣小组为了测得爱立信球形体育馆的直径,在体育馆外围测得AB=120 m,BC=120 m,CD=80 m,∠ABC=60°,∠BCD=120°(其中A,B,C,D四点共面),据此可估计该体育馆的直径AD大约为(结果精确到1 m,参考数据:7≈2.646)()A.98 m B.106 mC.117 m D.122 m3.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于()A.30°B.45°C.60°D.75°4.如图,航空测量的飞机航线和山顶在同一铅直平面内,已知飞机飞行的海拔高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度大约为(参考数据:2≈1.4,3≈1.7)()A .7 350 mB .2 650 mC .3 650 mD .4 650 m5.(2023·洛阳模拟)某班课外学习小组利用“镜面反射法”来测量学校内建筑物的高度.步骤如下:①将镜子(平面镜)置于平地上,人后退至从镜中能看到房顶的位置,测量出人与镜子的距离;②将镜子后移,重复①中的操作;③求建筑物高度.如图所示,前后两次人与镜子的距离分别为a 1 m ,a 2 m(a 2>a 1),两次观测时镜子间的距离为a m ,人的“眼高”为h m ,则建筑物的高度为( )A.ah a 2-a 1m B.a (a 2-a 1)h m C.(a 2-a 1)h a m D.ah 2a 2-a 1m 6.(2023·济南模拟)山东省科技馆新馆目前成为济南科教新地标(如图1),其主体建筑采用与地形吻合的矩形设计,将数学符号“∞”完美嵌入其中,寓意无限未知、无限发展、无限可能和无限的科技创新.如图2,为了测量科技馆最高点A 与其附近一建筑物楼顶B 之间的距离,无人机在点C 测得点A 和点B 的俯角分别为75°,30°,随后无人机沿水平方向飞行600米到点D ,此时测得点A 和点B 的俯角分别为45°和60°(A ,B ,C ,D 在同一铅垂面内),则A ,B 两点之间的距离为( )A .50 5 米B .150 米C .10015 米D .150 3 米二、多项选择题7.某货轮在A 处测得灯塔B 在北偏东75°方向,距离为12 6 n mile ,测得灯塔C 在北偏西30°方向,距离为8 3 n mile.货轮由A 处向正北方向航行到D 处时,测得灯塔B 在南偏东60°方向,则下列说法正确的是( )A .A 处与D 处之间的距离是24 n mileB .灯塔C 与D 处之间的距离是16 n mileC .灯塔C 在D 处的南偏西30°方向D .D 处在灯塔B 的北偏西30°方向8.(2024·重庆模拟)解放碑是重庆的地标性建筑,众多游客来此打卡拍照.现某中学数学兴趣小组对解放碑的高度进行测量,并绘制出测量方案示意图(如图所示),A 为解放碑的最顶端,B 为基座(即B 在A 的正下方),在步行街上(与B 在同一水平面内)选取C ,D 两点,测得CD的长为100 m .小组成员利用测角仪已测得∠ACB =π6,则根据下列各组中的测量数据,能计算出解放碑高度AB 的是( )A .∠BCD ,∠BDCB .∠ACD ,∠ADC C .∠BCD ,∠ACDD .∠BCD ,∠ADC三、填空题9.中国最早的天文观测仪器叫“圭表”(如图),最早装置圭表的观测台是西周初年在阳城建立的周公测景(影)台.“圭”就是放在地面上的土堆,“表”就是直立于圭的杆子,太阳光照射在表上,便在圭上成影.到了周代,使用圭表有了规范,杆子(表)规定为八尺长.用圭表测量太阳照射在竹竿上的影长,可以判断季节的变化,也能用于丈量土地.同一天内,南北两地的日影长短倘使差一寸,它们的距离就相差一千里,所谓“影差一寸,地差千里”(1尺=10寸).记“表”的顶部为A ,太阳光线通过顶部A 投影到“圭”上的点为B .同一天内,甲地日影长是乙地日影长的两倍,记甲地中直线AB 与地面所成的角为θ,且tan θ=83.则甲、乙两地之间的距离约为________千里.10.如图所示,工程师为了了解深水港码头海域海底的构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =60 m ,BC =120 m ,于A 处测得水深AD =120 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =150 m ,则cos ∠DEF =______.11.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东方向40千米处,则城市B处于危险区的时间为________小时.12.汾阳文峰塔建于明末清初,位于山西省汾阳市城区以东2公里的建昌村,该塔共十三层,雄伟挺拔,高度位于中国砖结构古塔之首.如图,某测绘小组为了测量汾阳文峰塔的实际高度AB,选取了与塔底B在同一水平面内的三个测量基点C,D,E,现测得∠BCD=30°,∠BDC =70°,∠BED=120°,BE=17.2 m,DE=10.32 m,在点C处测得塔顶A的仰角为62°,则塔高AB=________ m.(结果精确到1 m,参考数据:tan 62°≈1.88,sin 70°≈0.94,144.961 6=12.04)。

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。

将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。

在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。

为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。

模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。

【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。

解三角形在实际生活中的应用

解三角形在实际生活中的应用

第3节 解三角形在实际生活中的应用
1、 小红为了测量某一树身的高度,他站在A 处看树梢,测得此时的仰角为45°,前进200m
到达B 处,测得此时的仰角为60°,小红身高1.8m,试计算树身的高度是多少米?
2、 为了测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为2
3km ,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A ,B 两点间的距离。

3、(2009宁夏、海南)为了测量两山顶M ,N 间的距离,飞机沿水平方向A ,B 两点进行测量。

A ,B ,M ,N 在同一铅垂平面内(如图)飞机能够测量的数据有俯角和A ,B 间的距离。

请设计一个方案。

包括:(1)指出需要测量的数据(用字母表示,并在图中标出)(2)用文字和公式写出计算M ,N 间的距离的步骤。

4、已知海岛A 四周8海里内有暗礁。

今有一货轮由西向东航行,望见岛A 在北偏东75°,航行202海里后,望见此岛在北偏东30°。

如果货轮不改变航向继续前进,有无触礁的危险?
5、甲船在A 处发现乙船在方位角45°与A 相距10海里的C 处正以20海里/小时的速度向南偏东75°方向航行。

已知甲船的速度是203海里/小时,问:甲船沿什么方向航行,需多长时间才能与已船相遇?。

解直角三角形的应用(仰角和俯角问题)

解直角三角形的应用(仰角和俯角问题)
角函数求解
计算角度证结果:检 查计算结果是 否满足三角形 内角和为180
度的条件
添加标题
确定已知条件:已知三角形的边长和角度
添加标题
利用正弦定理:sin/ = sinB/b = sinC/c
添加标题
利用余弦定理:cos = (b^2 + c^2 - ^2) / (2bc)
正弦定理:在直角三角形中 任意一边的长度等于其对角 的正弦值乘以斜边的长度
余弦定理:在直角三角形中 任意两边长度的平方和等于 斜边的平方
正切定理:在直角三角形中 任意一边的长度等于其对角 的正切值乘以斜边的长度
余切定理:在直角三角形中 任意两边长度的平方差等于 斜边的平方
正割定理:在直角三角形中 任意一边的长度等于其对角 的正割值乘以斜边的长度
确保测量工具的 准确性和稳定性
避免在危险区域 进行测量如高空、
高压电等
遵守操作规程确 保人身安全
做好防护措施如 佩戴安全帽、手
套等
及时清理现场避 免杂物影响测量
结果
遇到突发情况及 时停止操作并寻
求帮助
仰角和俯角为0度:此时三角形退化为直线无法求解
仰角和俯角为90度:此时三角形退化为直角三角形可以直接求解
全站仪等
测量误差:注 意测量误差对 仰角和俯角测 量结果的影响
测量环境:注 意测量环境的 影响如温度、 湿度、风速等
测量方法:注 意测量方法的 选择如直接测 量、间接测量

测量误差:测量工具的精度、测量人员的操作水平等
计算误差:计算过程中的舍入误差、公式使用错误等
环境误差:温度、湿度、光照等环境因素对测量结果的影响
添加文档副标题
目录
01.
02.

解直角三角形及其应用题目

解直角三角形及其应用题目

解直角三角形是数学中的一个重要概念,它涉及到利用三角函数来求解三角形的未知元素。

在解直角三角形的问题中,我们通常知道三角形的一个锐角及其对应的两边(直角边和斜边),或者知道两个锐角和一边。

通过使用正弦、余弦和正切等三角函数,我们可以找到三角形的其他元素。

下面解直角三角形的题目示例:1、【题目】在直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 4cm。

求AC 的长度。

【解析】利用勾股定理求解。

在直角三角形中,AC2= AB2–BC2。

代入已知数值,AC2 = 52– 42 = 9,所以AC = 3cm。

2、【题目】在直角三角形中,∠A = 30°,∠C = 90°,BC = 3cm。

求AB 的长度。

【解析】利用正弦函数求解。

sin A = BC/AB,所以AB = BC/sin A = 3/sin 30° = 6cm。

3、【题目】在直角三角形中,∠B = 45°,∠C = 90°,AC = 2cm。

求AB 的长度。

【解析】利用正切函数求解。

tan B = AC/BC,所以BC = AC/tan B = 2/tan 45° = 2cm。

因为∠B = 45°,所以AB = sqrt(2) * BC = 2sqrt(2)cm。

4、【题目】在直角三角形中,∠A = 60°,∠C = 90°,AB = 4cm。

求BC 和AC的长度。

【解析】利用余弦函数和勾股定理求解。

cos A = AC/AB,所以AC = AB * cos A = 4 * cos 60° = 2cm。

然后利用勾股定理,BC2 = AB2– AC2 = 16 - 4 = 12,所以BC = 2sqrt(3)cm。

5、【题目】一艘船以15节(海里/小时)的速度向正北方向航行。

同时,一股水流以5节的速度从东向西流过。

求船的实际航向和速度。

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

解直角三角形在实际生活中应用

解直角三角形在实际生活中应用

解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。

直角三角形的重要性在于它具有很多实际应用价值。

本文将介绍一些直角三角形在实际生活中的应用。

一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。

通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。

例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。

二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。

在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。

直角三角形可以帮助我们测量坡度的比例。

通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。

三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。

然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。

通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。

四、导航和定位直角三角形在导航和定位中也有广泛的应用。

例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。

通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。

五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。

例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。

通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。

六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。

通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。

这对于照明设计师来说非常重要,以确保正确照亮目标物体。

解直角三角形的应用题型

解直角三角形的应用题型

解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。

在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。

下面列举一些常见的直角三角形应用题型。

1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。

这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。

例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。

解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。

2. 求角度已知直角三角形两个角度,求第三个角度。

由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。

例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。

解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。

3. 求高已知直角三角形的斜边和一条直角边,求高。

我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。

例题:已知直角三角形的斜边长为5,直角边长为3,求高。

解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。

利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。

4. 求面积已知直角三角形的两条直角边长度,求面积。

我们可以利用面积公式S=1/2*底边长*高求出面积。

例题:已知直角三角形的两条直角边长分别为4和3,求面积。

解:利用面积公式S=1/2*4*3,可得面积为6。

以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。

解直角三角形经典题型应用题

解直角三角形经典题型应用题

解直角三角形经典题型应用题1. 一个田径运动员越过一根高度为2米的木板,如果他离地面的水平距离是3米,那么他的起跳点距离木板底部的高度是多少?解:设起跳点距离木板底部的高度为x,则根据勾股定理,得到:$x^2 + 3^2 = 2^2$化简得:$x^2 = 2^2 - 3^2 = -5$由于x是高度,因此应该为正数。

但是由于方程无解,因此无法解出起跳点距离木板底部的高度。

这个结果告诉我们,如果要跨越一个木板,距离不能太远,否则就无法起跳!2. 一个人看到一个高楼,测得距离为50米,角度为30度,那么这个高楼的高度是多少?解:设高楼的高度为h,根据三角函数,得到:$tan(30) = \frac{h}{50}$化简得:$h = 50\times tan(30) = 50 \times \frac{1}{\sqrt{3}} \approx28.87$因此,这个高楼的高度约为28.87米。

3. 一个人站在一座桥上,看到一条河流在他的正下方流过,测得桥与河面的垂直距离为20米,角度为45度,那么河宽是多少?解:设河宽为w,根据三角函数,得到:$tan(45) = \frac{w}{20}$化简得:$w = 20\times tan(45) = 20$因此,河宽为20米。

4. 在一个矩形田地中,角A的顶点和角B的底点均在田地边界上,角A的角度为30度,角B的角度为60度,且田地的长宽比为3:2,那么田地的面积是多少?解:假设田地的长为3x,宽为2x,则田地的面积为6x²。

又根据三角函数,得到:$tan(30) = \frac{3x}{y}$$tan(60) = \frac{2x}{y}$化简得:$x = y\times tan(30) = y\cdot\frac{1}{\sqrt{3}}$ $x = y\times tan(60) = y\cdot\sqrt{3}$解得:$y = 6\sqrt{3}$因此,田地的面积为6x² = 1080平方米。

解直角三角形应用题

解直角三角形应用题

解直角三角形应用题直角三角形是日常生活中常见的一种三角形,因为其特定的角度关系,使得对其进行一系列数学运算以及技术应用都显得方便和便捷。

在学习和应用直角三角形的过程中,解决一些应用题也是非常有必要的。

本文将详细介绍一些解直角三角形应用题的重要方法与技巧。

一、三边比例与角度多少在某些情况下,通过已知直角三角形的三边比例,可以推算出其内部的角度关系。

如下所示,已知直角三角形的三边比例,求其内部所有角度的大小。

根据直角三角形的定义,可以知道斜边上对应的角度是直角,那么只需要求出其余两个角度就可以了。

设三边长度分别为a,b,c,设两个内角为A,B,那么根据三角函数的定义可以得到下列方程组:sin A = a / ccos A = b / ctan A = a / b通过这些公式,可以得到角A和角B的大小。

当然,如果只有两个角度是已知的,也可以借助三角函数式子求得第三个角度。

二、三角形上一点对角度的影响已知直角三角形ABC中,C为直角,AB=c,已知点D在斜边AC上,且满足AD=BC,求角度B和角度C的大小。

这就是典型的直角三角形应用题。

首先,因为AD和BC长度相等,那么可知三角形ACD和三角形BCD的面积相等,根据三角形面积公式得到:AD×CD/2 = BC×CD/2AD = BC×CD/AC将已知数据代入,化简得到:CD=2AC/(1+√5)接着,根据对应角的两点组合定理可得到如下关系式:tan B = BD/AB = AD/ABsin C = BD/BC = AD/AC代入已知的数据,得到:tan B = (2AC / (1+√5)) / csin C = (2AC / (1+√5)) / √(AC^2 + c^2)通过这些方程,可以计算出角B和角C的大小。

三、海伦公式海伦公式(Heron's formula)是解任意形状三角形面积的重要公式之一。

对于任意形状的三角形,海伦公式的表述如下所示:S = √(p(p-a)(p-b)(p-c))其中,S表示三角形的面积,a,b,c表示三角形的三边长度,p则表示三角形半周长,即:p = (a+b+c)/2在求解直角三角形的面积时,可以运用海伦公式。

解三角形在生活中的应用

解三角形在生活中的应用

c b sin B
c c sin C
所以
a sin A
b sin B
c sin C
可是在斜三角形中是否成立的问题,在高一 的学习中已经证明也是成立的。
4
实际测量的几个例子
问题1:测量书柜的高度
模型转化
H
α
β
a
5
为了避免测量误差,我们采取了多次测量求平均 值的方法
次数
长度单位:厘米(cm) 角度单位:度()
374. 1
3.7
所以:使用我们的测角仪实际上还可以测量水平物体的长度, 实际上,这种测量方法还可以测量AB、CD间的距离,比如在河的一边, 测河的宽度。
15
1、我们设计的测角仪虽然不成熟,但我们自认为 在短距离的测量中它比光学测角仪有一定的优势, 而且通过对测角仪的设计与制做,体会了制做的乐 趣。做任何事不能等待,必须动手实践,当你使用 你自制工具工作时,工作变成了乐趣。 2、我们在实验中体会了测角仪的应用方法,结合 角三角形的数学知识,我们学会了用测角仪测量高 度,水平长度、水平宽度这三类问题,深刻体会了 我们的先辈仅用尺与测角仪进行地质测绘的过程, 而且深入理解了三角函数知识在实际生活中的作用。
基高 100 50.5 48.6 1745.7 17.5 1763.2 17.5 2
基高 50 48.6 47.7 1766.1 17.7 1783.7 17.7 3
11
数据比较,如下
1768.104 1764.64
1761.176 1757.712 1754.248 1750.784
1747.32 1743.856 1740.392 1736.928 1733.464
水平长度测量计算器

第五章 第七节 解三角形的实际应用 课件(共43张PPT)

第五章 第七节 解三角形的实际应用  课件(共43张PPT)
易知∠CAB=10°,∠ACB=10°,所以 AB=BC=10 米, 在 Rt△AOB 中,BO=10sin 70°≈9.4(米).故选 C.]
本题以“珠穆朗玛峰”为背景设计试题,考查解三角形等 知识,体现了智育的素养导向.破解此类题的关键是准确获取有效信息,合 理运用获取到的信息画出草图,把所求的问题转化到几何图形中,通过合理 运用平面几何相关知识进行求解.
2 2

所以 θ=π4 ,∠ABC=3θ=34π ,
所以 AC2=16+8-2×4×2
2
×(-
2 2
)=40,
所以 AC=2 10 .]
平面几何中解三角形问题的求解思路 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用 正弦、余弦定理求解. (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
C [函数 f(x)的定义域为 R.
A.50 2 m C.25 2 m
B.50 3 m D.252 2 m
A
[由正弦定理得sin
AB ∠ACB
= sin
AC ∠CBA
,又由题意得∠CBA=30°,
所以 AB=ACsinsin∠∠CBAACB
50× =1
2 2
=50
2
(m).]
2
4.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离相等,灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ________方向.
解析: 如图,设辑私艇在 C 处截住走私船,D 为岛 A 正南方向上一点, 缉私艇的速度为 x 海里/小时,结合题意知 BC=0.5x,AC =5,∠BAC=180°-38°-22°=120°,

解三角形在现实生活中的应用——正,余弦定理

解三角形在现实生活中的应用——正,余弦定理

解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。

例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。

以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。

假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。

你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。

2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。

假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。

你可以使用正弦定理或余弦定理计算出树的高度。

3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。

假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。

这对于导航非常重要。

4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。

例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。

通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。

解三角形在生活中的应用

解三角形在生活中的应用

解三角形在生活中的应用一、前言解三角形是初中数学中的一个重要内容,它是指已知三角形中的某些元素(如两个角度和一个边长),求出其余未知元素的过程。

虽然这个知识点在我们的学生时代可能并没有什么实际用处,但实际上,在我们的日常生活中,解三角形却有着广泛的应用。

二、建筑工程建筑工程是解三角形最常见的应用之一。

在建筑设计和施工过程中,经常需要测量建筑物各部分之间的距离、高度、倾斜度等信息。

这些信息可以通过解三角形来计算得出。

例如,在设计一座桥梁时,需要测量桥梁两端之间的距离和高度差。

如果只是简单地使用测量工具来进行测量,得到的结果可能会存在误差。

而通过解三角形来计算,则可以得到更加精确的结果。

三、导航导航也是解三角形的应用之一。

在旅行或驾车过程中,我们通常会使用地图或导航软件来确定行进方向和距离。

而这些软件所依据的原理就是通过解三角形来计算出当前位置与目标位置之间的距离和方向。

例如,当我们使用导航软件时,它会根据我们当前的位置和目标位置的坐标来计算出两点之间的距离和方向。

这个计算过程就是通过解三角形来实现的。

四、天文学天文学也是解三角形的应用之一。

在观测天体时,需要测量其位置、距离、速度等信息。

而这些信息可以通过解三角形来计算得出。

例如,在观测恒星时,需要测量其视差和视差变化,以确定其距离和速度。

而这个计算过程就是通过解三角形来实现的。

五、摄影摄影也是解三角形的应用之一。

在拍摄照片时,需要考虑拍摄角度、焦距等因素。

而这些因素可以通过解三角形来计算得出。

例如,在拍摄远景风景照片时,需要选择合适的焦距和拍摄角度,以保证整张照片都能清晰地呈现在画面中。

而这个计算过程就是通过解三角形来实现的。

六、总结综上所述,解三角形在我们日常生活中有着广泛的应用。

从建筑工程到导航、天文学再到摄影,它都扮演着重要的角色。

因此,学好解三角形不仅可以帮助我们在学术上取得更好的成绩,还能够为我们的生活带来更多便利和乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形应用举例(1)教学目标(a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语(b)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。

其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。

对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正(c)情感与价值:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力(2)教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解教学难点:根据题意建立数学模型,画出示意图(3)学法与教学用具让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形,让学生尝试绘制知识纲目图。

生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。

解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。

直角板、投影仪(多媒体教室)(4)教学设想1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设置情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

3、新课讲授(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒51,∠ACB=︒75。

求A、B两点的距离(精确到0.1m)启发提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。

解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB = ABCACB AC ∠∠sin sin = ABCACB ∠∠sin sin 55 = )7551180sin(75sin 55︒-︒-︒︒= ︒︒54sin 75sin 55 ≈ 65.7(m)答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少?老师指导学生画图,建立数学模型。

解略:2a km例2、(动画演示辅助点和辅助线)如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。

首先需要构造三角形,所以需要确定C 、D 两点。

根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得 AC =)](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )sin(sin γβαγ++a计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒ 略解:将题中各已知量代入例2推出的公式,得AB=206 评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。

4、学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。

5、课堂练习课本第14页练习第1、2题6、归纳总结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解(5)评价设计1、课本第22页第1、2、3题2、思考题:某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。

公路的走向是M站的北偏东40︒。

开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。

问汽车还需行驶多远,才能到达M汽车站?解:由题设,画出示意图,设汽车前进20千米后到达B 处。

在∆ABC 中,AC=31,BC=20,AB=21,由余弦定理得 cosC=BC AC AB BC AC ⋅-+2222=3123,则sin 2C =1- cos 2C =231432, sinC =31312, 所以 sin ∠MAC = sin (120︒-C )= sin120︒cosC - cos120︒sinC =62335在∆MAC 中,由正弦定理得 MC =AMC MAC AC ∠∠sin sin =2331⨯62335=35从而有MB= MC-BC=15答:汽车还需要行驶15千米才能到达M 汽车站。

课题: §1.2.2解三角形应用举例第二课时授课类型:新授课●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题过程与方法:情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力●教学重点结合实际测量工具,解决生活中的测量高度问题●教学难点能观察较复杂的图形,从中找到解决问题的关键条件●教学过程Ⅰ.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题Ⅱ.讲授新课[范例讲解]例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB 长的关键是先求AE ,在∆ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,再测出由C 点观察A 的仰角,就可以计算出AE 的长。

解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上。

由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a ,测角仪器的高是h ,那么,在∆ACD 中,根据正弦定理可得AC = )sin(sin βαβ-aAB = AE + h= AC αsin + h= )sin(sin sin βαβα-a + h例2、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'︒,在塔底C 处测得A 处的俯角β=501'︒。

已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在∆ABD 中求CD ,则关键需要求出哪条边呢? 生:需求出BD 边。

师:那如何求BD 边呢?生:可首先求出AB 边,再根据∠BAD=α求得。

解:在∆ABC 中, ∠BCA=90︒+β,∠ABC =90︒-α,∠BAC=α- β,∠BAD =α.根据正弦定理,)sin(βα-BC = )90sin(β+︒AB 所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC 解Rt ∆ABD 中,得 BD =ABsin ∠BAD=)sin(sin cos βααβ-BC 将测量数据代入上式,得 BD = )1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒ ≈177 (m)CD =BD -BC ≈177-27.3=150(m)答:山的高度约为150米.师:有没有别的解法呢?生:若在∆ACD 中求CD ,可先求出AC 。

师:分析得很好,请大家接着思考如何求出AC ? 生:同理,在∆ABC 中,根据正弦定理求得。

(解题过程略) 例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢? 生:在∆BCD 中师:在∆BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长?生:BC 边解:在∆ABC 中, ∠A=15︒,∠C= 25︒-15︒=10︒,根据正弦定理,A BC sin = CAB sin ,BC =C A AB sin sin =︒︒10sin 15sin 5≈ 7.4524(km)CD=BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m)答:山的高度约为1047米Ⅲ.课堂练习课本第17页练习第1、2、3题Ⅳ.课时小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

相关文档
最新文档